Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
2.
Diagnostics (Basel) ; 13(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37443526

RESUMO

Artificial intelligence (AI) applications in mammography have gained significant popular attention; however, AI has the potential to revolutionize other aspects of breast imaging beyond simple lesion detection. AI has the potential to enhance risk assessment by combining conventional factors with imaging and improve lesion detection through a comparison with prior studies and considerations of symmetry. It also holds promise in ultrasound analysis and automated whole breast ultrasound, areas marked by unique challenges. AI's potential utility also extends to administrative tasks such as MQSA compliance, scheduling, and protocoling, which can reduce the radiologists' workload. However, adoption in breast imaging faces limitations in terms of data quality and standardization, generalizability, benchmarking performance, and integration into clinical workflows. Developing methods for radiologists to interpret AI decisions, and understanding patient perspectives to build trust in AI results, will be key future endeavors, with the ultimate aim of fostering more efficient radiology practices and better patient care.

3.
J Breast Imaging ; 4(5): 488-495, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38416951

RESUMO

OBJECTIVE: Artificial intelligence (AI)-based triage algorithms may improve cancer detection and expedite radiologist workflow. To this end, the performance of a commercial AI-based triage algorithm on screening mammograms was evaluated across breast densities and lesion types. METHODS: This retrospective, IRB-exempt, multicenter, multivendor study examined 1255 screening 4-view mammograms (400 positive and 855 negative studies). Images were anonymized by providing institutions and analyzed by a commercially available AI algorithm (cmTriage, CureMetrix, La Jolla, CA) that performed retrospective triage at the study level by flagging exams as "suspicious" or not. Sensitivities and specificities with confidence intervals were derived from area under the curve (AUC) calculations. RESULTS: The algorithm demonstrated an AUC of 0.95 (95% CI: 0.94-0.96) for case identification. Area under the curve held across densities (0.95) and lesion types (masses: 0.94 [95% CI: 0.92-0.96] or microcalcifications: 0.97 [95% CI: 0.96-0.99]). The algorithm has a default sensitivity of 93% (95% CI: 95.6%-90.5%) with specificity of 76.3% (95% CI: 79.2%-73.4%). To evaluate real-world performance, a sensitivity of 86.9% (95% CI: 83.6%-90.2%) was tested, as observed for practicing radiologists by the Breast Cancer Surveillance Consortium (BCSC) study. The resulting specificity was 88.5% (95% CI: 86.4%-90.7%), similar to the BCSC specificity of 88.9%, indicating performance comparable to real-world results. CONCLUSION: When tested for lesion detection, an AI-based triage software can perform at the level of practicing radiologists. Drawing attention to suspicious exams may improve reader specificity and help streamline radiologist workflow, enabling faster turnaround times and improving care.


Assuntos
Inteligência Artificial , Mamografia , Triagem , Algoritmos , Mamografia/métodos , Estudos Retrospectivos , Triagem/métodos
4.
Radiol Artif Intell ; 4(2): e210160, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35391767

RESUMO

Quantitative imaging measurements can be facilitated by artificial intelligence (AI) algorithms, but how they might impact decision-making and be perceived by radiologists remains uncertain. After creation of a dedicated inspiratory-expiratory CT examination and concurrent deployment of a quantitative AI algorithm for assessing air trapping, five cardiothoracic radiologists retrospectively evaluated severity of air trapping on 17 examination studies. Air trapping severity of each lobe was evaluated in three stages: qualitatively (visually); semiquantitatively, allowing manual region-of-interest measurements; and quantitatively, using results from an AI algorithm. Readers were surveyed on each case for their perceptions of the AI algorithm. The algorithm improved interreader agreement (intraclass correlation coefficients: visual, 0.28; semiquantitative, 0.40; quantitative, 0.84; P < .001) and improved correlation with pulmonary function testing (forced expiratory volume in 1 second-to-forced vital capacity ratio) (visual r = -0.26, semiquantitative r = -0.32, quantitative r = -0.44). Readers perceived moderate agreement with the AI algorithm (Likert scale average, 3.7 of 5), a mild impact on their final assessment (average, 2.6), and a neutral perception of overall utility (average, 3.5). Though the AI algorithm objectively improved interreader consistency and correlation with pulmonary function testing, individual readers did not immediately perceive this benefit, revealing a potential barrier to clinical adoption. Keywords: Technology Assessment, Quantification © RSNA, 2021.

5.
Radiol Artif Intell ; 2(4): e190064, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32797119

RESUMO

PURPOSE: To evaluate the performance of a deep learning (DL) algorithm for clinical measurement of right and left ventricular volume and function across cardiac MR images obtained for a range of clinical indications and pathologies. MATERIALS AND METHODS: A retrospective, Health Insurance Portability and Accountability Act-compliant study was conducted using the first 200 noncongenital clinical cardiac MRI examinations from June 2015 to June 2017 for which volumetry was available. Images were analyzed using commercially available software for automated DL-based and manual contouring of biventricular volumes. Fully automated measurements were compared using Pearson correlations, relative volume errors, and Bland-Altman analyses. Manual, automated, and expert revised contours for 50 MR images were examined by comparing regional Dice coefficients at the base, midventricle, and apex to further analyze the contour quality. RESULTS: Fully automated and manual left ventricular volumes were strongly correlated for end-systolic volume (ESV: Pearson r = 0.99, P < .001), end-diastolic volume (EDV: r = 0.97, P < .001), and ejection fraction (EF: r = 0.94, P < .001). Right ventricular measurements were also correlated for ESV (r = 0.93, P < .001), EDV (r = 0.92, P < .001), and EF (r = 0.73, P < .001). Visual inspection of segmentation quality showed most errors (73%) occurred at the cardiac base. Mean Dice coefficients between manual, automated, and expert revised contours ranged from 0.92 to 0.95, with greatest variance at the base and apex. CONCLUSION: Fully automated ventricular segmentation by the tested algorithm provides contours and ventricular volumes that could be used to aid expert segmentation, but can benefit from expert supervision, particularly to resolve errors at the basal and apical slices. Supplemental material is available for this article. © RSNA, 2020.

6.
J Thorac Imaging ; 34(3): 192-201, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31009397

RESUMO

Advances in technology have always had the potential and opportunity to shape the practice of medicine, and in no medical specialty has technology been more rapidly embraced and adopted than radiology. Machine learning and deep neural networks promise to transform the practice of medicine, and, in particular, the practice of diagnostic radiology. These technologies are evolving at a rapid pace due to innovations in computational hardware and novel neural network architectures. Several cutting-edge postprocessing analysis applications are actively being developed in the fields of thoracic and cardiovascular imaging, including applications for lesion detection and characterization, lung parenchymal characterization, coronary artery assessment, cardiac volumetry and function, and anatomic localization. Cardiothoracic and cardiovascular imaging lies at the technological forefront of radiology due to a confluence of technical advances. Enhanced equipment has enabled computed tomography and magnetic resonance imaging scanners that can safely capture images that freeze the motion of the heart to exquisitely delineate fine anatomic structures. Computing hardware developments have enabled an explosion in computational capabilities and in data storage. Progress in software and fluid mechanical models is enabling complex 3D and 4D reconstructions to not only visualize and assess the dynamic motion of the heart, but also quantify its blood flow and hemodynamics. And now, innovations in machine learning, particularly in the form of deep neural networks, are enabling us to leverage the increasingly massive data repositories that are prevalent in the field. Here, we discuss developments in machine learning techniques and deep neural networks to highlight their likely role in future radiologic practice, both in and outside of image interpretation and analysis. We discuss the concepts of validation, generalizability, and clinical utility, as they pertain to this and other new technologies, and we reflect upon the opportunities and challenges of bringing these into daily use.


Assuntos
Doenças Cardiovasculares/diagnóstico por imagem , Diagnóstico por Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Doenças Torácicas/diagnóstico por imagem , Sistema Cardiovascular/diagnóstico por imagem , Humanos , Redes Neurais de Computação , Tórax/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA