Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(12): 8677-8687, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38472104

RESUMO

The nature of the Cu-Zn interaction and especially the role of Zn in Cu/ZnO catalysts used for methanol synthesis from CO2 hydrogenation are still debated. Migration of Zn onto the Cu surface during reaction results in a Cu-ZnO interface, which is crucial for the catalytic activity. However, whether a Cu-Zn alloy or a Cu-ZnO structure is formed and the transformation of this interface under working conditions demand further investigation. Here, ZnO/Cu2O core-shell cubic nanoparticles with various ZnO shell thicknesses, supported on SiO2 or ZrO2 were prepared to create an intimate contact between Cu and ZnO. The evolution of the catalyst's structure and composition during and after the CO2 hydrogenation reaction were investigated by means of operando spectroscopy, diffraction, and ex situ microscopy methods. The Zn loading has a direct effect on the oxidation state of Zn, which, in turn, affects the catalytic performance. High Zn loadings, resulting in a stable ZnO catalyst shell, lead to increased methanol production when compared to Zn-free particles. Low Zn loadings, in contrast, leading to the presence of metallic Zn species during reaction, showed no significant improvement over the bare Cu particles. Therefore, our work highlights that there is a minimum content of Zn (or optimum ZnO shell thickness) needed to activate the Cu catalyst. Furthermore, in order to minimize catalyst deactivation, the Zn species must be present as ZnOx and not metallic Zn or Cu-Zn alloy, which is undesirably formed during the reaction when the precatalyst ZnO overlayer is too thin.

2.
J Am Chem Soc ; 146(14): 9665-9678, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557016

RESUMO

The electrochemical reduction of nitrate (NO3-) and nitrite (NO2-) enables sustainable, carbon-neutral, and decentralized routes to produce ammonia (NH3). Copper-based materials are promising electrocatalysts for NOx- conversion to NH3. However, the underlying reaction mechanisms and the role of different Cu species during the catalytic process are still poorly understood. Herein, by combining quasi in situ X-ray photoelectron spectroscopy (XPS) and operando X-ray absorption spectroscopy (XAS), we unveiled that Cu is mostly in metallic form during the highly selective reduction of NO3-/NO2- to NH3. On the contrary, Cu(I) species are predominant in a potential region where the two-electron reduction of NO3- to NO2- is the major reaction. Electrokinetic analysis and in situ Raman spectroscopy was also used to propose possible steps and intermediates leading to NO2- and NH3, respectively. This work establishes a correlation between the catalytic performance and the dynamic changes of the chemical state of Cu, and provides crucial mechanistic insights into the pathways for NO3-/NO2- electrocatalytic reduction.

3.
J Am Chem Soc ; 145(31): 17351-17366, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37524049

RESUMO

Transition metal-nitrogen-doped carbons (TMNCs) are a promising class of catalysts for the CO2 electrochemical reduction reaction. In particular, high CO2-to-CO conversion activities and selectivities were demonstrated for Ni-based TMNCs. Nonetheless, open questions remain about the nature, stability, and evolution of the Ni active sites during the reaction. In this work, we address this issue by combining operando X-ray absorption spectroscopy with advanced data analysis. In particular, we show that the combination of unsupervised and supervised machine learning approaches is able to decipher the X-ray absorption near edge structure (XANES) of the TMNCs, disentangling the contributions of different metal sites coexisting in the working TMNC catalyst. Moreover, quantitative structural information about the local environment of active species, including their interaction with adsorbates, has been obtained, shedding light on the complex dynamic mechanism of the CO2 electroreduction.

4.
J Am Chem Soc ; 145(5): 3016-3030, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36716273

RESUMO

The hydrogenation of CO2 to methanol over Cu/ZnO-based catalysts is highly sensitive to the surface composition and catalyst structure. Thus, its optimization requires a deep understanding of the influence of the pre-catalyst structure on its evolution under realistic reaction conditions, including the formation and stabilization of the most active sites. Here, the role of the pre-catalyst shape (cubic vs spherical) in the activity and selectivity of ZnO-supported Cu nanoparticles was investigated during methanol synthesis. A combination of ex situ, in situ, and operando microscopy, spectroscopy, and diffraction methods revealed drastic changes in the morphology and composition of the shaped pre-catalysts under reaction conditions. In particular, the rounding of the cubes and partial loss of the (100) facets were observed, although such motifs remained in smaller domains. Nonetheless, the initial pre-catalyst structure was found to strongly affect its subsequent transformation in the course of the CO2 hydrogenation reaction and activity/selectivity trends. In particular, the cubic Cu particles displayed an increased activity for methanol production, although at the cost of a slightly reduced selectivity when compared to similarly sized spherical particles. These findings were rationalized with the help of density functional theory calculations.

5.
J Am Chem Soc ; 145(39): 21465-21474, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37726200

RESUMO

The activity of Ni (hydr)oxides for the electrochemical evolution of oxygen (OER), a key component of the overall water splitting reaction, is known to be greatly enhanced by the incorporation of Fe. However, a complete understanding of the role of cationic Fe species and the nature of the catalyst surface under reaction conditions remains unclear. Here, using a combination of electrochemical cell and conventional transmission electron microscopy, we show how the surface of NiO electrocatalysts, with initially well-defined surface facets, restructures under applied potential and forms an active NiFe layered double (oxy)hydroxide (NiFe-LDH) when Fe3+ ions are present in the electrolyte. Continued OER under these conditions, however, leads to the creation of additional FeOx aggregates. Electrochemically, the NiFe-LDH formation correlates with a lower onset potential toward the OER, whereas the formation of the FeOx aggregates is accompanied by a gradual decrease in the OER activity. Complementary insight into the catalyst near-surface composition, structure, and chemical state is further extracted using X-ray photoelectron spectroscopy, operando Raman spectroscopy, and operando X-ray absorption spectroscopy together with measurements of Fe uptake by the electrocatalysts using time-resolved inductively coupled plasma mass spectrometry. Notably, we identified that the catalytic deactivation under stationary conditions is linked to the degradation of in situ-created NiFe-LDH. These insights exemplify the complexity of the active state formation and show how its structural and morphological evolution under different applied potentials can be directly linked to the catalyst activation and degradation.

6.
Angew Chem Int Ed Engl ; 61(15): e202114707, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35102658

RESUMO

Electrochemical CO2 reduction is a potential approach to convert CO2 into valuable chemicals using electricity as feedstock. Abundant and affordable catalyst materials are needed to upscale this process in a sustainable manner. Nickel-nitrogen-doped carbon (Ni-N-C) is an efficient catalyst for CO2 reduction to CO, and the single-site Ni-Nx motif is believed to be the active site. However, critical metrics for its catalytic activity, such as active site density and intrinsic turnover frequency, so far lack systematic discussion. In this work, we prepared a set of covalent organic framework (COF)-derived Ni-N-C catalysts, for which the Ni-Nx content could be adjusted by the pyrolysis temperature. The combination of high-angle annular dark-field scanning transmission electron microscopy and extended X-ray absorption fine structure evidenced the presence of Ni single-sites, and quantitative X-ray photoemission addressed the relation between active site density and turnover frequency.

7.
J Am Chem Soc ; 143(19): 7578-7587, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33956433

RESUMO

In this study, we have taken advantage of a pulsed CO2 electroreduction reaction (CO2RR) approach to tune the product distribution at industrially relevant current densities in a gas-fed flow cell. We compared the CO2RR selectivity of Cu catalysts subjected to either potentiostatic conditions (fixed applied potential of -0.7 VRHE) or pulsed electrolysis conditions (1 s pulses at oxidative potentials ranging from Ean = 0.6 to 1.5 VRHE, followed by 1 s pulses at -0.7 VRHE) and identified the main parameters responsible for the enhanced product selectivity observed in the latter case. Herein, two distinct regimes were observed: (i) for Ean = 0.9 VRHE we obtained 10% enhanced C2 product selectivity (FEC2H4 = 43.6% and FEC2H5OH = 19.8%) in comparison to the potentiostatic CO2RR at -0.7 VRHE (FEC2H4 = 40.9% and FEC2H5OH = 11%), (ii) while for Ean = 1.2 VRHE, high CH4 selectivity (FECH4 = 48.3% vs 0.1% at constant -0.7 VRHE) was observed. Operando spectroscopy (XAS, SERS) and ex situ microscopy (SEM and TEM) measurements revealed that these differences in catalyst selectivity can be ascribed to structural modifications and local pH effects. The morphological reconstruction of the catalyst observed after pulsed electrolysis with Ean = 0.9 VRHE, including the presence of highly defective interfaces and grain boundaries, was found to play a key role in the enhancement of the C2 product formation. In turn, pulsed electrolysis with Ean = 1.2 VRHE caused the consumption of OH- species near the catalyst surface, leading to an OH-poor environment favorable for CH4 production.

8.
Chem Soc Rev ; 49(19): 6884-6946, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32840269

RESUMO

The electrochemical reduction of carbon dioxide (CO2) powered by renewable energy is an attractive sustainable approach to mitigate CO2 emissions and to produce fuels or value-added chemicals. In order to tackle the challenges related to selectivity, activity, overpotential and durability, transition metal-based catalysts have been widely investigated in the last decades. In an effort to bridge the gap between the fields of homogeneous and heterogeneous catalysis, this review aims to survey the main strategies explored for the rational design of a wide variety of different metal catalysts, ranging from molecular systems to single-atom and nanostructured catalysts. Transition metal complexes containing heme and non-heme ligands have been selected to discuss the recent advances in the understanding of the structure-function relationship in molecular homogeneous catalysis as well as to summarize the main approaches proposed for the heterogenization or confinement of molecular catalysts on conductive surfaces. The main strategies to minimize catalyst cost are also presented, leading to atomically dispersed molecular-like M-Nx moieties embedded on 2D conducting materials. The superior performances of single-atom catalysts (SACs) and the structural similarity with their molecular analogs, suggest that transition metal catalysts containing well-defined sites may be intrinsically more active and selective towards CO2 conversion than the bulk heterogeneous materials. Finally, design approaches for metal nanoparticles (NPs) based on size, shape, and support tuning are summarized and compared to novel strategies based on the interaction with surface-bonded organic molecules. The studies herein presented show that the basic principles in molecular catalysis and organometallic chemistry can be effectively used to design new efficient and selective heterogeneous catalysts for CO2 reduction.

9.
Angew Chem Int Ed Engl ; 60(13): 7426-7435, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33497532

RESUMO

Direct conversion of carbon dioxide into multicarbon liquid fuels by the CO2 electrochemical reduction reaction (CO2 RR) can contribute to the decarbonization of the global economy. Here, well-defined Cu2 O nanocubes (NCs, 35 nm) uniformly covered with Ag nanoparticles (5 nm) were synthesized. When compared to bare Cu2 O NCs, the catalyst with 5 at % Ag on Cu2 O NCs displayed a two-fold increase in the Faradaic efficiency for C2+ liquid products (30 % at -1.0 VRHE ), including ethanol, 1-propanol, and acetaldehyde, while formate and hydrogen were suppressed. Operando X-ray absorption spectroscopy revealed the partial reduction of Cu2 O during CO2 RR, accompanied by a reaction-driven redispersion of Ag on the CuOx  NCs. Data from operando surface-enhanced Raman spectroscopy further uncovered significant variations in the CO binding to Cu, which were assigned to Ag-Cu sites formed during CO2 RR that appear crucial for the C-C coupling and the enhanced yield of liquid products.

10.
Nat Commun ; 15(1): 3986, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734726

RESUMO

Pulsed CO2 electroreduction (CO2RR) has recently emerged as a facile way to in situ tune the product selectivity, in particular toward ethanol, without re-designing the catalytic system. However, in-depth mechanistic understanding requires comprehensive operando time-resolved studies to identify the kinetics and dynamics of the electrocatalytic interface. Here, we track the adsorbates and the catalyst state of pre-reduced Cu2O nanocubes ( ~ 30 nm) during pulsed CO2RR using sub-second time-resolved operando Raman spectroscopy. By screening a variety of product-steering pulse length conditions, we unravel the critical role of co-adsorbed OH and CO on the Cu surface next to the oxidative formation of Cu-Oad or CuOx/(OH)y species, impacting the kinetics of CO adsorption and boosting the ethanol selectivity. However, a too low OHad coverage following the formation of bulk-like Cu2O induces a significant increase in the C1 selectivity, while a too high OHad coverage poisons the surface for C-C coupling. Thus, we unveil the importance of co-adsorbed OH on the alcohol formation under CO2RR conditions and thereby, pave the way for improved catalyst design and operating conditions.

11.
Adv Mater ; 36(4): e2307809, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37994692

RESUMO

Electrochemical CO2 reduction (CO2 RR) is a rising technology, aiming to reduce the energy sector dependence on fossil fuels and to produce carbon-neutral raw materials. Metal-nitrogen-doped carbons (M-N-C) are emerging, cost-effective catalysts for this reaction; however, their long-term stability is a major issue. To overcome this, understanding their structural evolution is crucial, requiring systematic in-depth operando studies. Here a series of M-N-C catalysts (M = Fe, Sn, Cu, Co, Ni, Zn) is investigated using operando X-ray absorption spectroscopy. It is found that the Fe-N-C and Sn-N-C are prone to oxide clusters formation even before CO2 RR. In contrast, the respective metal cations are singly dispersed in the as-prepared Cu-N-C, Co-N-C, Ni-N-C, and (Zn)-N-C. During CO2 RR, metallic clusters/nanoparticles reversibly formed in all catalysts, except for the Ni-N-C. This phenomenon, previously observed only in Cu-N-C, thus is ubiquitous in M-N-C catalysts. The competition between M-O and M-N interactions is an important factor determining the mobility of metal species in M-N-C. Specifically, the strong interaction between the Ni centers and the N-functional groups of the carbon support results in higher stability of the Ni single-sites, leading to the excellent performance of Ni-N-C in the CO2 to CO conversion, in comparison to other transition metals.

12.
ACS Energy Lett ; 9(2): 644-652, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38356936

RESUMO

The key role of morphological defects (e.g., irregular steps and dislocations) on the selectivity of model Cu catalysts for the electrocatalytic reduction of CO2 (CO2RR) is illustrated here. Cu(111) single-crystal surfaces prepared under ultrahigh vacuum (UHV) conditions and presenting similar chemical and local microscopic surface features were found to display different product selectivity during the CO2RR. In particular, changes in selectivity from hydrogen-dominant to hydrocarbon-dominant product distributions were observed based on the number of CO2RR electrolysis pretreatment cycles performed prior to a subsequent UHV surface regeneration treatment, which lead to surfaces with seemingly identical chemical composition and local crystallographic structure. However, significant mesostructural changes were observed through a micron-scale microscopic analysis, including a higher density of irregular steps on the samples producing hydrocarbons. Thus, our findings highlight that step edges are key for C-C coupling in the CO2RR and that not only atomistic but also mesoscale characterization of electrocatalytic materials is needed in order to comprehend complex selectivity trends.

13.
EES Catal ; 2(1): 311-323, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38222061

RESUMO

Electrochemical reduction of CO2 (CO2RR) is an attractive technology to reintegrate the anthropogenic CO2 back into the carbon cycle driven by a suitable catalyst. This study employs highly efficient multi-carbon (C2+) producing Cu2O nanocubes (NCs) decorated with CO-selective Au nanoparticles (NPs) to investigate the correlation between a high CO surface concentration microenvironment and the catalytic performance. Structure, morphology and near-surface composition are studied via operando X-ray absorption spectroscopy and surface-enhanced Raman spectroscopy, operando high-energy X-ray diffraction as well as quasi in situ X-ray photoelectron spectroscopy. These operando studies show the continuous evolution of the local structure and chemical environment of our catalysts during reaction conditions. Along with its alloy formation, a CO-rich microenvironment as well as weakened average CO binding on the catalyst surface during CO2RR is detected. Linking these findings to the catalytic function, a complex compositional interplay between Au and Cu is revealed in which higher Au loadings primarily facilitate CO formation. Nonetheless, the strongest improvement in C2+ formation appears for the lowest Au loadings, suggesting a beneficial role of the Au-Cu atomic interaction for the catalytic function in CO2RR. This study highlights the importance of site engineering and operando investigations to unveil the electrocatalyst's adaptations to the reaction conditions, which is a prerequisite to understand its catalytic behavior.

14.
ACS Appl Mater Interfaces ; 14(2): 2691-2702, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34985252

RESUMO

The use of physical vapor deposition methods in the fabrication of catalyst layers holds promise for enhancing the efficiency of future carbon capture and utilization processes such as the CO2 reduction reaction (CO2RR). Following that line of research, we report in this work the application of a sputter gas aggregation source (SGAS) and a multiple ion cluster source type apparatus, for the controlled synthesis of CuOx nanoparticles (NPs) atop gas diffusion electrodes. By varying the mass loading, we achieve control over the balance between methanation and multicarbon formation in a gas-fed CO2 electrolyzer and obtain peak CH4 partial current densities of -143 mA cm-2 (mass activity of 7.2 kA/g) with a Faradaic efficiency (FE) of 48% and multicarbon partial current densities of -231 mA cm-2 at 76% FE (FEC2H4 = 56%). Using atomic force microscopy, electron microscopy, and quasi in situ X-ray photoelectron spectroscopy, we trace back the divergence in hydrocarbon selectivity to differences in NP film morphology and rule out the influence of both the NP size (3-15 nm, >20 µg cm-2) and in situ oxidation state. We show that the combination of the O2 flow rate to the aggregation zone during NP growth and deposition time, which affect the NP production rate and mass loading, respectively, gives rise to the formation of either densely packed CuOx NPs or rough three-dimensional networks made from CuOx NP building blocks, which in turn affects the governing CO2RR mechanism. This study highlights the potential held by SGAS-generated NP films for future CO2RR catalyst layer optimization and upscaling, where the NPs' tunable properties, homogeneity, and the complete absence of organic capping agents may prove invaluable.

15.
Nat Commun ; 12(1): 6736, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795221

RESUMO

To rationally design effective and stable catalysts for energy conversion applications, we need to understand how they transform under reaction conditions and reveal their underlying structure-property relationships. This is especially important for catalysts used in the electroreduction of carbon dioxide where product selectivity is sensitive to catalyst structure. Here, we present real-time electrochemical liquid cell transmission electron microscopy studies showing the restructuring of copper(I) oxide cubes during reaction. Fragmentation of the solid cubes, re-deposition of new nanoparticles, catalyst detachment and catalyst aggregation are observed as a function of the applied potential and time. Using cubes with different initial sizes and loading, we further correlate this dynamic morphology with the catalytic selectivity through time-resolved scanning electron microscopy measurements and product analysis. These comparative studies reveal the impact of nanoparticle re-deposition and detachment on the catalyst reactivity, and how the increased surface metal loading created by re-deposited nanoparticles can lead to enhanced C2+ selectivity and stability.

16.
ACS Catal ; 11(13): 7694-7701, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34239771

RESUMO

Electrochemical reduction of carbon dioxide (CO2RR) is an attractive route to close the carbon cycle and potentially turn CO2 into valuable chemicals and fuels. However, the highly selective generation of multicarbon products remains a challenge, suffering from poor mechanistic understanding. Herein, we used operando Raman spectroscopy to track the potential-dependent reduction of Cu2O nanocubes and the surface coverage of reaction intermediates. In particular, we discovered that the potential-dependent intensity ratio of the Cu-CO stretching band to the CO rotation band follows a volcano trend similar to the CO2RR Faradaic efficiency for multicarbon products. By combining operando spectroscopic insights with Density Functional Theory, we proved that this ratio is determined by the CO coverage and that a direct correlation exists between the potential-dependent CO coverage, the preferred C-C coupling configuration, and the selectivity to C2+ products. Thus, operando Raman spectroscopy can serve as an effective method to quantify the coverage of surface intermediates during an electrocatalytic reaction.

17.
J Phys Chem C Nanomater Interfaces ; 124(49): 26908-26915, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33335640

RESUMO

The renewable energy-powered conversion of industrially generated CO2 into useful chemicals and fuels is considered a promising technology for the sustainable development of our modern society. The electrochemical reduction of CO2 (CO2RR) is one of the possible conversion processes that can be employed to close the artificial carbon cycle, mimicking nature's photosynthesis. Nevertheless, to enable green catalytic processes, selectivity for the desired products must be achieved. In the case of CO2RR, the selectivity is strongly dependent on the electrocatalyst structure. Here, we explore the phase space of synthesis parameters required for the electrodeposition of Cu cubes with {100} facets on glassy carbon substrates and elucidate their influence on the size, shape, coverage, and uniformity of the cubes. We found that the concentration of Cl- ions in solution controls the cube size, shape, and coverage, whereas the ratio of the reduction versus oxidation time and number of cycles in the alternating potential electrodeposition protocol can be used to further tune the cube size. Cyclic voltammetry experiments were complemented with in situ electrochemical scanning electron microscopy to follow the growth dynamics and ex situ transmission electron microscopy and electron diffraction. Our results indicate that the cube growth starts from nuclei formed during the first cycle, followed by a layered deposition and partial dissolution of new material in subsequent cycles.

18.
ACS Catal ; 10(24): 14540-14551, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33362944

RESUMO

The formic acid oxidation reaction (FAOR) is one of the key reactions that can be used at the anode of low-temperature liquid fuel cells. To allow the knowledge-driven development of improved catalysts, it is necessary to deeply understand the fundamental aspects of the FAOR, which can be ideally achieved by investigating highly active model catalysts. Here, we studied SnO2-decorated Pd nanocubes (NCs) exhibiting excellent electrocatalytic performance for formic acid oxidation in acidic medium with a SnO2 promotion that boosts the catalytic activity by a factor of 5.8, compared to pure Pd NCs, exhibiting values of 2.46 A mg-1 Pd for SnO2@Pd NCs versus 0.42 A mg-1 Pd for the Pd NCs and a 100 mV lower peak potential. By using ex situ, quasi in situ, and operando spectroscopic and microscopic methods (namely, transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray absorption fine-structure spectroscopy), we identified that the initially well-defined SnO2-decorated Pd nanocubes maintain their structure and composition throughout FAOR. In situ Fourier-transformed infrared spectroscopy revealed a weaker CO adsorption site in the case of the SnO2-decorated Pd NCs, compared to the monometallic Pd NCs, enabling a bifunctional reaction mechanism. Therein, SnO2 provides oxygen species to the Pd surface at low overpotentials, promoting the oxidation of the poisoning CO intermediate and, thus, improving the catalytic performance of Pd. Our SnO x -decorated Pd nanocubes allowed deeper insight into the mechanism of FAOR and hold promise for possible applications in direct formic acid fuel cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA