Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(32): e2301730120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523544

RESUMO

The brain employs distinct circuitries to encode positive and negative valence stimuli, and dysfunctions of these neuronal circuits have a key role in the etiopathogenesis of many psychiatric disorders. The Dorsal Raphè Nucleus (DRN) is involved in various behaviors and drives the emotional response to rewarding and aversive experiences. Whether specific subpopulations of neurons within the DRN encode these behaviors with different valence is still unknown. Notably, microRNA expression in the mammalian brain is characterized by tissue and neuronal specificity, suggesting that it might play a role in cell and circuit functionality. However, this specificity has not been fully exploited. Here, we demonstrate that microRNA-34a (miR-34a) is selectively expressed in a subpopulation of GABAergic neurons of the ventrolateral DRN. Moreover, we report that acute exposure to both aversive (restraint stress) and rewarding (chocolate) stimuli reduces GABA release in the DRN, an effect prevented by the inactivation of DRN miR-34a or its genetic deletion in GABAergic neurons in aversive but not rewarding conditions. Finally, miR-34a inhibition selectively reduced passive coping with severe stressors. These data support a role of miR-34a in regulating GABAergic neurotransmitter activity and behavior in a context-dependent manner and suggest that microRNAs could represent a functional signature of specific neuronal subpopulations with valence-specific activity in the brain.


Assuntos
Núcleo Dorsal da Rafe , MicroRNAs , Humanos , Animais , Núcleo Dorsal da Rafe/metabolismo , Neurônios GABAérgicos/metabolismo , MicroRNAs/metabolismo , Mamíferos
2.
Brain Behav Immun ; 115: 535-542, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37967660

RESUMO

During withdrawal from cocaine, calcium permeable-AMPA receptors (CP-AMPAR) progressively accumulate in nucleus accumbens (NAc) synapses, a phenomenon linked to behavioral sensitization and drug-seeking. Recently, it has been suggested that neuroimmune alterations might promote aberrant changes in synaptic plasticity, thus contributing to substance abuse-related behaviors. Here, we investigated the role of microglia in NAc neuroadaptations after withdrawal from cocaine-induced conditioned place preference (CPP). We depleted microglia using PLX5622-supplemented diet during cocaine withdrawal, and after the place preference test, we measured dendritic spine density and the presence of CP-AMPAR in the NAc shell. Microglia depletion prevented cocaine-induced changes in dendritic spines and CP-AMPAR accumulation. Furthermore, microglia depletion prevented conditioned hyperlocomotion without affecting drug-context associative memory. Microglia displayed fewer number of branches, resulting in a reduced arborization area and microglia control domain at late withdrawal. Our results suggest that microglia are necessary for the synaptic adaptations in NAc synapses during cocaine withdrawal and therefore represent a promising therapeutic target for relapse prevention.


Assuntos
Cocaína , Síndrome de Abstinência a Substâncias , Ratos , Animais , Cocaína/farmacologia , Núcleo Accumbens/metabolismo , Cálcio/metabolismo , Ratos Sprague-Dawley , Microglia/metabolismo , Receptores de AMPA/metabolismo
3.
Glia ; 70(1): 173-195, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34661306

RESUMO

Microglia cells are active players in regulating synaptic development and plasticity in the brain. However, how they influence the normal functioning of synapses is largely unknown. In this study, we characterized the effects of pharmacological microglia depletion, achieved by administration of PLX5622, on hippocampal CA3-CA1 synapses of adult wild type mice. Following microglial depletion, we observed a reduction of spontaneous and evoked glutamatergic activity associated with a decrease of dendritic spine density. We also observed the appearance of immature synaptic features and higher levels of plasticity. Microglia depleted mice showed a deficit in the acquisition of the Novel Object Recognition task. These events were accompanied by hippocampal astrogliosis, although in the absence ofneuroinflammatory condition. PLX-induced synaptic changes were absent in Cx3cr1-/- mice, highlighting the role of CX3CL1/CX3CR1 axis in microglia control of synaptic functioning. Remarkably, microglia repopulation after PLX5622 withdrawal was associated with the recovery of hippocampal synapses and learning functions. Altogether, these data demonstrate that microglia contribute to normal synaptic functioning in the adult brain and that their removal induces reversible changes in organization and activity of glutamatergic synapses.


Assuntos
Microglia , Neurônios , Animais , Encéfalo , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Hipocampo , Camundongos , Compostos Orgânicos/farmacologia , Sinapses/fisiologia
5.
Arch Toxicol ; 91(2): 827-837, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27116294

RESUMO

Food supplements based on herbal products are widely used during pregnancy as part of a self-care approach. The idea that such supplements are safe and healthy is deeply seated in the general population, although they do not underlie the same strict safety regulations than medical drugs. We aimed to characterize the neurodevelopmental effects of the green tea catechin epigallocatechin gallate (EGCG), which is now commercialized as high-dose food supplement. We used the "Neurosphere Assay" to study the effects and unravel underlying molecular mechanisms of EGCG treatment on human and rat neural progenitor cells (NPCs) development in vitro. EGCG alters human and rat NPC development in vitro. It disturbs migration distance, migration pattern, and nuclear density of NPCs growing as neurospheres. These functional impairments are initiated by EGCG binding to the extracellular matrix glycoprotein laminin, preventing its binding to ß1-integrin subunits, thereby prohibiting cell adhesion and resulting in altered glia alignment and decreased number of migrating young neurons. Our data raise a concern on the intake of high-dose EGCG food supplements during pregnancy and highlight the need of an in vivo characterization of the effects of high-dose EGCG exposure during neurodevelopment.


Assuntos
Catequina/análogos & derivados , Células-Tronco Neurais/efeitos dos fármacos , Animais , Catequina/administração & dosagem , Catequina/efeitos adversos , Catequina/metabolismo , Catequina/farmacologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Suplementos Nutricionais , Feminino , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Integrina beta1/metabolismo , Laminina/metabolismo , Nestina/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Gravidez , Ratos
6.
Environ Res ; 142: 169-76, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26162960

RESUMO

Increasing evidence links the widespread exposure to organophosphate (OP) pesticides to the global epidemics of type 2 diabetes and obesity. Our recent data highlighted gene×environment interactions: mice expressing the human apolipoprotein E3 (apoE3) isoform were more prone to develop obesity than those expressing apoE2 or apoE4 upon dietary challenge with chlorpyrifos (CPF), the most used OP worldwide. Thus, we aimed to further explore the contribution of the APOE3 genotype on the emergence of obesity and related metabolic dysfunctions upon subchronic exposure to CPF. Seven-month-old targeted replacement apoE3 and C57BL/6N male mice were orally exposed to CPF at 0 or 2mg/kg body weight/day for 8 consecutive weeks. We examined body weight status, food and water intake, lipid and glucose homeostasis, metabolic biomarkers concentrations, insulin levels and insulin resistance, and leptin and ghrelin profiles. CPF exposure generally increased food ingestion, glucose and total cholesterol concentrations, and tended to elevate acyl ghrelin levels. Nonetheless, excess weight gain and increased leptin levels were inherent to apoE3 mice. Moreover, the propensity towards a diabetic profile was markedly higher in these animals than in C57BL/6N, as they showed a higher homeostatic model assessment for insulin resistance index and higher insulin levels. Although both genotypes were metabolically affected by CPF, the results of the present investigation revealed that apoE3 mice were the most vulnerable to developing obesity and related disturbances following CPF administration through the diet. Since the APOE3 genotype is the most prevalent worldwide, current findings have particular implications for human health.


Assuntos
Clorpirifos/toxicidade , Diabetes Mellitus/sangue , Inseticidas/toxicidade , Obesidade/sangue , Animais , Apolipoproteína E3/genética , Glicemia/análise , Peso Corporal , Colesterol/sangue , Colinesterases/sangue , Dieta , Ingestão de Alimentos , Grelina/sangue , Insulina/sangue , Resistência à Insulina , Leptina/sangue , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Triglicerídeos/sangue
7.
Eur J Neurosci ; 37(9): 1519-28, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23368520

RESUMO

Accumulating evidence indicates that impulsivity, in its multiple forms, involves cortical and subcortical mechanisms and abnormal dopamine (DA) transmission. Although decreased DA D2/D3 receptor availability in the nucleus accumbens (NAcb) predicts trait-like impulsivity in rats it is unclear whether this neurochemical marker extends to both the NAcb core (NAcbC) and shell (NAcbS) and whether markers for other neurotransmitter systems implicated in impulsivity such as serotonin (5-HT), endogenous opioids and γ-amino-butyric acid (GABA) are likewise altered in impulsive rats. We therefore used autoradiography to investigate DA transporter (DAT), 5-HT transporter (5-HTT) and D1, D2/D3, µ-opioid and GABA(A) receptor binding in selected regions of the prefrontal cortex and striatum in rats expressing low and high impulsive behaviour on the five-choice serial reaction-time task. High-impulsive (HI) rats exhibited significantly lower binding for DAT and D2/D3 receptors in the NAcbS and for D1 receptors in the NAcbC compared with low-impulsive (LI) rats. HI rats also showed significantly lower GABA(A) receptor binding in the anterior cingulate cortex. For all regions where receptor binding was altered in HI rats, binding was inversely correlated with impulsive responding on task. There were no significant differences in binding for 5-HTT or µ-opioid receptors in any of the regions investigated. These results indicate that altered D2/D3 receptor binding is localised to the NAcbS of trait-like impulsive rats and is accompanied by reduced binding for DAT. Alterations in binding for D1 receptors in the NAcbC and GABA(A) receptors in the anterior cingulate cortex demonstrate additional markers and putative mechanisms underlying the expression of behavioural impulsivity.


Assuntos
Corpo Estriado/fisiologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Comportamento Impulsivo/metabolismo , Córtex Pré-Frontal/fisiologia , Receptores Dopaminérgicos/metabolismo , Receptores de GABA-A/metabolismo , Animais , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Ligantes , Masculino , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/metabolismo , Ligação Proteica , Cintilografia , Ratos , Tempo de Reação , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
8.
Br J Pharmacol ; 180(7): 910-926, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-34986504

RESUMO

BACKGROUND AND PURPOSE: Studies using intermittent-access drug self-administration show increased motivation to take and seek cocaine and fentanyl, relative to continuous access. In this study, we examined the effects of intermittent- and continuous-access self-administration on heroin intake, patterns of self-administration and cue-induced heroin-seeking, after forced or voluntary abstinence, in male and female rats. We also modelled brain levels of heroin and its active metabolites. EXPERIMENTAL APPROACH: Rats were trained to self-administer a palatable solution and then heroin (0.075 mg·kg-1 per inf) either continuously (6 h·day-1 ; 10 days) or intermittently (6 h·day-1 ; 5-min access every 30-min; 10 days). Brain levels of heroin and its metabolites were modelled using a pharmacokinetic software. Next, heroin-seeking was assessed after 1 or 21 abstinence days. Between tests, rats underwent either forced or voluntary abstinence. The oestrous cycle was measured using a vaginal smear test. KEY RESULTS: Intermittent access exacerbated heroin self-administration and was characterized by a burst-like intake, yielding higher brain peaks of heroin and 6-monoacetylmorphine concentrations. Moreover, intermittent access increased cue-induced heroin-seeking during early, but not late abstinence. Heroin-seeking was higher in females after intermittent, but not continuous access, and this effect was independent of the oestrous cycle. CONCLUSIONS AND IMPLICATIONS: Intermittent heroin access in rats resembles critical features of heroin use disorder: a self-administration pattern characterized by repeated large doses of heroin and higher relapse vulnerability during early abstinence. This has significant implications for refining animal models of substance use disorder and for better understanding of the neuroadaptations responsible for this disorder. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.


Assuntos
Cocaína , Heroína , Ratos , Feminino , Masculino , Animais , Caracteres Sexuais , Extinção Psicológica , Cocaína/farmacologia , Recidiva , Autoadministração
9.
J Psychopharmacol ; 37(12): 1190-1200, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37937505

RESUMO

BACKGROUND: There is a growing interest in studying ibogaine (IBO) as a potential treatment for substance use disorders (SUDs). However, its clinical use has been hindered for mainly two reasons: First, the lack of randomized, controlled studies informing about its safety and efficacy. And second, IBO's mechanisms of action remain obscure. It has been challenging to elucidate a predominant mechanism of action responsible for its anti-addictive effects. OBJECTIVE: To describe the main targets of IBO and its main metabolite, noribogaine (NOR), in relation to their putative anti-addictive effects, reviewing the updated literature available. METHODS: A comprehensive search involving MEDLINE and Google Scholar was undertaken, selecting papers published until July 2022. The inclusion criteria were both theoretical and experimental studies about the pharmacology of IBO. Additional publications were identified in the references of the initial papers. RESULTS: IBO and its main metabolite, NOR, can modulate several targets associated with SUDs. Instead of identifying key targets, the action of IBO should be understood as a complex modulation of multiple receptor systems, leading to potential synergies. The elucidation of IBO's pharmacology could be enhanced through the application of methodologies rooted in the polypharmacology paradigm. Such approaches possess the capability to describe multifaceted patterns within multi-target drugs. CONCLUSION: IBO displays complex effects through multiple targets. The information detailed here should guide future research on both mechanistic and therapeutic studies.


Assuntos
Comportamento Aditivo , Ibogaína , Transtornos Relacionados ao Uso de Substâncias , Humanos , Ibogaína/efeitos adversos , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Sistemas de Liberação de Medicamentos
10.
Life (Basel) ; 12(3)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35330149

RESUMO

Neuropathic pain (NP) originates from an injury or disease of the somatosensory nervous system. This heterogeneous origin and the possible association with other pathologies make the management of NP a real challenge. To date, there are no satisfactory treatments for this type of chronic pain. Even strong opioids, the gold-standard analgesics for nociceptive and cancer pain, display low efficacy and the paradoxical ability to exacerbate pain sensitivity in NP patients. Mounting evidence suggests that chemokine upregulation may be a common mechanism driving NP pathophysiology and chronic opioid use-related consequences (analgesic tolerance and hyperalgesia). Here, we first review preclinical studies on the role of chemokines and chemokine receptors in the development and maintenance of NP. Second, we examine the change in chemokine expression following chronic opioid use and the crosstalk between chemokine and opioid receptors. Then, we examine the effects of inhibiting specific chemokines or chemokine receptors as a strategy to increase opioid efficacy in NP. We conclude that strong opioids, along with drugs that block specific chemokine/chemokine receptor axis, might be the right compromise for a favorable risk/benefit ratio in NP management.

11.
Front Cell Neurosci ; 16: 1022431, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406752

RESUMO

Microglia are dynamic cells, constantly surveying their surroundings and interacting with neurons and synapses. Indeed, a wealth of knowledge has revealed a critical role of microglia in modulating synaptic transmission and plasticity in the developing brain. In the past decade, novel pharmacological and genetic strategies have allowed the acute removal of microglia, opening the possibility to explore and understand the role of microglia also in the adult brain. In this review, we summarized and discussed the contribution of microglia depletion strategies to the current understanding of the role of microglia on synaptic function, learning and memory, and behavior both in physiological and pathological conditions. We first described the available microglia depletion methods highlighting their main strengths and weaknesses. We then reviewed the impact of microglia depletion on structural and functional synaptic plasticity. Next, we focused our analysis on the effects of microglia depletion on behavior, including general locomotor activity, sensory perception, motor function, sociability, learning and memory both in healthy animals and animal models of disease. Finally, we integrated the findings from the reviewed studies and discussed the emerging roles of microglia on the maintenance of synaptic function, learning, memory strength and forgetfulness, and the implications of microglia depletion in models of brain disease.

12.
Antioxidants (Basel) ; 10(3)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668379

RESUMO

BACKGROUND: Brain oxidative lipid damage and inflammation are common in neurodegenerative diseases such as Alzheimer's disease (AD). Paraoxonase-1 and -3 (PON1 and PON3) protein expression was demonstrated in tissue with no PON1 or PON3 gene expression. In the present study, we examine differences in PON1 and PON3 protein expression in the brain of a mouse model of AD. METHODS: we used peroxidase- and fluorescence-based immunohistochemistry in five brain regions (olfactory bulb, forebrain, posterior midbrain, hindbrain and cerebellum) of transgenic (Tg2576) mice with the Swedish mutation (KM670/671NL) responsible for a familial form of AD and corresponding wild-type mice. RESULTS: We found intense PON1 and PON3-positive staining in star-shaped cells surrounding Aß plaques in all the studied Tg2576 mouse-brain regions. Although we could not colocalize PON1 and PON3 with astrocytes (star-shaped cells in the brain), we found some PON3 colocalization with microglia. CONCLUSIONS: These results suggest that (1) PON1 and PON3 cross the blood-brain barrier in discoidal high-density lipoproteins (HDLs) and are transferred to specific brain-cell types; and (2) PON1 and PON3 play an important role in preventing oxidative stress and lipid peroxidation in particular brain-cell types (likely to be glial cells) in AD pathology and potentially in other neurodegenerative diseases as well.

13.
Sci Rep ; 11(1): 16187, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376741

RESUMO

A fundamental assumption of learning theories is that the credit assigned to predictive cues is not simply determined by their probability of reinforcement, but by their ability to compete with other cues present during learning. This assumption has guided behavioral and neural science research for decades, and tremendous empirical and theoretical advances have been made identifying the mechanisms of cue competition. However, when learning conditions are not optimal (e.g., when training is massed), cue competition is attenuated. This failure of the learning system exposes the individual's vulnerability to form spurious associations in the real world. Here, we uncover that cue competition in rats can be rescued when conditions are suboptimal provided that the individual has agency over the learning experience. Our findings reveal a new effect of agency over learning on credit assignment among predictive cues, and open new avenues of investigation into the underlying mechanisms.


Assuntos
Aprendizagem por Associação/fisiologia , Comportamento Competitivo , Sinais (Psicologia) , Aprendizagem por Discriminação/fisiologia , Deficiências da Aprendizagem/fisiopatologia , Reforço Psicológico , Recompensa , Animais , Inibição Psicológica , Masculino , Ratos , Ratos Long-Evans
14.
Neurosci Biobehav Rev ; 131: 847-864, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34597716

RESUMO

It was suggested in 1986 that cue-induced cocaine craving increases progressively during early abstinence and remains high during extended periods of time. Clinical evidence now supports this hypothesis and that this increase is not specific to cocaine but rather generalize across several drugs of abuse. Investigators have identified an analogous incubation phenomenon in rodents, in which time-dependent increases in cue-induced drug seeking are observed after abstinence from intravenous drug or palatable food self-administration. Incubation of craving is susceptible to variation in magnitude as a function of biological and/or the environmental circumstances surrounding the individual. During the last decade, the neurobiological correlates of the modulatory role of biological (sex, age, genetic factors) and environmental factors (environmental enrichment and physical exercise, sleep architecture, acute and chronic stress, abstinence reinforcement procedures) on incubation of drug craving has been investigated. In this review, we summarized the behavioral procedures adopted, the key underlying neurobiological correlates and clinical implications of these studies.


Assuntos
Cocaína , Preparações Farmacêuticas , Fissura , Sinais (Psicologia) , Comportamento de Procura de Droga , Autoadministração
15.
Neuropsychopharmacology ; 45(2): 256-265, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31422417

RESUMO

We recently introduced an animal model to study incubation of drug craving after prolonged voluntary abstinence, mimicking the human condition of relapse after successful contingency management treatment. Here we studied the role of the nucleus accumbens (NAc) in this model. We trained rats to self-administer a palatable solution (sucrose 1% + maltodextrin 1%, 6 h/day, 6 days) and methamphetamine (6 h/day, 12 days). We then evaluated relapse to methamphetamine seeking after 1 and 15 days of voluntary abstinence, achieved via a discrete choice procedure between the palatable solution and methamphetamine (14 days). We used RNAscope in-situ hybridization to quantify the colabeling of the neuronal activity marker Fos, and dopamine Drd1- and Drd2-expressing medium spiny neurons (MSNs) in NAc core and shell during the incubation tests. Next, we determined the effect of pharmacological inactivation of NAc core and shell by either GABAA and GABAB agonists (muscimol + baclofen, 50 + 50 ng/side), Drd1-Drd2 antagonist (flupenthixol, 10 µg/side), or the selective Drd1 or Drd2 antagonists (SCH39166, 1.0 µg/side or raclopride, 1.0 µg/side) during the relapse tests. Incubated methamphetamine seeking after voluntary abstinence was associated with a selective increase of Fos expression in the NAc core, but not shell, and Fos was colabeled with both Drd1- and Drd2-MSNs. NAc core, but not shell, injections of muscimol + baclofen, flupenthixol, SCH39166, and raclopride reduced methamphetamine seeking after 15 days of abstinence. Together, our results suggest that dopamine transmission through Drd1 and Drd2 in NAc core is critical to the incubation of methamphetamine craving after voluntary abstinence.


Assuntos
Fissura/efeitos dos fármacos , Antagonistas de Dopamina/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Comportamento de Procura de Droga/efeitos dos fármacos , Metanfetamina/administração & dosagem , Núcleo Accumbens/efeitos dos fármacos , Animais , Comportamento de Escolha/efeitos dos fármacos , Comportamento de Escolha/fisiologia , Fissura/fisiologia , Comportamento de Procura de Droga/fisiologia , Injeções Intraventriculares , Núcleo Accumbens/metabolismo , Ratos , Receptores Dopaminérgicos/metabolismo , Recidiva , Autoadministração
16.
Neurotoxicology ; 78: 209-241, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31812710

RESUMO

The increasing use of illegal drugs by pregnant women causes a public health concern because it is associated with health risks for mothers and their developing children. One of such drugs is MDMA (3,4-methylenedioxymethamphetamine) or ecstasy due to its high consumption in relevant age and sex groups and its adverse effects on human and rodent developing brains. To thoroughly review the current knowledge on the developmentally neurotoxic potential of MDMA we systematically collected and summarized articles investigating developmental neurotoxicity (DNT) of MDMA in humans and animals in vivo and in vitro. In addition, we summarized the findings in a putative adverse outcome pathway (AOP). From an initial 299 articles retrieved from the bibliographic databases Web of Science, PubMed and DART, we selected 39 articles according to inclusion/exclusion criteria for data collection after title/abstract and full text screening. Of these 3 where epidemiological studies, 34 where in vivo studies in mice and rats and 2 were in vitro studies. The three epidemiological studies reported from the same longitudinal study and suggested that MDMA exposure during pregnancy impairs neuromotor function in infants. In rat, postnatal exposure towards MDMA also caused locomotor deficits as well as impaired spatial learning that might be associated with decreased serotonin levels in the hippocampus. In vitro MDMA caused cytotoxicity at high concentrations and effects on the serotonergic and neuritogenic alterations at lower concentrations which are in line with some of the in vivo alterations observed. Considering the adverse outcomes of developmental MDMA described in humans and in rodents we summarized the first putative AOP on developmental compound exposure leading to impaired neuromotor function in children. For generation of this AOP, MDMA exposure was taken as a model compound. In addition, we hypothesized a second AOP involving developmental disturbance of the dopaminergic system. However, further in vitro mechanistic studies are needed to understand the molecular initiating event(s) (MIE) triggering the downstream cascades and obtain consistent evidences causally linking the adverse outcome to effects at the cellular, organ and organism level.


Assuntos
Encéfalo/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/efeitos adversos , Transtornos do Neurodesenvolvimento/induzido quimicamente , Síndromes Neurotóxicas , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Rotas de Resultados Adversos , Animais , Encéfalo/fisiopatologia , Feminino , Humanos , Transtornos do Neurodesenvolvimento/fisiopatologia , Síndromes Neurotóxicas/fisiopatologia , Síndromes Neurotóxicas/psicologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/psicologia
17.
J Neurosci Methods ; 338: 108671, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32135212

RESUMO

BACKGROUND: Single-unit recording in Pavlovian conditioning tasks requires the use of within-subject designs as well as sampling a considerable number of trials per trial type and session, which increases the total trial count. Pavlovian conditioning, on the other hand, requires a long average intertrial interval (ITI) relative to cue duration for cue-specific learning to occur. These requirements combined can make the session duration unfeasibly long. NEW METHOD: To circumvent this issue, we developed a self-initiated variant of the Pavlovian magazine-approach procedure in rodents. Unlike the standard procedure, where the animals passively receive the trials, the self-initiated procedure grants animals agency to self-administer and self-pace trials from a predetermined, pseudorandomized list. Critically, whereas in the standard procedure the typical ITI is in the order of minutes, our procedure uses a much shorter ITI (10 s). RESULTS: Despite such a short ITI, discrimination learning in the self-initiated procedure is comparable to that observed in the standard procedure with a typical ITI, and superior to that observed in the standard procedure with an equally short ITI. COMPARISON WITH EXISTING METHOD(S): The self-initiated procedure permits delivering 100 trials in a ∼1-h session, almost doubling the number of trials safely attainable over that period with the standard procedure. CONCLUSIONS: The self-initiated procedure enhances the collection of neural correlates of cue-reward learning while producing good discrimination performance. Other advantages for neural recording studies include ensuring that at the start of each trial the animal is engaged, attentive and in the same location within the conditioning chamber.


Assuntos
Sinais (Psicologia) , Recompensa , Roedores , Animais , Feminino , Masculino , Ratos , Ratos Long-Evans , Reforço Psicológico
18.
Behav Brain Res ; 318: 1-11, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27732893

RESUMO

Cholinesterases (ChE) are common targets of organophosphate (OP) pesticides and play a critical role in the pathology of some dementias. While chlorpyrifos (CPF) remains one of the most commonly used OPs in the world, numerous investigations have reported its neurotoxic potential and highlighted behavioral disturbances upon its administration. Rivastigmine currently serves to treat Alzheimer's disease, but it may induce cholinergic overstimulation in non-demented individuals. The present investigation aimed to compare the acute and delayed effects caused by both ChE inhibitors in adult C57BL/6 male mice. The animals were daily fed either a standard, a CPF- (5mg/kg body weight) or a rivastigmine-supplemented diet (1 or 2mg/kg body weight) for 8 weeks. After the treatment, we established an 8-week washout period to assess recovery. ChE enzyme activity, biomarkers, physical effects, and behavioral alterations were evaluated at different time points during the exposure and after the washout period. Both rivastigmine doses induced a time-dependent weight increase. CPF and rivastigmine inhibited brain acetylcholinesterase following an isoform-specific pattern. As for behavioral assessment, CPF negatively modulated learning strategies and impaired memory in a Barnes maze task at the end of the exposure. On the other hand, the low dose of rivastigmine improved memory recall at the end of the washout period in a Morris water maze. Indeed, our results endorse the positive effects of low doses of rivastigmine following a drug-free period in young mice. Therefore, doses and periodicity of treatment to improve cognition in elderly people upon rivastigmine administration should be revised.


Assuntos
Peso Corporal/efeitos dos fármacos , Clorpirifos/farmacologia , Memória/efeitos dos fármacos , Rivastigmina/farmacologia , Acetilcolinesterase/efeitos dos fármacos , Animais , Encéfalo/enzimologia , Inibidores da Colinesterase/farmacologia , Relação Dose-Resposta a Droga , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos
19.
Food Chem Toxicol ; 92: 224-35, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27106138

RESUMO

Organophosphate pesticides - and chlorpyrifos (CPF) in particular - contribute to a wide range of neurobehavioural disorders. Most experimental research focuses on learning and memory processes, while other behaviours remain understudied. The isoforms of the human apolipoprotein E (apoE) confer different cognitive skills on their carriers, but data on this topic are still limited. The current study was performed to assess whether the APOE genotypic variability differently modulates the effects of CPF on attentional performance, inhibitory control and motivation. Human apoE targeted replacement adult female mice (apoE2, apoE3 and apoE4) were trained to stably perform the 5-choice serial reaction time task (5-CSRTT). Animals were then subjected to daily dietary CPF (3.75 mg/kg body weight) for 4 weeks. After CPF exposure, we established a 4-week CPF-free period to assess recovery. All individuals acquired the task, apoE2 mice showed enhanced learning, while apoE4 mice displayed increased premature and perseverative responding. This genotype-dependent lack of inhibitory control was reversed by CPF. Overall, the pesticide induced protracted impairments in sustained attention and motivation, and it reduced anticipatory responding. ApoE3 mice exhibited delayed attentional disruptions throughout the wash-out period. Taken together, these findings provide notable evidence on the emergence of CPF-related attentional and motivational deficits.


Assuntos
Apolipoproteínas E/fisiologia , Atenção/efeitos dos fármacos , Clorpirifos/toxicidade , Comportamento Impulsivo/efeitos dos fármacos , Inseticidas/toxicidade , Motivação/efeitos dos fármacos , Tempo de Reação/efeitos dos fármacos , Animais , Feminino , Genótipo , Humanos , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Transgênicos
20.
Psychopharmacology (Berl) ; 233(2): 295-308, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26497539

RESUMO

RATIONALE: The apolipoprotein E (apoE) genotype influences cognitive performance in humans depending on age and sex. While the detrimental role of the apoE4 isoform on spatial learning and memory has been well-established in humans and rodents, less is known on its impact on the executive functions. OBJECTIVES: We aimed to evaluate the effect of apoE isoforms (apoE2, apoE3, apoE4) on visuospatial attention and inhibitory control performance in female transgenic mice, and to determine the neurochemical and neuropharmacological basis of this potential relationship. METHODS: Female mice carrying apoE2, apoE3, and apoE4 were trained in the five-choice serial reaction time task (5-CSRTT). Upon a stable performance, we manipulated the inter-trial interval and the stimulus duration to elicit impulsive responding and engage attention respectively. We further performed a pharmacological challenge by administering cholinergic and GABAergic agents. Finally, we analyzed the levels of brain amino acids and monoamines by using reversed phase high-performance liquid chromatography (HPLC). RESULTS: ApoE4 mice showed a deficient inhibitory control as revealed by increased perseveration and premature responding. When attention was challenged, apoE4 mice also showed a higher drop in accuracy. The adverse effect of scopolamine on the task was attenuated in apoE4 mice compared to apoE2 and apoE3. Furthermore, apoE4 mice showed less dopamine in the frontal cortex than apoE2 mice. CONCLUSIONS: We confirmed that the apoE genotype influences attention and inhibitory control in female transgenic mice. The influence of apoE isoforms in the brain neuromodulatory system may explain the cognitive and behavioral differences attributable to the genotype.


Assuntos
Apolipoproteína E2/genética , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Atenção/fisiologia , Neurotransmissores/metabolismo , Desempenho Psicomotor/fisiologia , Animais , Colinérgicos/farmacologia , Dopamina/metabolismo , Função Executiva , Feminino , GABAérgicos/farmacologia , Humanos , Comportamento Impulsivo , Inibição Psicológica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tempo de Reação/genética , Percepção Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA