Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 180(5): 862-877.e22, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32142679

RESUMO

Using untargeted metabolomics (n = 1,162 subjects), the plasma metabolite (m/z = 265.1188) phenylacetylglutamine (PAGln) was discovered and then shown in an independent cohort (n = 4,000 subjects) to be associated with cardiovascular disease (CVD) and incident major adverse cardiovascular events (myocardial infarction, stroke, or death). A gut microbiota-derived metabolite, PAGln, was shown to enhance platelet activation-related phenotypes and thrombosis potential in whole blood, isolated platelets, and animal models of arterial injury. Functional and genetic engineering studies with human commensals, coupled with microbial colonization of germ-free mice, showed the microbial porA gene facilitates dietary phenylalanine conversion into phenylacetic acid, with subsequent host generation of PAGln and phenylacetylglycine (PAGly) fostering platelet responsiveness and thrombosis potential. Both gain- and loss-of-function studies employing genetic and pharmacological tools reveal PAGln mediates cellular events through G-protein coupled receptors, including α2A, α2B, and ß2-adrenergic receptors. PAGln thus represents a new CVD-promoting gut microbiota-dependent metabolite that signals via adrenergic receptors.


Assuntos
Doenças Cardiovasculares/sangue , Microbioma Gastrointestinal/genética , Glutamina/análogos & derivados , Trombose/metabolismo , Animais , Artérias/lesões , Artérias/metabolismo , Artérias/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Plaquetas/metabolismo , Plaquetas/microbiologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/microbiologia , Doenças Cardiovasculares/patologia , Morte Súbita Cardíaca/patologia , Glutamina/sangue , Glutamina/genética , Humanos , Masculino , Metaboloma/genética , Metabolômica/métodos , Camundongos , Infarto do Miocárdio/sangue , Infarto do Miocárdio/microbiologia , Ativação Plaquetária/genética , Receptores Adrenérgicos alfa/sangue , Receptores Adrenérgicos alfa/genética , Receptores Adrenérgicos beta/sangue , Receptores Adrenérgicos beta/genética , Fatores de Risco , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/microbiologia , Acidente Vascular Cerebral/patologia , Trombose/genética , Trombose/microbiologia , Trombose/patologia
2.
Cell ; 159(2): 253-66, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25284151

RESUMO

To study how microbes establish themselves in a mammalian gut environment, we colonized germ-free mice with microbial communities from human, zebrafish, and termite guts, human skin and tongue, soil, and estuarine microbial mats. Bacteria from these foreign environments colonized and persisted in the mouse gut; their capacity to metabolize dietary and host carbohydrates and bile acids correlated with colonization success. Cohousing mice harboring these xenomicrobiota or a mouse cecal microbiota, along with germ-free "bystanders," revealed the success of particular bacterial taxa in invading guts with established communities and empty gut habitats. Unanticipated patterns of ecological succession were observed; for example, a soil-derived bacterium dominated even in the presence of bacteria from other gut communities (zebrafish and termite), and human-derived bacteria colonized germ-free bystander mice before mouse-derived organisms. This approach can be generalized to address a variety of mechanistic questions about succession, including succession in the context of microbiota-directed therapeutics.


Assuntos
Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Trato Gastrointestinal/microbiologia , Camundongos/microbiologia , Animais , Bactérias/metabolismo , Ecossistema , Estuários , Vida Livre de Germes , Humanos , Isópteros/microbiologia , Interações Microbianas , Pele/microbiologia , Microbiologia do Solo , Simbiose , Língua/microbiologia , Peixe-Zebra/microbiologia
3.
Circ Res ; 134(4): 371-389, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38264909

RESUMO

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is a common but poorly understood form of heart failure, characterized by impaired diastolic function. It is highly heterogeneous with multiple comorbidities, including obesity and diabetes, making human studies difficult. METHODS: Metabolomic analyses in a mouse model of HFpEF showed that levels of indole-3-propionic acid (IPA), a metabolite produced by gut bacteria from tryptophan, were reduced in the plasma and heart tissue of HFpEF mice as compared with controls. We then examined the role of IPA in mouse models of HFpEF as well as 2 human HFpEF cohorts. RESULTS: The protective role and therapeutic effects of IPA were confirmed in mouse models of HFpEF using IPA dietary supplementation. IPA attenuated diastolic dysfunction, metabolic remodeling, oxidative stress, inflammation, gut microbiota dysbiosis, and intestinal epithelial barrier damage. In the heart, IPA suppressed the expression of NNMT (nicotinamide N-methyl transferase), restored nicotinamide, NAD+/NADH, and SIRT3 (sirtuin 3) levels. IPA mediates the protective effects on diastolic dysfunction, at least in part, by promoting the expression of SIRT3. SIRT3 regulation was mediated by IPA binding to the aryl hydrocarbon receptor, as Sirt3 knockdown diminished the effects of IPA on diastolic dysfunction in vivo. The role of the nicotinamide adenine dinucleotide circuit in HFpEF was further confirmed by nicotinamide supplementation, Nnmt knockdown, and Nnmt overexpression in vivo. IPA levels were significantly reduced in patients with HFpEF in 2 independent human cohorts, consistent with a protective function in humans, as well as mice. CONCLUSIONS: Our findings reveal that IPA protects against diastolic dysfunction in HFpEF by enhancing the nicotinamide adenine dinucleotide salvage pathway, suggesting the possibility of therapeutic management by either altering the gut microbiome composition or supplementing the diet with IPA.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Propionatos , Sirtuína 3 , Humanos , Camundongos , Animais , Insuficiência Cardíaca/metabolismo , Volume Sistólico/fisiologia , NAD , Sirtuína 3/genética , Indóis/farmacologia , Niacinamida
4.
Anal Chem ; 96(9): 3870-3878, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373348

RESUMO

Gut microbiota can regulate host brain functions and influence various physiological and pathological processes through the brain-gut axis. To systematically elucidate the intervention of different gut environments on different brain regions, we implemented an integrated approach that combines 11-plex DiLeu isobaric tags with a "BRIDGE" normalization strategy to comparatively analyze the proteome of six brain regions in germ-free (GF)- and conventionally raised (ConvR)-mice. A total of 5945 proteins were identified and 5656 were quantifiable, while 1906 of them were significantly changed between GF- and ConvR-mice; 281 proteins were filtered with FC greater than 1.2 in at least one brain region, of which heatmap analysis showed clear protein profile disparities, both between brain regions and gut microbiome conditions. Gut microbiome impact is most overt in the hypothalamus and the least in the thalamus region. Collectively, this approach allows an in-depth investigation of the induced protein changes by multiple gut microbiome environments in a brain region-specific manner. This comprehensive proteomic work improves the understanding of the brain region protein association networks impacted by the gut microbiome and highlights the critical roles of the brain-gut axis.


Assuntos
Microbioma Gastrointestinal , Camundongos , Animais , Proteômica , Encéfalo , Proteoma
5.
Mol Cell ; 64(5): 982-992, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27889451

RESUMO

Histone-modifying enzymes regulate transcription and are sensitive to availability of endogenous small-molecule metabolites, allowing chromatin to respond to changes in environment. The gut microbiota produces a myriad of metabolites that affect host physiology and susceptibility to disease; however, the underlying molecular events remain largely unknown. Here we demonstrate that microbial colonization regulates global histone acetylation and methylation in multiple host tissues in a diet-dependent manner: consumption of a "Western-type" diet prevents many of the microbiota-dependent chromatin changes that occur in a polysaccharide-rich diet. Finally, we demonstrate that supplementation of germ-free mice with short-chain fatty acids, major products of gut bacterial fermentation, is sufficient to recapitulate chromatin modification states and transcriptional responses associated with colonization. These findings have profound implications for understanding the complex functional interactions between diet, gut microbiota, and host health.


Assuntos
Dieta Ocidental , Epigênese Genética , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal/fisiologia , Tecido Adiposo/enzimologia , Tecido Adiposo/metabolismo , Animais , Colo/enzimologia , Colo/metabolismo , Metilação de DNA , Histonas/genética , Histonas/metabolismo , Fígado/enzimologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos
6.
Proc Natl Acad Sci U S A ; 116(16): 7990-7999, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30833394

RESUMO

The colonization of an animal's tissues by its microbial partners creates networks of communication across the host's body. We used the natural binary light-organ symbiosis between the squid Euprymna scolopes and its luminous bacterial partner, Vibrio fischeri, to define the impact of colonization on transcriptomic networks in the host. A night-active predator, E. scolopes coordinates the bioluminescence of its symbiont with visual cues from the environment to camouflage against moon and starlight. Like mammals, this symbiosis has a complex developmental program and a strong day/night rhythm. We determined how symbiont colonization impacted gene expression in the light organ itself, as well as in two anatomically remote organs: the eye and gill. While the overall transcriptional signature of light organ and gill were more alike, the impact of symbiosis was most pronounced and similar in light organ and eye, both in juvenile and adult animals. Furthermore, the presence of a symbiosis drove daily rhythms of transcription within all three organs. Finally, a single mutation in V. fischeri-specifically, deletion of the lux operon, which abrogates symbiont luminescence-reduced the symbiosis-dependent transcriptome of the light organ by two-thirds. In addition, while the gills responded similarly to light-organ colonization by either the wild-type or mutant, luminescence was required for all of the colonization-associated transcriptional responses in the juvenile eye. This study defines not only the impact of symbiont colonization on the coordination of animal transcriptomes, but also provides insight into how such changes might impact the behavior and ecology of the host.


Assuntos
Aliivibrio fischeri , Ritmo Circadiano , Decapodiformes , Simbiose , Transcriptoma , Aliivibrio fischeri/genética , Aliivibrio fischeri/fisiologia , Animais , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Decapodiformes/genética , Decapodiformes/microbiologia , Decapodiformes/fisiologia , Expressão Gênica , Luminescência , Simbiose/genética , Simbiose/fisiologia , Transcriptoma/genética , Transcriptoma/fisiologia
7.
PLoS Genet ; 15(8): e1008073, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31465442

RESUMO

The microbial communities that inhabit the distal gut of humans and other mammals exhibit large inter-individual variation. While host genetics is a known factor that influences gut microbiota composition, the mechanisms underlying this variation remain largely unknown. Bile acids (BAs) are hormones that are produced by the host and chemically modified by gut bacteria. BAs serve as environmental cues and nutrients to microbes, but they can also have antibacterial effects. We hypothesized that host genetic variation in BA metabolism and homeostasis influence gut microbiota composition. To address this, we used the Diversity Outbred (DO) stock, a population of genetically distinct mice derived from eight founder strains. We characterized the fecal microbiota composition and plasma and cecal BA profiles from 400 DO mice maintained on a high-fat high-sucrose diet for ~22 weeks. Using quantitative trait locus (QTL) analysis, we identified several genomic regions associated with variations in both bacterial and BA profiles. Notably, we found overlapping QTL for Turicibacter sp. and plasma cholic acid, which mapped to a locus containing the gene for the ileal bile acid transporter, Slc10a2. Mediation analysis and subsequent follow-up validation experiments suggest that differences in Slc10a2 gene expression associated with the different strains influences levels of both traits and revealed novel interactions between Turicibacter and BAs. This work illustrates how systems genetics can be utilized to generate testable hypotheses and provide insight into host-microbe interactions.


Assuntos
Ácidos e Sais Biliares/metabolismo , Variação Biológica da População/genética , Microbioma Gastrointestinal/fisiologia , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Locos de Características Quantitativas/genética , Simportadores/genética , Akkermansia , Animais , Ácidos e Sais Biliares/sangue , Camundongos de Cruzamento Colaborativo , Feminino , Firmicutes/crescimento & desenvolvimento , Masculino , Redes e Vias Metabólicas/genética , Camundongos , Modelos Animais , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/metabolismo , Verrucomicrobia/crescimento & desenvolvimento
8.
Nucleic Acids Res ; 47(10): e57, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30838416

RESUMO

Shotgun metagenomics is a powerful, high-resolution technique enabling the study of microbial communities in situ. However, species-level resolution is only achieved after a process of 'binning' where contigs predicted to originate from the same genome are clustered. Such culture-independent sequencing frequently unearths novel microbes, and so various methods have been devised for reference-free binning. As novel microbiomes of increasing complexity are explored, sometimes associated with non-model hosts, robust automated binning methods are required. Existing methods struggle with eukaryotic contamination and cannot handle highly complex single metagenomes. We therefore developed an automated binning pipeline, termed 'Autometa', to address these issues. This command-line application integrates sequence homology, nucleotide composition, coverage and the presence of single-copy marker genes to separate microbial genomes from non-model host genomes and other eukaryotic contaminants, before deconvoluting individual genomes from single metagenomes. The method is able to effectively separate over 1000 genomes from a metagenome, allowing the study of previously intractably complex environments at the level of single species. Autometa is freely available at https://bitbucket.org/jason_c_kwan/autometa and as a docker image at https://hub.docker.com/r/jasonkwan/autometa under the GNU Affero General Public License 3 (AGPL 3).


Assuntos
Algoritmos , Biologia Computacional/métodos , Genoma Microbiano/genética , Metagenoma/genética , Metagenômica/métodos , Animais , Bactérias/classificação , Bactérias/genética , Análise por Conglomerados , Genoma Bacteriano/genética , Humanos , Internet , Reprodutibilidade dos Testes
9.
Circulation ; 139(5): 647-659, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30586712

RESUMO

BACKGROUND: The impact of gut microbiota on the regulation of host physiology has recently garnered considerable attention, particularly in key areas such as the immune system and metabolism. These areas are also crucial for the pathophysiology of and repair after myocardial infarction (MI). However, the role of the gut microbiota in the context of MI remains to be fully elucidated. METHODS: To investigate the effects of gut microbiota on cardiac repair after MI, C57BL/6J mice were treated with antibiotics 7 days before MI to deplete mouse gut microbiota. Flow cytometry was applied to examine the changes in immune cell composition in the heart. 16S rDNA sequencing was conducted as a readout for changes in gut microbial composition. Short-chain fatty acid (SCFA) species altered after antibiotic treatment were identified by high-performance liquid chromatography. Fecal reconstitution, transplantation of monocytes, or dietary SCFA or Lactobacillus probiotic supplementation was conducted to evaluate the cardioprotective effects of microbiota on the mice after MI. RESULTS: Antibiotic-treated mice displayed drastic, dose-dependent mortality after MI. We observed an association between the gut microbiota depletion and significant reductions in the proportion of myeloid cells and SCFAs, more specifically acetate, butyrate, and propionate. Infiltration of CX3CR1+ monocytes to the peri-infarct zone after MI was also reduced, suggesting impairment of repair after MI. Accordingly, the physiological status and survival of mice were significantly improved after fecal reconstitution, transplantation of monocytes, or dietary SCFA supplementation. MI was associated with a reorganization of the gut microbial community such as a reduction in Lactobacillus. Supplementing antibiotic-treated mice with a Lactobacillus probiotic before MI restored myeloid cell proportions, yielded cardioprotective effects, and shifted the balance of SCFAs toward propionate. CONCLUSIONS: Gut microbiota-derived SCFAs play an important role in maintaining host immune composition and repair capacity after MI. This suggests that manipulation of these elements may provide opportunities to modulate pathological outcome after MI and indeed human health and disease as a whole.


Assuntos
Antibacterianos/toxicidade , Bactérias/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Monócitos/imunologia , Infarto do Miocárdio/microbiologia , Miocárdio/imunologia , Animais , Bactérias/imunologia , Bactérias/metabolismo , Modelos Animais de Doenças , Disbiose , Ácidos Graxos/administração & dosagem , Ácidos Graxos/metabolismo , Transplante de Microbiota Fecal , Feminino , Interações Hospedeiro-Patógeno , Lactobacillus/imunologia , Lactobacillus/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Monócitos/metabolismo , Monócitos/transplante , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Probióticos/administração & dosagem , Células RAW 264.7
10.
Anal Chem ; 92(20): 14021-14030, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32926775

RESUMO

Gut microbiota can regulate host physiological and pathological status through gut-brain communications or pathways. However, the impact of the gut microbiome on neuropeptides and proteins involved in regulating brain functions and behaviors is still not clearly understood. To address the problem, integrated label-free and 10-plex DiLeu isobaric tag-based quantitative methods were implemented to compare the profiling of neuropeptides and proteins in the hypothalamus of germ-free (GF)- vs conventionally raised (ConvR)-mice. A total of 2943 endogenous peptides from 63 neuropeptide precursors and 3971 proteins in the mouse hypothalamus were identified. Among these 368 significantly changed peptides (fold changes over 1.5 and a p-value of <0.05), 73.6% of the peptides showed higher levels in GF-mice than in ConvR-mice, and 26.4% of the peptides had higher levels in ConvR-mice than in GF-mice. These peptides were mainly from secretogranin-2, phosphatidylethanolamine-binding protein-1, ProSAAS, and proenkephalin-A. A quantitative proteomic analysis employing DiLeu isobaric tags revealed that 282 proteins were significantly up- or down-regulated (fold changes over 1.2 and a p-value of <0.05) among the 3277 quantified proteins. These neuropeptides and proteins were mainly involved in regulating behaviors, transmitter release, signaling pathways, and synapses. Interestingly, pathways including long-term potentiation, long-term depression, and circadian entrainment were involved. In the present study, a combined label-free and 10-plex DiLeu-based quantitative method enabled a comprehensive profiling of gut microbiome-induced dynamic changes of neuropeptides and proteins in the hypothalamus, suggesting that the gut microbiome might mediate a range of behavioral changes, brain development, and learning and memory through these neuropeptides and proteins.


Assuntos
Microbioma Gastrointestinal/fisiologia , Hipotálamo/metabolismo , Leucina/análogos & derivados , Leucina/química , Neuropeptídeos/metabolismo , Proteoma/metabolismo , Aminas/química , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Proteômica , Espectrometria de Massas em Tandem
11.
Circ Res ; 123(10): 1164-1176, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30359185

RESUMO

RATIONALE: Gut microbes influence cardiovascular disease and thrombosis risks through the production of trimethylamine N-oxide (TMAO). Microbiota-dependent generation of trimethylamine (TMA)-the precursor to TMAO-is rate limiting in the metaorganismal TMAO pathway in most humans and is catalyzed by several distinct microbial choline TMA-lyases, including the proteins encoded by the cutC/D (choline utilization C/D) genes in multiple human commensals. OBJECTIVE: Direct demonstration that the gut microbial cutC gene is sufficient to transmit enhanced platelet reactivity and thrombosis potential in a host via TMA/TMAO generation has not yet been reported. METHODS AND RESULTS: Herein, we use gnotobiotic mice and a series of microbial colonization studies to show that microbial cutC-dependent TMA/TMAO production is sufficient to transmit heightened platelet reactivity and thrombosis potential in a host. Specifically, we examine in vivo thrombosis potential employing germ-free mice colonized with either high TMA-producing stable human fecal polymcrobial communities or a defined CutC-deficient background microbial community coupled with a CutC-expressing human commensal±genetic disruption of its cutC gene (ie, Clostridium sporogenes Δ cutC). CONCLUSIONS: Collectively, these studies point to the microbial choline TMA-lyase pathway as a rational molecular target for the treatment of atherothrombotic heart disease.


Assuntos
Proteínas de Bactérias/metabolismo , Transplante de Microbiota Fecal , Liases/metabolismo , Ativação Plaquetária , Trombose/microbiologia , Adulto , Animais , Proteínas de Bactérias/genética , Colina/metabolismo , Clostridium/enzimologia , Clostridium/genética , Feminino , Microbioma Gastrointestinal , Humanos , Liases/genética , Masculino , Metilaminas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Trombose/sangue
12.
J Biol Chem ; 292(21): 8582-8593, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28389558

RESUMO

Mammals and their gut microbial communities share extensive and tightly coordinated co-metabolism of dietary substrates. A large number of microbial metabolites have been detected in host circulation and tissues and, in many cases, are linked to host metabolic, developmental, and immunological states. The presence of these metabolites in host tissues intersects with regulation of the host's epigenetic machinery. Although it is established that the host's epigenetic machinery is sensitive to levels of endogenous metabolites, the roles for microbial metabolites in epigenetic regulation are just beginning to be elucidated. This review focuses on eukaryotic chromatin regulation by endogenous and gut microbial metabolites and how these regulatory events may impact host developmental and metabolic phenotypes.


Assuntos
Montagem e Desmontagem da Cromatina , Epigênese Genética , Microbioma Gastrointestinal , Mucosa Intestinal , Intestinos , Transdução de Sinais , Animais , Humanos , Mucosa Intestinal/metabolismo , Intestinos/microbiologia
13.
Nature ; 486(7402): 222-7, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22699611

RESUMO

Gut microbial communities represent one source of human genetic and metabolic diversity. To examine how gut microbiomes differ among human populations, here we characterize bacterial species in fecal samples from 531 individuals, plus the gene content of 110 of them. The cohort encompassed healthy children and adults from the Amazonas of Venezuela, rural Malawi and US metropolitan areas and included mono- and dizygotic twins. Shared features of the functional maturation of the gut microbiome were identified during the first three years of life in all three populations, including age-associated changes in the genes involved in vitamin biosynthesis and metabolism. Pronounced differences in bacterial assemblages and functional gene repertoires were noted between US residents and those in the other two countries. These distinctive features are evident in early infancy as well as adulthood. Our findings underscore the need to consider the microbiome when evaluating human development, nutritional needs, physiological variations and the impact of westernization.


Assuntos
Bactérias/classificação , Bactérias/genética , Biodiversidade , Intestinos/microbiologia , Metagenoma , Adolescente , Adulto , Fatores Etários , Idoso , Criança , Pré-Escolar , Fezes/microbiologia , Feminino , Geografia , Humanos , Lactente , Malaui , Masculino , Pessoa de Meia-Idade , Filogenia , RNA Ribossômico 16S/genética , Gêmeos Dizigóticos , Gêmeos Monozigóticos , Estados Unidos , Venezuela , Adulto Jovem
14.
Proc Natl Acad Sci U S A ; 110(33): 13582-7, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23898195

RESUMO

Sulfate-reducing bacteria (SRB) colonize the guts of ∼50% of humans. We used genome-wide transposon mutagenesis and insertion-site sequencing, RNA-Seq, plus mass spectrometry to characterize genetic and environmental factors that impact the niche of Desulfovibrio piger, the most common SRB in a surveyed cohort of healthy US adults. Gnotobiotic mice were colonized with an assemblage of sequenced human gut bacterial species with or without D. piger and fed diets with different levels and types of carbohydrates and sulfur sources. Diet was a major determinant of functions expressed by this artificial nine-member community and of the genes that impact D. piger fitness; the latter includes high- and low-affinity systems for using ammonia, a limiting resource for D. piger in mice consuming a polysaccharide-rich diet. Although genes involved in hydrogen consumption and sulfate reduction are necessary for its colonization, varying dietary-free sulfate levels did not significantly alter levels of D. piger, which can obtain sulfate from the host in part via cross-feeding mediated by Bacteroides-encoded sulfatases. Chondroitin sulfate, a common dietary supplement, increased D. piger and H2S levels without compromising gut barrier integrity. A chondroitin sulfate-supplemented diet together with D. piger impacted the assemblage's substrate utilization preferences, allowing consumption of more reduced carbon sources and increasing the abundance of the H2-producing Actinobacterium, Collinsella aerofaciens. Our findings provide genetic and metabolic details of how this H2-consuming SRB shapes the responses of a microbiota to diet ingredients and a framework for examining how individuals lacking D. piger differ from those who harbor it.


Assuntos
Sulfatos de Condroitina/farmacologia , Desulfovibrio/crescimento & desenvolvimento , Desulfovibrio/metabolismo , Dieta , Trato Gastrointestinal/microbiologia , Animais , Bromodesoxiuridina , Sulfatos de Condroitina/administração & dosagem , Sulfatos de Condroitina/metabolismo , Primers do DNA/genética , Elementos de DNA Transponíveis/genética , Desulfovibrio/efeitos dos fármacos , Desulfovibrio/genética , Suplementos Nutricionais , Fezes/microbiologia , Cromatografia Gasosa-Espectrometria de Massas , Vetores Genéticos/genética , Humanos , Sulfeto de Hidrogênio/metabolismo , Espectrometria de Massas , Camundongos , Mutagênese , Análise de Sequência de DNA , Especificidade da Espécie
15.
Proc Natl Acad Sci U S A ; 110(11): 4410-5, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23401498

RESUMO

Olfactory receptors are G protein-coupled receptors that mediate olfactory chemosensation and serve as chemosensors in other tissues. We find that Olfr78, an olfactory receptor expressed in the kidney, responds to short chain fatty acids (SCFAs). Olfr78 is expressed in the renal juxtaglomerular apparatus, where it mediates renin secretion in response to SCFAs. In addition, both Olfr78 and G protein-coupled receptor 41 (Gpr41), another SCFA receptor, are expressed in smooth muscle cells of small resistance vessels. Propionate, a SCFA shown to induce vasodilation ex vivo, produces an acute hypotensive response in wild-type mice. This effect is differentially modulated by disruption of Olfr78 and Gpr41 expression. SCFAs are end products of fermentation by the gut microbiota and are absorbed into the circulation. Antibiotic treatment reduces the biomass of the gut microbiota and elevates blood pressure in Olfr78 knockout mice. We conclude that SCFAs produced by the gut microbiota modulate blood pressure via Olfr78 and Gpr41.


Assuntos
Pressão Sanguínea/fisiologia , Intestinos/microbiologia , Rim/metabolismo , Metagenoma/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores Odorantes/metabolismo , Renina/metabolismo , Transdução de Sinais/fisiologia , Animais , Biomassa , Pressão Sanguínea/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/microbiologia , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Knockout , Propionatos/metabolismo , Propionatos/farmacologia , Receptores Acoplados a Proteínas G/genética , Receptores Odorantes/genética , Transdução de Sinais/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
16.
Proc Natl Acad Sci U S A ; 108 Suppl 1: 4599-606, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21317366

RESUMO

The human gut microbiota harbors three main groups of H(2)-consuming microbes: methanogens including the dominant archaeon, Methanobrevibacter smithii, a polyphyletic group of acetogens, and sulfate-reducing bacteria. Defining their roles in the gut is important for understanding how hydrogen metabolism affects the efficiency of fermentation of dietary components. We quantified methanogens in fecal samples from 40 healthy adult female monozygotic (MZ) and 28 dizygotic (DZ) twin pairs, analyzed bacterial 16S rRNA datasets generated from their fecal samples to identify taxa that co-occur with methanogens, sequenced the genomes of 20 M. smithii strains isolated from families of MZ and DZ twins, and performed RNA-Seq of a subset of strains to identify their responses to varied formate concentrations. The concordance rate for methanogen carriage was significantly higher for MZ versus DZ twin pairs. Co-occurrence analysis revealed 22 bacterial species-level taxa positively correlated with methanogens: all but two were members of the Clostridiales, with several being, or related to, known hydrogen-producing and -consuming bacteria. The M. smithii pan-genome contains 987 genes conserved in all strains, and 1,860 variably represented genes. Strains from MZ and DZ twin pairs had a similar degree of shared genes and SNPs, and were significantly more similar than strains isolated from mothers or members of other families. The 101 adhesin-like proteins (ALPs) in the pan-genome (45 ± 6 per strain) exhibit strain-specific differences in expression and responsiveness to formate. We hypothesize that M. smithii strains use their different repertoires of ALPs to create diversity in their metabolic niches, by allowing them to establish syntrophic relationships with bacterial partners with differing metabolic capabilities and patterns of co-occurrence.


Assuntos
Adesinas Bacterianas/genética , Trato Gastrointestinal/microbiologia , Genoma Arqueal , Methanobrevibacter/genética , Gêmeos , Adulto , Sequência de Bases , Feminino , Formiatos/análise , Humanos , Metagenômica , Methanobrevibacter/metabolismo , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie
17.
Dis Model Mech ; 17(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38903015

RESUMO

Structural changes to the vocal fold (VF) epithelium, namely, loosened intercellular junctions, have been reported in VF benign lesions. The potential mechanisms responsible for the disruption of cell junctions do not address the contribution of resident microbial communities to this pathological phenomenon. In this study, we focused on determining the relationship between Streptococcus pseudopneumoniae (SP), a dominant bacterial species associated with benign lesions, and Streptococcus salivarius (SS), a commensal bacterium, with human VF epithelial cells in our three-dimensional model of the human VF mucosa. This experimental system enabled direct deposition of bacteria onto constructs at the air/liquid interface, allowing for the assessment of bacterium-host interactions at the cellular, molecular and ultrastructural levels. Our findings demonstrate that SP disrupts VF epithelial integrity and initiates inflammation via the exported products HtrA1 and pneumolysin. In contrast, SS attaches to the VF epithelium, reduces inflammation and induces Mmp2-mediated apical desquamation of infected cells to mitigate the impact of pathogens. In conclusion, this study highlights the complexity of microbial involvement in VF pathology and potential VF mucosal restoration in the presence of laryngeal commensals.


Assuntos
Streptococcus salivarius , Prega Vocal , Humanos , Prega Vocal/microbiologia , Prega Vocal/patologia , Streptococcus salivarius/fisiologia , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Mucosa/microbiologia , Mucosa/patologia , Inflamação/patologia , Inflamação/microbiologia , Streptococcus pneumoniae/fisiologia
18.
iScience ; 27(6): 110156, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38974468

RESUMO

Microbiota play a critical role in the development and training of host innate and adaptive immunity. We present the cellular landscape of the upper airway, specifically the larynx, by establishing a reference single-cell atlas, while dissecting the role of microbiota in cell development and function at single-cell resolution. We highlight the larynx's cellular heterogeneity with the identification of 16 cell types and 34 distinct subclusters. Our data demonstrate that commensal microbiota have extensive impact on the laryngeal immune system by regulating cell differentiation, increasing the expression of genes associated with host defense, and altering gene regulatory networks. We uncover macrophages, innate lymphoid cells, and multiple secretory epithelial cells, whose cell proportions and expressions vary with microbial exposure. These cell types play pivotal roles in maintaining laryngeal and upper airway health and provide specific guidance into understanding the mechanism of immune system regulation by microbiota in laryngeal health and disease.

19.
PLoS One ; 19(5): e0300672, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743725

RESUMO

The larynx undergoes significant age and sex-related changes in structure and function across the lifespan. Emerging evidence suggests that laryngeal microbiota influences immunological processes. Thus, there is a critical need to delineate microbial mechanisms that may underlie laryngeal physiological and immunological changes. As a first step, the present study explored potential age and sex-related changes in the laryngeal microbiota across the lifespan in a murine model. We compared laryngeal microbial profiles of mice across the lifespan (adolescents, young adults, older adults and elderly) to determine age and sex-related microbial variation on 16s rRNA gene sequencing. Measures of alpha diversity and beta diversity were obtained, along with differentially abundant taxa across age groups and biological sexes. There was relative stability of the laryngeal microbiota within each age group and no significant bacterial compositional shift in the laryngeal microbiome across the lifespan. There was an abundance of short-chain fatty acid producing bacteria in the adolescent group, unique to the laryngeal microbiota; taxonomic changes in the elderly resembled that of the aged gut microbiome. There were no significant changes in the laryngeal microbiota relating to biological sex. This is the first study to report age and sex-related variation in laryngeal microbiota. This data lays the groundwork for defining how age-related microbial mechanisms may govern laryngeal health and disease. Bacterial compositional changes, as a result of environmental or systemic stimuli, may not only be indicative of laryngeal-specific metabolic and immunoregulatory processes, but may precede structural and functional age-related changes in laryngeal physiology.


Assuntos
Laringe , Microbiota , RNA Ribossômico 16S , Animais , Feminino , Masculino , Laringe/microbiologia , Camundongos , RNA Ribossômico 16S/genética , Fatores Etários , Envelhecimento/fisiologia , Bactérias/classificação , Bactérias/genética , Fatores Sexuais , Camundongos Endogâmicos C57BL
20.
bioRxiv ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37986770

RESUMO

The arginine dihydrolase pathway (arc operon) present in a subset of diverse human gut species enables arginine catabolism. This specialized metabolic pathway can alter environmental pH and nitrogen availability, which in turn could shape gut microbiota inter-species interactions. By exploiting synthetic control of gene expression, we investigated the role of the arc operon in probiotic Escherichia coli Nissle 1917 on human gut community assembly and health-relevant metabolite profiles in vitro and in the murine gut. By stabilizing environmental pH, the arc operon reduced variability in community composition across different initial pH perturbations. The abundance of butyrate producing bacteria were altered in response to arc operon activity and butyrate production was enhanced in a physiologically relevant pH range. While the presence of the arc operon altered community dynamics, it did not impact production of short chain fatty acids. Dynamic computational modeling of pH-mediated interactions reveals the quantitative contribution of this mechanism to community assembly. In sum, our framework to quantify the contribution of molecular pathways and mechanism modalities on microbial community dynamics and functions could be applied more broadly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA