Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Bioorg Med Chem ; 28(1): 115234, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31831297

RESUMO

Spinocerebellar ataxia syndrome with axonal neuropathy (SCAN1) is a debilitating neurological disease that is caused by the mutation the Tyrosyl-DNA phosphodiesterase 1 (TDP1) DNA repair enzyme. The crucial His493 in TDP1's binding site is replaced with an arginine amino acid residue rendering the enzyme dysfunctional. A virtual screen was performed against the homology model of SCAN1 and seventeen compounds were identified and tested in a novel SCAN1 specific biochemical assay. Six compounds showed activity with IC50 values between 3.5 and 25.1 µM. The most active ligand 5 (3.5 µM) is a dicoumarin followed by a close structural analogue 6 at 6.0 µM. A less potent series of ß-carbolines (14 and 15) was found with potency in the mid-teens. According to molecular modelling an excellent fit for the active ligands into the binding pocket is predicted. To the best of our knowledge, data on inhibitors of the mutant form of TDP1 has not been reported previously. The virtual hits were also tested for wild type TDP1 activity and all six SCAN1 inhibitors are potent for the former, e.g., ligand 5 has a measured IC50 at 99 nM. In the last decade, TDP1 is considered as a promising target for adjuvant therapy against cancer in combination with Topoisomerase 1 poisons. The active ligands are mostly non-toxic to cancer cell lines A-549, T98G and MCF-7 as well as the immortalized WI-38 human fetal lung cells. Furthermore, ligands 5 and 7, show promising synergy in conjunction with topotecan, a clinically used topoisomerase 1 anticancer drug. The active ligands 5, 7, 14 and 15 have a good balance of the physicochemical properties required for oral bioavailability making the excellent candidates for further development.


Assuntos
Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Diester Fosfórico Hidrolases/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/química , Cumarínicos/metabolismo , Cumarínicos/farmacologia , Desenho de Fármacos , Sinergismo Farmacológico , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Concentração Inibidora 50 , Ligantes , Mutação , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/genética , Estrutura Terciária de Proteína , Topotecan/química , Topotecan/metabolismo , Topotecan/farmacologia
2.
Eur J Med Chem ; 161: 581-593, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30396105

RESUMO

The druggability of the tyrosyl-DNA phosphodiesterase 1 (Tdp1) enzyme was investigated in conjunction with topoisomerase 1 inhibition. A novel class of thiazole, aminothiazole and hydrazonothiazole usnic acid derivatives was synthesized and evaluated as Tdp1 inhibitors and their ability to sensitize tumors to topotecan, a topoisomerase inhibitor in clinical use. Of all the compounds tested, four hydrazinothiazole derivatives, 20c, 20d, 20h and 20i, inhibited the enzyme in the nanomolar range. The activity of the compounds was verified by affinity experiments as well as supported by molecular modelling. The most effective Tdp1 inhibitor, 20d, was ton-toxic and increased the effect of topotecan both in vitro and in vivo in the Lewis lung carcinoma model. Furthermore, 20d showed significant increase in the antitumor and antimetastatic effect of topotecan in mice. The results presented here justify compound 20d to be considered as a drug lead for antitumor therapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Diester Fosfórico Hidrolases/metabolismo , Inibidores da Topoisomerase I/farmacologia , Topotecan/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Teoria Quântica , Relação Estrutura-Atividade , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/química , Topotecan/síntese química , Topotecan/química
3.
J Hazard Mater ; 304: 502-11, 2016 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-26619049

RESUMO

This study investigated relationships between OMP biodegradation rates and the functional groups present in the chemical structure of a mixture of 31 OMPs. OMP biodegradation rates were determined from lab-scale columns filled with soil from RBF site Engelse Werk of the drinking water company Vitens in The Netherlands. A statistically significant relationship was found between OMP biodegradation rates and the functional groups of the molecular structures of OMPs in the mixture. The OMP biodegradation rate increased in the presence of carboxylic acids, hydroxyl groups, and carbonyl groups, but decreased in the presence of ethers, halogens, aliphatic ethers, methyl groups and ring structures in the chemical structure of the OMPs. The predictive model obtained from the lab-scale soil column experiment gave an accurate qualitative prediction of biodegradability for approximately 70% of the OMPs monitored in the field (80% excluding the glymes). The model was found to be less reliable for the more persistent OMPs (OMPs with predicted biodegradation rates lower or around the standard error=0.77d(-1)) and OMPs containing amide or amine groups. These OMPs should be carefully monitored in the field to determine their removal during RBF.


Assuntos
Modelos Lineares , Poluentes Químicos da Água , Biodegradação Ambiental , Filtração , Rios/química , Solo/química , Microbiologia do Solo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
4.
Water Res ; 52: 231-41, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24275110

RESUMO

This study investigated sorption and biodegradation behaviour of 14 organic micropollutants (OMP) in soil columns representative of the first metre (oxic conditions) of the river bank filtration (RBF) process. Breakthrough curves were modelled to differentiate between OMP sorption and biodegradation. The main objective of this study was to investigate if the OMP biodegradation rate could be related to the physico-chemical properties (charge, hydrophobicity and molecular weight) or functional groups of the OMPs. Although trends were observed between charge or hydrophobicity and the biodegradation rate for charged compounds, a statistically significant linear relationship for the complete OMP mixture could not be obtained using these physico-chemical properties. However, a statistically significant relationship was obtained between biological degradation rates and the OMP functional groups. The presence of ethers and carbonyl groups will increase biodegradability, while the presence of amines, ring structures, aliphatic ethers and sulphur will decrease biodegradability. This predictive model based on functional groups can be used by drinking water companies to make a first estimate whether a newly detected compound will be biodegraded during the first metre of RBF or that additional treatment is required. In addition, the influence of active and inactive biomass (biosorption), sand grains and the water matrix on OMP sorption was found to be negligible under the conditions investigated in this study. Retardation factors for most compounds were close to 1, indicating mobile behaviour of these compounds during soil passage. Adaptation of the biomass towards the dosed OMPs was not observed for a 6 month period, implying that new developed RBF sites might not be able to biodegrade compounds such as atrazine and sulfamethoxazole in the first few months of operation.


Assuntos
Rios , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Adsorção , Atrazina/metabolismo , Biodegradação Ambiental , Filtração , Interações Hidrofóbicas e Hidrofílicas , Peso Molecular , Relação Quantitativa Estrutura-Atividade , Sulfametoxazol/metabolismo , Poluentes Químicos da Água/análise , Qualidade da Água
5.
Chemistry ; 7(13): 2829-33, 2001 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-11486959

RESUMO

Using the reduction potential of one-electron oxidized guanosine in water and the pKa values of the radical and of the parent, the N1-H bond energy of the 2'-deoxyguanosine moiety is determined to be (94.3+/-0.5) kcal mol(-1). Using the DFT method, the energy of the N1-centered guanosine radical is calculated and compared with those of the C1'- and C4'-radicals formed by H-abstraction from the 2'-deoxyribose moiety of the molecule. The result is that these deoxyribose-centered radicals appear to be more stable than the N1-centered one by up to 3 kcalmol(-1). Therefore, H-abstraction from a 2'-deoxyribose C-H bond by an isolated guanosine radical should be thermodynamically feasible. However, if the stabilization of a guanine radical by intrastrand pi-pi interaction with adjacent guanines and the likely lowering of the oxidation potential of guanine by interstrand proton transfer to the complementary cytosine base are taken into account, there is no more thermodynamic driving force for H-abstraction from a deoxyribose unit. As a further criterion for judging the probability of occurrence of such a reaction in DNA, the stereochemical situation that a DNA-guanosine radical faces was investigated utilizing X-ray data for relevant model oligonucleotides. The result is that the closest H-atoms from the neighboring 2'-deoxyribose units are at distances too large for efficient reaction. As a consequence, H-abstraction from 2'-deoxyribose by the DNA guanine radical leading subsequently to a "frank" DNA strand break is very unlikely. The competing reaction of the guanine radical cation with a water molecule which eventually yields 8-oxo-2'-deoxyguanosine (leading to "alkali-inducible" strand breaks) has thus a chance to proceed.


Assuntos
Dano ao DNA , DNA/química , Radicais Livres/química , Guanina/química , Modelos Moleculares , Estrutura Molecular , Oxirredução , Termodinâmica
6.
J Pept Sci ; 6(12): 603-11, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11192240

RESUMO

Four diamino acid-Nalpha-substituted oligopeptide (DNO) oligomers substituted with pyrenyl as photophysical probes were synthesized. The excimer formation and ground-state association of the pyrenyl groups were investigated by means of absorption and steady-state fluorescence spectroscopy together with time-resolved fluorescence techniques. The photophysical parameters obtained from the different derivatives reflect the secondary structural properties of the DNO backbones.


Assuntos
Oligopeptídeos/química , Pirenos/química , Espectrometria de Fluorescência/métodos , Oligopeptídeos/síntese química , Espectrofotometria Atômica
7.
Chemistry ; 7(21): 4640-50, 2001 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-11757656

RESUMO

In aqueous solution, enolether radical cations (EE.+) were generated by photoionization (lambda < or = 222 nm) or by electron transfer to radiation-chemically produced oxidizing radicals. Like other radical cations, the EE.+ exhibit electrophilic reactivity with respect to nucleophiles such as water or phosphate as well as electron transfer reactivity, for example, towards one-electron reductants such as phenols, amines, vitamins C and E, and guanine nucleosides. The reactivity of these electron donors with the radical cation of cis-1,2-dimethoxyethene.+ (DME.+) can be described by the Marcus equation with the reorganization energy lambda = 16.5 kcalmol(-1). By equilibrating DME.+ with the redox standard 1,2,4-trimethoxybenzene, the reduction potential of DME.+ is determined to be 1.08 +/- 0.02 V/NHE. The oxidizing power of the radical cation of 2,3-dihydrofuran, which can be considered a model for the enolether formed on strand breakage of DNA, is estimated to be in the range 1.27-1.44 V/NHE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA