Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Dairy Sci ; 106(10): 6880-6893, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37210373

RESUMO

This study investigated the effect of feeding seaweed (Ascophyllum nodosum) to dairy cows on milk mineral concentrations, feed-to-milk mineral transfer efficiencies, and hematological parameters. Lactating Holstein cows (n = 46) were allocated to 1 of 2 diets (n = 23 each): (1) control (CON; without seaweed) and (2) seaweed (SWD; replacing 330 g/d of dried corn meal in CON with 330 g/d dried A. nodosum). All cows were fed the CON diet for 4 wk before the experiment (adaptation period), and animals were then fed the experimental diets for 9 wk. Samples included sequential 3-wk composite feed samples, a composite milk sample on the last day of each week, and a blood sample at the end of the study. Data were statistically analyzed using a linear mixed effects model with diet, week, and their interaction as fixed factors; cow (nested within diet) as a random factor; and data collected on the last day of the adaptation period as covariates. Feeding SWD increased milk concentrations of Mg (+6.6 mg/kg), P (+56 mg/kg), and I (+1,720 µg/kg). It also reduced transfer efficiency of Ca, Mg, P, K, Mn, and Zn, and increased transfer efficiency of Mo. Feeding SWD marginally reduced milk protein concentrations, whereas there was no effect of SWD feeding on cows' hematological parameters. Feeding A. nodosum increased milk I concentrations, which can be beneficial when feed I concentration is limited or in demographics or populations with increased risk of I deficiency (e.g., female adolescents, pregnant women, nursing mothers). However, care should also be taken when feeding SWD to dairy cows because, in the present study, milk I concentrations were particularly high and could result in I intakes that pose a health risk for children consuming milk.


Assuntos
Ascophyllum , Alga Marinha , Criança , Bovinos , Feminino , Gravidez , Animais , Humanos , Adolescente , Lactação , Ração Animal/análise , Dieta/veterinária , Minerais/farmacologia , Verduras , Suplementos Nutricionais
2.
J Dairy Sci ; 105(6): 5004-5023, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35450714

RESUMO

Estimating the efficiency of N utilization for milk production (MNE) of individual cows at a large scale is difficult, particularly because of the cost of measuring feed intake. Nitrogen isotopic discrimination (Δ15N) between the animal (milk, plasma, or tissues) and its diet has been proposed as a biomarker of the efficiency of N utilization in a range of production systems and ruminant species. The aim of this study was to assess the ability of Δ15N to predict the between-animal variability in MNE in dairy cows using an extensive database. For this, 20 independent experiments conducted as either changeover (n = 14) or continuous (n = 6) trials were available and comprised an initial data set of 1,300 observations. Between-animal variability was defined as the variation observed among cows sharing the same contemporary group (CG; individuals from the same experimental site, sampling period, and dietary treatment). Milk N efficiency was calculated as the ratio between mean milk N (grams of N in milk per day) and mean N intake (grams of N intake per day) obtained from each sampling period, which lasted 9.0 ± 9.9 d (mean ± SD). Samples of milk (n = 604) or plasma (n = 696) and feeds (74 dietary treatments) were analyzed for natural 15N abundance (δ15N), and then the N isotopic discrimination between the animal and the dietary treatment was calculated (Δ15n = δ15Nanimal - δ15Ndiet). Data were analyzed through mixed-effect regression models considering the experiment, sampling period, and dietary treatment as random effects. In addition, repeatability estimates were calculated for each experiment to test the hypothesis of improved predictions when MNE and Δ15N measurements errors were lower. The considerable protein mobilization in early lactation artificially increased both MNE and Δ15N, leading to a positive rather than negative relationship, and this limited the implementation of this biomarker in early lactating cows. When the experimental errors of Δ15N and MNE decreased in a particular experiment (i.e., higher repeatability values), we observed a greater ability of Δ15N to predict MNE at the individual level. The predominant negative and significant correlation between Δ15N and MNE in mid- and late lactation demonstrated that on average Δ15N reflects MNE variations both across dietary treatments and between animals. The root mean squared prediction error as a percentage of average observed value was 6.8%, indicating that the model only allowed differentiation between 2 cows in terms of MNE within a CG if they differed by at least 0.112 g/g of MNE (95% confidence level), and this could represent a limitation in predicting MNE at the individual level. However, the one-way ANOVA performed to test the ability of Δ15N to differentiate within-CG the top 25% from the lowest 25% individuals in terms of MNE was significant, indicating that it is possible to distinguish extreme animals in terms of MNE from their N isotopic signature, which could be useful to group animals for precision feeding.


Assuntos
Lactação , Leite , Ração Animal/análise , Animais , Biomarcadores , Bovinos , Dieta/veterinária , Feminino , Lactação/metabolismo , Leite/química , Nitrogênio/metabolismo , Isótopos de Nitrogênio/análise , Ruminantes/metabolismo
3.
J Dairy Sci ; 105(9): 7462-7481, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35931475

RESUMO

Manure nitrogen (N) from cattle contributes to nitrous oxide and ammonia emissions and nitrate leaching. Measurement of manure N outputs on dairy farms is laborious, expensive, and impractical at large scales; therefore, models are needed to predict N excreted in urine and feces. Building robust prediction models requires extensive data from animals under different management systems worldwide. Thus, the study objectives were (1) to collate an international database of N excretion in feces and urine based on individual lactating dairy cow data from different continents; (2) to determine the suitability of key variables for predicting fecal, urinary, and total manure N excretion; and (3) to develop robust and reliable N excretion prediction models based on individual data from lactating dairy cows consuming various diets. A raw data set was created based on 5,483 individual cow observations, with 5,420 fecal N excretion and 3,621 urine N excretion measurements collected from 162 in vivo experiments conducted by 22 research institutes mostly located in Europe (n = 14) and North America (n = 5). A sequential approach was taken in developing models with increasing complexity by incrementally adding variables that had a significant individual effect on fecal, urinary, or total manure N excretion. Nitrogen excretion was predicted by fitting linear mixed models including experiment as a random effect. Simple models requiring dry matter intake (DMI) or N intake performed better for predicting fecal N excretion than simple models using diet nutrient composition or milk performance parameters. Simple models based on N intake performed better for urinary and total manure N excretion than those based on DMI, but simple models using milk urea N (MUN) and N intake performed even better for urinary N excretion. The full model predicting fecal N excretion had similar performance to simple models based on DMI but included several independent variables (DMI, diet crude protein content, diet neutral detergent fiber content, milk protein), depending on the location, and had root mean square prediction errors as a fraction of the observed mean values of 19.1% for intercontinental, 19.8% for European, and 17.7% for North American data sets. Complex total manure N excretion models based on N intake and MUN led to prediction errors of about 13.0% to 14.0%, which were comparable to models based on N intake alone. Intercepts and slopes of variables in optimal prediction equations developed on intercontinental, European, and North American bases differed from each other, and therefore region-specific models are preferred to predict N excretion. In conclusion, region-specific models that include information on DMI or N intake and MUN are required for good prediction of fecal, urinary, and total manure N excretion. In absence of intake data, region-specific complex equations using easily and routinely measured variables to predict fecal, urinary, or total manure N excretion may be used, but these equations have lower performance than equations based on intake.


Assuntos
Lactação , Nitrogênio , Animais , Bovinos , Dieta/veterinária , Fibras na Dieta/metabolismo , Feminino , Esterco , Leite/química , Nitrogênio/metabolismo , Ureia/metabolismo
4.
J Dairy Sci ; 102(1): 288-300, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30447978

RESUMO

Isoenergetic replacement of dietary saturated fatty acids (SFA) with cis-monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) can reduce cardiovascular disease risk. Supplementing dairy cow diets with plant oils lowers milk fat SFA concentrations. However, this feeding strategy can also increase milk fat trans fatty acids (FA) and negatively affect rumen fermentation. Protection of oil supplements from the rumen environment is therefore needed. In the present study a whey protein gel (WPG) of rapeseed oil (RO) was produced for feeding to dairy cows, in 2 experiments. In experiment 1, four multiparous Holstein-Friesian cows in mid-lactation were used in a change-over experiment, with 8-d treatment periods separated by a 5-d washout period. Total mixed ration diets containing 420 g of RO or WPG providing 420 g of RO were fed and the effects on milk production, composition, and FA concentration were measured. Experiment 2 involved 4 multiparous mid-lactation Holstein-Friesian cows in a 4 × 4 Latin square design experiment, with 28-d periods, to investigate the effect of incremental dietary inclusion (0, 271, 617, and 814 g/d supplemental oil) of WPG on milk production, composition, and FA concentration in the last week of each period. Whey protein gel had minimal effects on milk FA profile in experiment 1, but trans-18:1 and total trans-MUFA were higher after 8 d of supplementation with RO than with WPG. Incremental diet inclusion of WPG in experiment 2 resulted in linear increases in milk yield, cis- and trans-MUFA and PUFA, and linear decreases in SFA (from 73 to 58 g/100 g of FA) and milk fat concentration. The WPG supplement was effective at decreasing milk SFA concentration by replacement with MUFA and PUFA in experiment 2, but the increase in trans FA suggested that protection was incomplete.


Assuntos
Bovinos/metabolismo , Ácidos Graxos/química , Leite/química , Óleo de Brassica napus/metabolismo , Proteínas do Soro do Leite/metabolismo , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Ácidos Graxos/metabolismo , Feminino , Fermentação , Lactação/efeitos dos fármacos , Leite/metabolismo , Óleo de Brassica napus/química , Rúmen/metabolismo
5.
J Dairy Sci ; 102(7): 5811-5852, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31030912

RESUMO

Nitrogen is a component of essential nutrients critical for the productivity of ruminants. If excreted in excess, N is also an important environmental pollutant contributing to acid deposition, eutrophication, human respiratory problems, and climate change. The complex microbial metabolic activity in the rumen and the effect on subsequent processes in the intestines and body tissues make the study of N metabolism in ruminants challenging compared with nonruminants. Therefore, using accurate and precise measurement techniques is imperative for obtaining reliable experimental results on N utilization by ruminants and evaluating the environmental impacts of N emission mitigation techniques. Changeover design experiments are as suitable as continuous ones for studying protein metabolism in ruminant animals, except when changes in body weight or carryover effects due to treatment are expected. Adaptation following a dietary change should be allowed for at least 2 (preferably 3) wk, and extended adaptation periods may be required if body pools can temporarily supply the nutrients studied. Dietary protein degradability in the rumen and intestines are feed characteristics determining the primary AA available to the host animal. They can be estimated using in situ, in vitro, or in vivo techniques with each having inherent advantages and disadvantages. Accurate, precise, and inexpensive laboratory assays for feed protein availability are still needed. Techniques used for direct determination of rumen microbial protein synthesis are laborious and expensive, and data variability can be unacceptably large; indirect approaches have not shown the level of accuracy required for widespread adoption. Techniques for studying postruminal digestion and absorption of nitrogenous compounds, urea recycling, and mammary AA metabolism are also laborious, expensive (especially the methods that use isotopes), and results can be variable, especially the methods based on measurements of digesta or blood flow. Volatile loss of N from feces and particularly urine can be substantial during collection, processing, and analysis of excreta, compromising the accuracy of measurements of total-tract N digestion and body N balance. In studying ruminant N metabolism, nutritionists should consider the longer term fate of manure N as well. Various techniques used to determine the effects of animal nutrition on total N, ammonia- or nitrous oxide-emitting potentials, as well as plant fertilizer value, of manure are available. Overall, methods to study ruminant N metabolism have been developed over 150 yr of animal nutrition research, but many of them are laborious and impractical for application on a large number of animals. The increasing environmental concerns associated with livestock production systems necessitate more accurate and reliable methods to determine manure N emissions in the context of feed composition and ruminant N metabolism.


Assuntos
Criação de Animais Domésticos/métodos , Ciências da Nutrição Animal/métodos , Nitrogênio/metabolismo , Ruminantes/metabolismo , Ração Animal/análise , Ciências da Nutrição Animal/instrumentação , Fenômenos Fisiológicos da Nutrição Animal , Animais
6.
J Theor Biol ; 444: 100-107, 2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29277601

RESUMO

An isotope dilution model to describe the partitioning of phenylalanine and tyrosine in the bovine liver was developed. The model comprises four intracellular and six extracellular pools and various flows connecting these pools and external blood. Conservation of mass principles were applied to generate the fundamental equations describing the behaviour of the system in the steady state. The model was applied to datasets from multi-catheterised dairy cattle during a constant infusion of [1-13C]phenylalanine and [2,3,5,6-2H]tyrosine tracers. Model solutions described the extraction of phenylalanine and tyrosine from the liver via the portal vein and hepatic artery. In addition, the exchange of free phenylalanine and tyrosine between extracellular and intracellular pools was explained and the hydroxylation of phenylalanine to tyrosine was estimated. The model was effective in providing information about the fates of phenylalanine and tyrosine in the liver and could be used as part of a more complex system describing amino acid metabolism in the whole animal.


Assuntos
Lactação/metabolismo , Fígado/metabolismo , Modelos Teóricos , Fenilalanina/farmacocinética , Tirosina/farmacocinética , Animais , Bovinos , Feminino , Artéria Hepática , Isótopos/farmacocinética , Veia Porta
7.
J Dairy Sci ; 101(5): 4180-4192, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29454691

RESUMO

The objectives of the study were (1) to test whether 6 h of feed deprivation followed by refeeding induces an acidosis challenge in dairy cattle and (2) to quantify the acidosis challenge mitigation potential of increased alfalfa silage concentration in the diet. Alfalfa silage constituted either 25 or 75% of forage dry matter (DM) replacing corn silage [low (LA) or high alfalfa (HA)] and was chopped to either 14 or 19 mm theoretical length [short (S) or long (L)]. Dietary treatments LAS, LAL, HAS, or HAL were offered to 4 rumen-cannulated Holstein dairy cattle (161 d in milk; 5th or 6th parity) in a 4 × 4 Latin square design study with 21-d periods. Starch concentration was 69 g/kg of DM higher for LA diets than HA diets. Feed was withheld for 6 h followed by ad libitum refeeding on d 18 of each period. Measurements of DM intake, milk yield and composition, rumen pH, and eating and rumination behavior were taken on 1 baseline day, the challenge day, and 2 further recovery days. After refeeding, rumen pH was reduced in cows fed LA diets but not HA diets. Feeding LAL resulted in the greatest subclinical acidosis risk (pH <5.8 for 355 min on the first recovery day). Animals fed LA produced 4.4 L less milk on the challenge day in comparison to baseline. It was concluded that short-term feed deprivation detrimentally affected rumen health and milk yield in dairy cattle normally fed ad libitum, but had no effect on DM intake or milk composition. Feeding alfalfa silage in place of corn silage mitigated acidosis risk due to interrupted feed supply, likely due to a combination of lower starch concentration in HA diets, greater effective fiber concentration, and higher buffering capacity of alfalfa relative to corn silage.


Assuntos
Acidose/metabolismo , Ração Animal/análise , Doenças dos Bovinos/metabolismo , Medicago sativa/química , Silagem/análise , Zea mays/metabolismo , Acidose/fisiopatologia , Acidose/veterinária , Animais , Bovinos , Doenças dos Bovinos/fisiopatologia , Fibras na Dieta/metabolismo , Ingestão de Alimentos , Métodos de Alimentação/veterinária , Feminino , Fermentação , Manipulação de Alimentos , Concentração de Íons de Hidrogênio , Lactação , Medicago sativa/metabolismo , Leite/metabolismo , Rúmen/química , Rúmen/metabolismo , Zea mays/química
8.
J Dairy Sci ; 101(7): 6655-6674, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29680642

RESUMO

Ruminant production systems are important contributors to anthropogenic methane (CH4) emissions, but there are large uncertainties in national and global livestock CH4 inventories. Sources of uncertainty in enteric CH4 emissions include animal inventories, feed dry matter intake (DMI), ingredient and chemical composition of the diets, and CH4 emission factors. There is also significant uncertainty associated with enteric CH4 measurements. The most widely used techniques are respiration chambers, the sulfur hexafluoride (SF6) tracer technique, and the automated head-chamber system (GreenFeed; C-Lock Inc., Rapid City, SD). All 3 methods have been successfully used in a large number of experiments with dairy or beef cattle in various environmental conditions, although studies that compare techniques have reported inconsistent results. Although different types of models have been developed to predict enteric CH4 emissions, relatively simple empirical (statistical) models have been commonly used for inventory purposes because of their broad applicability and ease of use compared with more detailed empirical and process-based mechanistic models. However, extant empirical models used to predict enteric CH4 emissions suffer from narrow spatial focus, limited observations, and limitations of the statistical technique used. Therefore, prediction models must be developed from robust data sets that can only be generated through collaboration of scientists across the world. To achieve high prediction accuracy, these data sets should encompass a wide range of diets and production systems within regions and globally. Overall, enteric CH4 prediction models are based on various animal or feed characteristic inputs but are dominated by DMI in one form or another. As a result, accurate prediction of DMI is essential for accurate prediction of livestock CH4 emissions. Analysis of a large data set of individual dairy cattle data showed that simplified enteric CH4 prediction models based on DMI alone or DMI and limited feed- or animal-related inputs can predict average CH4 emission with a similar accuracy to more complex empirical models. These simplified models can be reliably used for emission inventory purposes.


Assuntos
Bovinos/metabolismo , Dieta , Metano/análise , Metano/metabolismo , Hexafluoreto de Enxofre/metabolismo , Ração Animal , Animais , Poluição Ambiental , Ruminantes , Incerteza
9.
J Dairy Sci ; 100(9): 7127-7138, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28690065

RESUMO

The objective of this study was to investigate whether higher lucerne (Medicago sativa; alfalfa) silage inclusion rate and longer lucerne chop length improves rumen function through increased provision of physically effective fiber, when included in a maize and lucerne silage-based total mixed ration. Diets were formulated to contain a 50:50 forage:concentrate ratio [dry matter (DM) basis] and be isonitrogenous and contain equal levels of neutral detergent fiber (320 g/kg). The forage portion of the offered diets was composed of maize and lucerne silage DM in proportions (wt/wt) of either 25:75 (high lucerne; HL) or 75:25 (low lucerne; LL). Second-cut lucerne was harvested and conserved as silage at either a long (L) or a short (S) chop length (geometric mean particle lengths of 9.0 and 14.3 mm, respectively). These variables were combined in a 2 × 2 factorial arrangement to give 4 treatments (HLL, HLS, LLL, LLS), which were fed in a 4 × 4 Latin square design study to 4 rumen-cannulated, multiparous, Holstein dairy cows in mid lactation. Effects on DM intake, chewing behavior, rumen volatile fatty acid concentration, rumen pH, rumen and fecal particle size, milk production, and milk fatty acid profile were measured. Longer chop length increased rumination times per kilogram of DM intake (+2.8 min/kg) relative to the S chop length, with HLL diets resulting in the most rumination chews. Rumen concentrations of total volatile fatty acids, acetate, and n-valerate were higher for the HLS diet than the other 3 diets, whereas rumen propionate concentration was lowest for the HLL diet. Physically effective fiber (particles >4 mm) percentage in the rumen mat was increased when L chop length was fed regardless of lucerne inclusion rate. No effect of treatment was observed for milk yield, although milk protein concentration was increased by L for the LL diet (+1.6 g/kg) and decreased by L for the HLL diet (-1.4 g/kg). Milk fat concentrations of total cis-18:1 (+3.7 g/100 g of fatty acids) and 18:3 n-3 (+0.2 g/100 g of fatty acids) were greater with HL. In conclusion, longer lucerne silage chop length increased time spent ruminating per kilogram of DM intake, but had no effect on rumen pH in the present study. Increasing dietary lucerne inclusion rate had no effects on rumination activity or rumen pH, but decreased the ratio of n-6:n-3 polyunsaturated fatty acid concentrations in milk fat.


Assuntos
Ácidos Graxos/química , Leite/química , Rúmen/fisiologia , Silagem , Zea mays , Animais , Bovinos , Dieta , Fibras na Dieta , Feminino , Fermentação , Lactação , Medicago sativa
10.
J Dairy Sci ; 99(10): 7904-7917, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27522422

RESUMO

Strategies to mitigate greenhouse gas emissions from dairy cattle are unlikely to be adopted if production or profitability is reduced. The primary objective of this study was to examine the effects of high maize silage (MS) versus high grass silage (GS) diets, without or with added neutral detergent fiber (NDF) on milk production and methane emission of dairy cattle, using GreenFeed (GF) or respiration chamber (RC) techniques for methane emission measurements. Experiment 1 was 12wk in duration with a randomized block continuous design and 40 Holstein cows (74d in milk) in free-stall housing, assigned to 1 of 4 dietary treatments (n=10 per treatment), according to calving date, parity, and milk yield. Milk production and dry matter intake (DMI) were measured daily, and milk composition measured weekly, with methane yield (g/kg of DMI) estimated using a GF unit (wk 10 to 12). Experiment 2 was a 4×4 Latin square design with 5-wk periods and 4 dairy cows (114d in milk) fed the same 4 dietary treatments as in experiment 1. Measurements of DMI, milk production, and milk composition occurred in wk 4, and DMI, milk production, and methane yield were measured for 2d in RC during wk 5. Dietary treatments for both experiments were fed as total mixed rations offered ad libitum and containing 500g of silage/kg of dry matter composed (DM basis) of either 75:25 MS:GS (MS) or 25:75 MS:GS (GS), without or with added NDF from chopped straw and soy hulls (+47g of NDF/kg of dry matter). In both experiments, compared with high GS, cows fed high MS had a higher DMI, greater milk production, and lower methane yield (24% lower in experiment 1 using GF and 8% lower in experiment 2 using RC). Added NDF increased (or tended to increase) methane yield for high MS, but not high GS diets. In the separate experiments, the GF and RC methods detected similar dietary treatment effects on methane emission (expressed as g/d and g/kg of DMI), although the magnitude of the differences varied between experiments. Overall methane emission and yield were 448g/d and 20.9g/kg of DMI for experiment 1 using GF and 458g/d and 23.8g/kg of DMI for experiment 2 using RC, respectively.


Assuntos
Metano/biossíntese , Leite , Animais , Bovinos , Detergentes , Dieta/veterinária , Digestão , Feminino , Lactação , Silagem
11.
J Dairy Sci ; 99(11): 9238-9253, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27614843

RESUMO

Interest is growing in developing integrated postabsorptive metabolism models for dairy cattle. An integral part of linking a multi-organ postabsorptive model is the prediction of nutrient fluxes between organs, and thus blood flow. The purpose of this paper was to use a multivariate meta-analysis approach to model portal blood flow (PORBF) and hepatic venous blood flow (HEPBF) simultaneously, with evaluation of hepatic arterial blood flow (ARTBF; ARTBF=HEPBF - PORBF) and PORBF/HEPBF (%) as calculated values. The database used to develop equations consisted of 296 individual animal observations (lactating and dry dairy cows and beef cattle) and 55 treatments from 17 studies, and a separate evaluation database consisted of 34 treatment means (lactating dairy cows and beef cattle) from 9 studies obtained from the literature. Both databases had information on dry matter intake (DMI), metabolizable energy intake (MEI), body weight, and a basic description of the diet including crude protein intake and forage proportion of the diet (FP; %). Blood flow (L/h or L/kg of BW0.75/h) and either DMI or MEI (g or MJ/d or g or MJ/kg of BW0.75/d) were examined with linear and quadratic fits. Equations were developed using cow within experiment and experiment as random effects, and blood flow location as a repeated effect. Upon evaluation with the evaluation database, equations based on DMI typically resulted in lower root mean square prediction errors, expressed as a % of the observed mean (rMSPE%) and higher concordance correlation coefficient (CCC) values than equations based on MEI. Quadratic equation terms were frequently nonsignificant, and the quadratic equations did not outperform their linear counterparts. The best performing blood flow equations were PORBF (L/h)=202 (±45.6) + 83.6 (±3.11) × DMI (kg/d) and HEPBF (L/h)=186 (±45.4) + 103.8 (±3.10) × DMI (kg/d), with rMSPE% values of 17.5 and 16.6 and CCC values of 0.93 and 0.94, respectively. The residuals (predicted - observed) for PORBF/HEPBF were significantly related to the forage % of the diet, and thus equations for PORBF and HEPBF based on forage and concentrate DMI were developed: PORBF (L/h)=210 (±51.0) + 82.9 (±6.43) × forage (kg of DM/d) + 82.9 (±6.04) × concentrate (kg of DM/d), and HEPBF (L/h)=184 (±50.6) + 92.6 (±6.28) × forage (kg of DM/d) + 114.2 (±5.88) × concentrate (kg of DM/d), where rMSPE% values were 17.5 and 17.6 and CCC values were 0.93 and 0.94, respectively. Division of DMI into forage and concentrate fractions improved the joint Bayesian information criterion value for PORBF and HEPBF (Bayesian information criterion=6,512 vs. 7,303), as well as slightly improved the rMSPE and CCC for ARTBF and PORBF/HEPBF. This was despite minimal changes in PORBF and HEPBF predictions. Developed equations predicted blood flow well and can easily be used within a postabsorptive model of nutrient metabolism. Results also suggest different sensitivity of PORBF and HEPBF to the composition of DMI, and accounting for this difference resulted in improved ARTBF predictions.


Assuntos
Teorema de Bayes , Lactação , Fígado/irrigação sanguínea , Ração Animal , Animais , Bovinos , Dieta/veterinária , Ingestão de Energia , Feminino , Modelos Biológicos
12.
J Dairy Sci ; 98(6): 4000-11, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25864058

RESUMO

Replacing dietary grass silage (GS) with maize silage (MS) and dietary fat supplements may reduce milk concentration of specific saturated fatty acids (SFA) and can reduce methane production by dairy cows. The present study investigated the effect of feeding an extruded linseed supplement on milk fatty acid (FA) composition and methane production of lactating dairy cows, and whether basal forage type, in diets formulated for similar neutral detergent fiber and starch, altered the response to the extruded linseed supplement. Four mid-lactation Holstein-Friesian cows were fed diets as total mixed rations, containing either high proportions of MS or GS, both with or without extruded linseed supplement, in a 4×4 Latin square design experiment with 28-d periods. Diets contained 500 g of forage/kg of dry matter (DM) containing MS and GS in proportions (DM basis) of either 75:25 or 25:75 for high MS or high GS diets, respectively. Extruded linseed supplement (275 g/kg ether extract, DM basis) was included in treatment diets at 50 g/kg of DM. Milk yields, DM intake, milk composition, and methane production were measured at the end of each experimental period when cows were housed in respiration chambers. Whereas DM intake was higher for the MS-based diet, forage type and extruded linseed had no significant effect on milk yield, milk fat, protein, or lactose concentration, methane production, or methane per kilogram of DM intake or milk yield. Total milk fat SFA concentrations were lower with MS compared with GS-based diets (65.4 vs. 68.4 g/100 g of FA, respectively) and with extruded linseed compared with no extruded linseed (65.2 vs. 68.6 g/100 g of FA, respectively), and these effects were additive. Concentrations of total trans FA were higher with MS compared with GS-based diets (7.0 vs. 5.4 g/100 g of FA, respectively) and when extruded linseed was fed (6.8 vs. 5. 6g/100 g of FA, respectively). Total n-3 FA were higher when extruded linseed was fed compared with no extruded linseed (1.2 vs. 0.8 g/100 g of FA, respectively), whereas total n-6 polyunsaturated FA were higher when feeding MS compared with GS (2.5 vs. 2.1 g/100 g of FA, respectively). Feeding extruded linseed and MS both provided potentially beneficial decreases in SFA concentration of milk, and no significant interactions were found between extruded linseed supplementation and forage type. However, both MS and extruded linseed increased trans FA concentration in milk fat. Neither MS nor extruded linseed had significant effects on methane production or yield, but the amounts of supplemental lipid provided by extruded linseed were relatively small.


Assuntos
Bovinos/fisiologia , Suplementos Nutricionais , Ácidos Graxos/metabolismo , Linho/química , Metano/metabolismo , Leite/química , Animais , Dieta/veterinária , Fibras na Dieta , Ácidos Graxos/análise , Feminino , Lactação , Leite/metabolismo , Poaceae , Silagem/análise , Amido/metabolismo , Zea mays
13.
J Dairy Sci ; 98(11): 8066-77, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26364116

RESUMO

Changes in diet carbohydrate amount and type (i.e., starch vs. fiber) and dietary oil supplements can affect ruminant methane emissions. Our objectives were to measure methane emissions, whole-tract digestibility, and energy and nitrogen utilization from growing dairy cattle at 2 body weight (BW) ranges, fed diets containing either high maize silage (MS) or high grass silage (GS), without or with supplemental oil from extruded linseed (ELS). Four Holstein-Friesian heifers aged 13 mo (BW range from start to finish of 382 to 526 kg) were used in experiment 1, whereas 4 lighter heifers aged 12 mo (BW range from start to finish of 292 to 419 kg) were used in experiment 2. Diets were fed as total mixed rations with forage dry matter (DM) containing high MS or high GS and concentrates in proportions (forage:concentrate, DM basis) of either 75:25 (experiment 1) or 60:40 (experiment 2), respectively. Diets were supplemented without or with ELS (Lintec, BOCM Pauls Ltd., Wherstead, UK; 260 g of oil/kg of DM) at 6% of ration DM. Each experiment was a 4 × 4 Latin square design with 33-d periods, with measurements during d 29 to 33 while animals were housed in respiration chambers. Heifers fed MS at a heavier BW (experiment 1) emitted 20% less methane per unit of DM intake (yield) compared with GS (21.4 vs. 26.6, respectively). However, when repeated with heifers of a lower BW (experiment 2), methane yield did not differ between the 2 diets (26.6g/kg of DM intake). Differences in heifer BW had no overall effect on methane emissions, except when expressed as grams per kilogram of digestible organic matter (OMD) intake (32.4 vs. 36.6, heavy vs. light heifers). Heavier heifers fed MS in experiment 1 had a greater DM intake (9.4kg/d) and lower OMD (755 g/kg), but no difference in N utilization (31% of N intake) compared with heifers fed GS (7.9 kg/d and 799 g/kg, respectively). Tissue energy retention was nearly double for heifers fed MS compared with GS in experiment 1 (15 vs. 8% of energy intake, respectively). Heifers fed MS in experiment 2 had similar DM intake (7.2 kg/d) and retention of energy (5% of intake energy) and N (28% of N intake), compared with GS-fed heifers, but OMD was lower (741 vs. 765 g/kg, respectively). No effect of ELS was noted on any of the variables measured, irrespective of animal BW, and this was likely due to the relatively low amount of supplemental oil provided. Differences in heifer BW did not markedly influence dietary effects on methane emissions. Differences in methane yield were attributable to differences in dietary starch and fiber composition associated with forage type and source.


Assuntos
Bovinos/fisiologia , Suplementos Nutricionais , Óleo de Semente do Linho/farmacologia , Metano/metabolismo , Silagem/análise , Animais , Peso Corporal/efeitos dos fármacos , Bovinos/crescimento & desenvolvimento , Indústria de Laticínios , Dieta/veterinária , Fibras na Dieta/metabolismo , Digestão/efeitos dos fármacos , Ingestão de Energia/efeitos dos fármacos , Feminino , Óleo de Semente do Linho/administração & dosagem , Poaceae , Rúmen/efeitos dos fármacos , Rúmen/metabolismo , Zea mays
14.
J Theor Biol ; 359: 54-60, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24846729

RESUMO

An isotope dilution model for partitioning phenylalanine and tyrosine uptake by the mammary gland of the lactating dairy cow is constructed and solved in the steady state. The model contains four intracellular and four extracellular pools and conservation of mass principles are applied to generate the fundamental equations describing the behaviour of the system. The experimental measurements required for model solution are milk secretion and plasma flow rate across the gland in combination with phenylalanine and tyrosine concentrations and plateau isotopic enrichments in arterial and venous plasma and free and protein bound milk during a constant infusion of [1-(13)C]phenylalanine and [2,3,5,6-(2)H]tyrosine tracer. If assumptions are made, model solution enables determination of steady state flows for phenylalanine and tyrosine inflow to the gland, outflow from it and bypass, and flows representing the synthesis and degradation of constitutive protein and phenylalanine hydroxylation. The model is effective in providing information about the fates of phenylalanine and tyrosine in the mammary gland and could be used as part of a more complex system describing amino acid metabolism in the whole ruminant.


Assuntos
Bovinos , Lactação/metabolismo , Glândulas Mamárias Animais/metabolismo , Fenilalanina/farmacocinética , Tirosina/farmacocinética , Animais , Bovinos/metabolismo , Indústria de Laticínios , Feminino , Leite/metabolismo , Modelos Teóricos , Técnica de Diluição de Radioisótopos
15.
J Dairy Sci ; 97(4): 2440-3, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24485682

RESUMO

In dairy cows, an increase in plasma concentration of glucose-dependent insulinotropic polypeptide (GIP) is associated with an increase in metabolizable energy intake, but the role of GIP in energy partitioning of dairy cattle is not certain. The objective of this study was to examine the relationship between plasma GIP concentrations and energy partitioning toward milk production. Four mid-lactation, primiparous, rumen-fistulated Holstein-Friesian cows were fed a control diet of 55% forage and 45% concentrate [dry matter (DM) basis] in a 4×4 Latin square design with 4-wk periods. The 4 treatments were (1) control diet fed at 1000 and 1600h, and (2) once-daily (1000h) feeding, (3) twice-daily (1000 and 1600h) feeding, and (4) 4 times/d (1000, 1600, 2200 and 0400h) feeding of the control diet plus 1 dose (1.75kg on a DM basis at 0955h) into the rumen of supplemental vegetable proteins (Amino Green; SCA NuTec Ltd., Thirsk, UK). Measurements of respiratory exchange and energy balance were obtained over 4d during the last week of each period while cows were housed in open-circuit respiration chambers. Blood was collected from the jugular vein every 30min for 12h, using indwelling catheters, starting at 0800h on d 20 of each period. Plasma GIP concentration was measured in samples pooled over each 5 consecutive blood samplings. The relationships between plasma GIP, DM intake, heat production, respiratory quotient (RQ), milk yield, and milk energy output were analyzed using linear correlation procedures, with metabolizable intake as a partial variant. Plasma GIP concentration was not correlated with heat production, or milk yield, but was positively correlated with milk energy yield (correlation coefficient=0.67) and negatively correlated with RQ (correlation coefficient=-0.72). The correlations between GIP with RQ and milk energy output do not imply causality, but support a role for GIP in the regulation of energy metabolism in dairy cows.


Assuntos
Polipeptídeo Inibidor Gástrico/sangue , Lactação , Leite/metabolismo , Fragmentos de Peptídeos/sangue , Ração Animal , Animais , Bovinos , Dieta/veterinária , Ingestão de Energia , Metabolismo Energético , Feminino , Leite/química , Rúmen/metabolismo
16.
J Dairy Sci ; 97(11): 7115-32, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25218750

RESUMO

Various studies have indicated a relationship between enteric methane (CH4) production and milk fatty acid (FA) profiles of dairy cattle. However, the number of studies investigating such a relationship is limited and the direct relationships reported are mainly obtained by variation in CH4 production and milk FA concentration induced by dietary lipid supplements. The aim of this study was to perform a meta-analysis to quantify relationships between CH4 yield (per unit of feed and unit of milk) and milk FA profile in dairy cattle and to develop equations to predict CH4 yield based on milk FA profile of cows fed a wide variety of diets. Data from 8 experiments encompassing 30 different dietary treatments and 146 observations were included. Yield of CH4 measured in these experiments was 21.5 ± 2.46 g/kg of dry matter intake (DMI) and 13.9 ± 2.30 g/kg of fat- and protein-corrected milk (FPCM). Correlation coefficients were chosen as effect size of the relationship between CH4 yield and individual milk FA concentration (g/100g of FA). Average true correlation coefficients were estimated by a random-effects model. Milk FA concentrations of C6:0, C8:0, C10:0, C16:0, and C16:0-iso were significantly or tended to be positively related to CH4 yield per unit of feed. Concentrations of trans-6+7+8+9 C18:1, trans-10+11 C18:1, cis-11 C18:1, cis-12 C18:1, cis-13 C18:1, trans-16+cis-14 C18:1, and cis-9,12 C18:2 in milk fat were significantly or tended to be negatively related to CH4 yield per unit of feed. Milk FA concentrations of C10:0, C12:0, C14:0-iso, C14:0, cis-9 C14:1, C15:0, and C16:0 were significantly or tended to be positively related to CH4 yield per unit of milk. Concentrations of C4:0, C18:0, trans-10+11 C18:1, cis-9 C18:1, cis-11 C18:1, and cis-9,12 C18:2 in milk fat were significantly or tended to be negatively related to CH4 yield per unit of milk. Mixed model multiple regression and a stepwise selection procedure of milk FA based on the Bayesian information criterion to predict CH4 yield with milk FA as input (g/100g of FA) resulted in the following prediction equations: CH4 (g/kg of DMI)=23.39 + 9.74 × C16:0-iso - 1.06 × trans-10+11 C18:1 - 1.75 × cis-9,12 C18:2 (R(2) = 0.54), and CH4 (g/kg of FPCM) = 21.13 - 1.38 × C4:0 + 8.53 × C16:0-iso - 0.22 × cis-9 C18:1 - 0.59 × trans-10+11 C18:1 (R(2) = 0.47). This indicated that milk FA profile has a moderate potential for predicting CH4 yield per unit of feed and a slightly lower potential for predicting CH4 yield per unit of milk.


Assuntos
Bovinos/metabolismo , Ácidos Graxos/metabolismo , Metano/metabolismo , Leite/química , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Ácidos Graxos/química , Feminino , Lactação , Modelos Biológicos
17.
J Dairy Sci ; 97(6): 3777-89, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24704240

RESUMO

The objective was to measure effects of 3-nitrooxypropanol (3 NP) on methane production of lactating dairy cows and any associated changes in digestion and energy and N metabolism. Six Holstein-Friesian dairy cows in mid-lactation were fed twice daily a total mixed ration with maize silage as the primary forage source. Cows received 1 of 3 treatments using an experimental design based on two 3 × 3 Latin squares with 5-wk periods. Treatments were a control placebo or 500 or 2,500 mg/d of 3 NP delivered directly into the rumen, via the rumen fistula, in equal doses before each feeding. Measurements of methane production and energy and N balance were obtained during wk 5 of each period using respiration calorimeters and digestion trials. Measurements of rumen pH (48 h) and postprandial volatile fatty acid and ammonia concentrations were made at the end of wk 4. Daily methane production was reduced by 3 NP, but the effects were not dose dependent (reductions of 6.6 and 9.8% for 500 and 2,500 mg/d, respectively). Dosing 3 NP had a transitory inhibitory effect on methane production, which may have been due to the product leaving the rumen in liquid outflow or through absorption or metabolism. Changes in rumen concentrations of volatile fatty acids indicated that the pattern of rumen fermentation was affected by both doses of the product, with a decrease in acetate:propionate ratio observed, but that acetate production was inhibited by the higher dose. Dry matter, organic matter, acid detergent fiber, N, and energy digestibility were reduced at the higher dose of the product. The decrease in digestible energy supply was not completely countered by the decrease in methane excretion such that metabolizable energy supply, metabolizable energy concentration of the diet, and net energy balance (milk plus tissue energy) were reduced by the highest dose of 3 NP. Similarly, the decrease in N digestibility at the higher dose of the product was associated with a decrease in body N balance that was not observed for the lower dose. Milk yield and milk fat concentration and fatty acid composition were not affected but milk protein concentration was greater for the higher dose of 3 NP. Twice-daily rumen dosing of 3 NP reduced methane production by lactating dairy cows, but the dose of 2,500 mg/d reduced rumen acetate concentration, diet digestibility, and energy supply. Further research is warranted to determine the optimal dose and delivery method of the product.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Lactação/efeitos dos fármacos , Metano/biossíntese , Nitrogênio/metabolismo , Propanóis/farmacologia , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Gorduras na Dieta/análise , Fibras na Dieta , Digestão , Relação Dose-Resposta a Droga , Ácidos Graxos Voláteis/análise , Feminino , Fermentação , Concentração de Íons de Hidrogênio , Leite/química , Proteínas do Leite/análise , Rúmen/metabolismo , Zea mays/química
18.
J Dairy Sci ; 96(5): 3211-21, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23498010

RESUMO

In most Western countries, saturated fatty acid (SFA) intake exceeds recommended levels, which is considered a risk factor for cardiovascular disease (CVD). As milk and dairy products are major contributors to SFA intake in many countries, recent research has focused on sustainable methods of producing milk with a lower saturated fat concentration by altering dairy cow diets. Human intervention studies have shown that CVD risk can be reduced by consuming dairy products with reduced SFA and increased cis-monounsaturated fatty acid (MUFA) concentrations. This milk fatty acid profile can be achieved by supplementing dairy cow diets with cis-MUFA-rich unsaturated oils. However, rumen exposure of unsaturated oils also leads to enhanced milk trans fatty acid (TFA) concentrations. Because of concerns about the effects of TFA consumption on CVD, feeding strategies that increase MUFA concentrations in milk without concomitant increases in TFA concentration are preferred by milk processors. In an attempt to limit TFA production and increase the replacement of SFA by cis-MUFA, a preparation of rumen-protected unsaturated oils was developed using saponification with calcium salts. Four multiparous Holstein-Friesian cows in mid-late lactation were used in a 4 × 4 Latin square design with 21-d periods to investigate the effect of incremental dietary inclusion of a calcium salt of cis-MUFA product (Ca-MUFA; 20, 40, and 60 g/kg of dry matter of a maize silage-based diet), on milk production, composition, and fatty acid concentration. Increasing Ca-MUFA inclusion reduced dry matter intake linearly, but no change was observed in estimated ME intake. No change in milk yield was noted, but milk fat and protein concentrations were linearly reduced. Supplementation with Ca-MUFA resulted in a linear reduction in total SFA (from 71 to 52 g/100 g of fatty acids for control and 60 g/kg of dry matter diets, respectively). In addition, concentrations of both cis- and trans-MUFA were increased with Ca-MUFA inclusion, and increases in other biohydrogenation intermediates in milk fat were also observed. The Ca-MUFA supplement was very effective at reducing milk SFA concentration and increasing cis-MUFA concentrations without incurring any negative effects on milk and milk component yields. However, reduced milk fat and protein concentrations, together with increases in milk TFA concentrations, suggest partial dissociation of the calcium salts in the rumen.


Assuntos
Compostos de Cálcio/farmacologia , Dieta/veterinária , Suplementos Nutricionais , Ácidos Graxos Monoinsaturados/farmacologia , Ácidos Graxos/análise , Leite/química , Animais , Bovinos , Ingestão de Alimentos , Feminino , Silagem , Zea mays
20.
J Anim Physiol Anim Nutr (Berl) ; 96(4): 648-54, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21732994

RESUMO

The capacity for glucose, propionate or hormones of splanchnic origin to influence appetite by directly regulating the expression of neuropeptides in the feeding centres of the hypothalamus of the ruminant is not described. Therefore, our objective was to measure the direct effect of metabolites (glucose and propionate) or hormones [insulin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1) and polypeptide YY (PYY)] on hypothalamic mRNA concentrations for neuropeptide Y (NPY), agouti-related peptide (AgRP) and proopiomelanocortin (POMC) following in vitro incubation. Hypothalamic tissue from 4- to 5-month-old lambs was obtained at slaughter and immediately incubated in culture media for 2 h at 36 °C. Treatments included a control Dulbecco's modified Eagle medium (DMEM) containing 1 mm glucose or DMEM with the following additions: 10 mm glucose, 1 mm propionate, 1 nm insulin, 120 pm GLP-1, 100 pm PYY, 80 pm CCK or 10 mm glucose plus 1 nm insulin. The abundance of mRNA for NPY, AgRP and POMC was measured using quantitative reverse transcriptase PCR. Fisher's protected LSD test was used to compare changes in relative mRNA concentrations for the hypothalamus incubated in the control media vs. the rest of the treatments. The media containing glucose plus insulin increased POMC mRNA concentration (p <0.05), but did not affect NPY or AgRP mRNA concentration. There were no effects observed for the other treatments (p > 0.20). Results of the present study are consistent with the concept that effects of propionate on feed intake in ruminants is not mediated through direct effects on the hypothalamus, and that insulin is required for an effect of glucose on hypothalamic POMC expression.


Assuntos
Glucose/metabolismo , Hipotálamo/metabolismo , Neuropeptídeos/metabolismo , Propionatos/metabolismo , RNA Mensageiro/metabolismo , Ovinos/metabolismo , Animais , Regulação da Expressão Gênica/fisiologia , Glucose/química , Neuropeptídeos/genética , Propionatos/química , RNA Mensageiro/genética , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA