Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nucleic Acids Res ; 52(W1): W313-W317, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38783158

RESUMO

Among the myriad of protein-protein interactions occurring in living organisms, a substantial amount involves small linear motifs (SLiMs) recognized by structured domains. However, predictions of SLiM-based networks are tedious, due to the abundance of such motifs and a high portion of false positive hits. For this reason, a webserver SLiMAn (Short Linear Motif Analysis) was developed to focus the search on the most relevant SLiMs. Using SLiMAn, one can navigate into a given (meta-)interactome and tune a variety of parameters associated to each type of SLiMs in attempt to identify functional ELM motifs and their recognition domains. The IntAct and BioGRID databases bring experimental information, while IUPred and AlphaFold provide boundaries of folded and disordered regions. Post-translational modifications listed in PhosphoSite+ are highlighted. Links to PubMed accelerate scrutiny into the literature, to support (or not) putative pairings. Dedicated visualization features are also incorporated, such as Cytoscape for macromolecular networks and BINANA for intermolecular contacts within structural models generated by SCWRL 3.0. The use of SLiMAn 2.0 is illustrated on a simple example. It is freely available at https://sliman2.cbs.cnrs.fr.


Assuntos
Peptídeos , Software , Peptídeos/química , Peptídeos/metabolismo , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Bases de Dados de Proteínas , Humanos , Motivos de Aminoácidos , Proteínas/química , Proteínas/metabolismo , Internet , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional
2.
Nucleic Acids Res ; 49(W1): W567-W572, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33963857

RESUMO

Proteo3Dnet is a web server dedicated to the analysis of mass spectrometry interactomics experiments. Given a flat list of proteins, its aim is to organize it in terms of structural interactions to provide a clearer overview of the data. This is achieved using three means: (i) the search for interologs with resolved structure available in the protein data bank, including cross-species remote homology search, (ii) the search for possibly weaker interactions mediated through Short Linear Motifs as predicted by ELM-a unique feature of Proteo3Dnet, (iii) the search for protein-protein interactions physically validated in the BioGRID database. The server then compiles this information and returns a graph of the identified interactions and details about the different searches. The graph can be interactively explored to understand the way the core complexes identified could interact. It can also suggest undetected partners to the experimentalists, or specific cases of conditionally exclusive binding. The interest of Proteo3Dnet, previously demonstrated for the difficult cases of the proteasome and pragmin complexes data is, here, illustrated in the context of yeast precursors to the small ribosomal subunits and the smaller interactome of 14-3-3zeta frequent interactors. The Proteo3Dnet web server is accessible at http://bioserv.rpbs.univ-paris-diderot.fr/services/Proteo3Dnet/.


Assuntos
Conformação Proteica , Mapeamento de Interação de Proteínas/métodos , Software , Proteínas 14-3-3/metabolismo , Internet , Espectrometria de Massas , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Proteômica , Subunidades Ribossômicas Menores de Eucariotos/metabolismo
3.
J Proteome Res ; 21(7): 1654-1663, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35642445

RESUMO

Cells express thousands of macromolecules, and their functioning relies on multiple networks of intermolecular interactions. These interactions can be experimentally determined at different spatial and temporal resolutions. But, physical interfaces are not often delineated directly, especially in high-throughput experiments. A large fraction of protein-protein interactions involves domain and so-called SLiMs (for Short Linear Motifs). Often, SLiMs lie in disordered regions or loops. Their small size, limited sequence conservation, and loosely folded nature prevent straightforward detection. SLiMAn (Short Linear Motif Analysis), a new web server, is provided to help thorough analysis of interactomics data. From a list of putative interactants (e.g., output from an interactomics study), SLiMs (from ELM) and SLiM-recognition domains (from Pfam) are extracted, and putative pairings are displayed. Predicted results can be filtered using motif E-values, IUPred2 scores, or BioGRID interaction matches. When structural templates are available, a given SLiM and its recognition domain can be modeled using SCWRL. We illustrate here the use of SLiMAn on distinct examples, including one real-case study. We oversee wide-range applications for SLiMAn in the context of the massive analysis of protein-protein interactions. This new web server is made freely available at https://sliman.cbs.cnrs.fr.


Assuntos
Domínios e Motivos de Interação entre Proteínas , Motivos de Aminoácidos
4.
J Proteome Res ; 19(7): 2807-2820, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32338910

RESUMO

Protein-protein interactions play a major role in the molecular machinery of life, and various techniques such as AP-MS are dedicated to their identification. However, those techniques return lists of proteins devoid of organizational structure, not detailing which proteins interact with which others. Proposing a hierarchical view of the interactions between the members of the flat list becomes highly tedious for large data sets when done by hand. To help hierarchize this data, we introduce a new bioinformatics protocol that integrates information of the multimeric protein 3D structures available in the Protein Data Bank using remote homology detection, as well as information related to Short Linear Motifs and interaction data from the BioGRID. We illustrate on two unrelated use-cases of different complexity how our approach can be useful to decipher the network of interactions hidden in the list of input proteins, and how it provides added value compared to state-of-the-art resources such as Interactome3D or STRING. Particularly, we show the added value of using homology detection to distinguish between orthologs and paralogs, and to distinguish between core obligate and more facultative interactions. We also demonstrate the potential of considering interactions occurring through Short Linear Motifs.


Assuntos
Mapas de Interação de Proteínas , Proteômica , Biologia Computacional , Bases de Dados de Proteínas , Mapeamento de Interação de Proteínas , Proteínas/genética , Proteínas/metabolismo
5.
Nat Protoc ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886530

RESUMO

Interactions between macromolecules, such as proteins and nucleic acids, are essential for cellular functions. Experimental methods can fail to provide all the information required to fully model biomolecular complexes at atomic resolution, particularly for large and heterogeneous assemblies. Integrative computational approaches have, therefore, gained popularity, complementing traditional experimental methods in structural biology. Here, we introduce HADDOCK2.4, an integrative modeling platform, and its updated web interface ( https://wenmr.science.uu.nl/haddock2.4 ). The platform seamlessly integrates diverse experimental and theoretical data to generate high-quality models of macromolecular complexes. The user-friendly web server offers automated parameter settings, access to distributed computing resources, and pre- and post-processing steps that enhance the user experience. To present the web server's various interfaces and features, we demonstrate two different applications: (i) we predict the structure of an antibody-antigen complex by using NMR data for the antigen and knowledge of the hypervariable loops for the antibody, and (ii) we perform coarse-grained modeling of PRC1 with a nucleosome particle guided by mutagenesis and functional data. The described protocols require some basic familiarity with molecular modeling and the Linux command shell. This new version of our widely used HADDOCK web server allows structural biologists and non-experts to explore intricate macromolecular assemblies encompassing various molecule types.

6.
Bioinform Adv ; 3(1): vbad136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822724

RESUMO

Motivation: The automated data processing provided by the TSA-CRAFT tool enables now to reach high throughput speed analysis of thermal shift assays. While the software is powerful and freely available, it still requires installation process and command line efforts that could be discouraging. Results: To simplify the procedure, we decided to make it available and easy to use by implementing it with a graphical interface via a web server, enabling a cross-platform usage from any web browsers. We developed a web server embedded version of the TSA-CRAFT tool, enabling a user-friendly graphical interface for formatting and submission of the input file and visualization of the selected thermal denaturation profiles. We describe a typical case study of buffer condition optimization of the biologically relevant APH(3')-IIb bacterial protein in a 96 deep-well thermal shift analysis screening. Availability and implementation: wTSA-CRAFT is freely accessible for noncommercial usage at https://bioserv.cbs.cnrs.fr/TSA_CRAFT.

7.
Med Sci (Paris) ; 36 Hors série n° 1: 38-41, 2020 Oct.
Artigo em Francês | MEDLINE | ID: mdl-33052092

RESUMO

TITLE: Profilage in silico des inhibiteurs de protéine kinases. ABSTRACT: Les protéine kinases ont été rapidement identifiées comme favorisant l'apparition de cancers, à travers leur implication dans la régulation du développement et du cycle cellulaire. Il y a une vingtaine d'années, la mise sur le marché des premiers traitements par inhibiteur de protéine kinase, ouvrait la voie vers de nouvelles solutions médicamenteuses plus ciblées contre le cancer. Depuis, nombreuses sont les données structurales et fonctionnelles acquises sur ces cibles thérapeutiques. Les techniques informatiques ont elles aussi évolué, notamment les méthodes d'apprentissage automatique. En tirant parti de la grande quantité d'informations disponibles aujourd'hui, ces méthodes devraient permettre prochainement la prédiction fine de l'interaction d'un inhibiteur donné avec chaque protéine kinase humaine et donc, à terme, la construction d'outils de profilage de leurs inhibiteurs spécifiques. Cette approche intégrative devrait aider la découverte de solutions thérapeutiques anti-cancéreuses plus efficaces et plus sûres.


Assuntos
Biologia Computacional/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores de Proteínas Quinases/isolamento & purificação , Inibidores de Proteínas Quinases/farmacologia , Simulação por Computador , Ensaios de Triagem em Larga Escala/métodos , Humanos , Proteínas Quinases/isolamento & purificação , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteoma/análise , Proteoma/efeitos dos fármacos , Proteoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA