Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Invest New Drugs ; 33(2): 271-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25476893

RESUMO

Introduction Oleandrin, a cardiac glycoside, exerts strong anti-proliferative activity against various human malignancies in in vitro cells. Here, we report the antitumor efficacy of PBI-05204, a supercritical C02 extract of Nerium oleander containing oleandrin, in a human pancreatic cancer Panc-1 orthotopic model. Results While all the control mice exhibited tumors by the end of treatment, only 2 of 8 mice (25%) treated for 6 weeks with PBI-05204 (40 mg/kg) showed dissectible tumor at the end of the treatment period. The average tumor weight (222.9 ± 116.9 mg) in mice treated with PBI-05204 (20 mg/kg) was significantly reduced from that in controls (920.0 ± 430.0 mg) (p < 0.05). Histopathologic examination of serial sections from each pancreas with no dissectible tumor in the PBI-05204 (40 mg/kg) treated group showed that the pancreatic tissues of 5/6 mice were normal while the remaining mouse had a tumor the largest diameter of which was less than 2.3 mm. In contrast, while gemcitabine alone did not significantly reduce tumor growth, PBI-05204 markedly enhanced the antitumor efficacy of gemcitabine in this particular model. Ki-67 staining was reduced in pancreatic tumors from mice treated with PBI-05204 (20 mg/kg) compared to that of control, suggesting that PBI-05204 inhibited the proliferation of the Panc-1 tumor cells. PBI-05204 suppressed expression of pAkt, pS6, and p4EPB1 in a concentration-dependent manner in both Panc-1 tumor tissues and human pancreatic cancer cell lines, implying that this novel botanical drug exerts its potent antitumor activity, at least in part, through down-regulation of PI3k/Akt and mTOR pathways.


Assuntos
Glicosídeos Cardíacos/farmacologia , Classe Ib de Fosfatidilinositol 3-Quinase/biossíntese , Nerium , Neoplasias Pancreáticas/tratamento farmacológico , Extratos Vegetais/farmacologia , Serina-Treonina Quinases TOR/biossíntese , Animais , Ciclo Celular , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Regulação para Baixo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Proto-Oncogênicas c-akt/biossíntese , Gencitabina
2.
Mol Carcinog ; 53(7): 566-77, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23371504

RESUMO

The beneficial effects of omega-3 fatty acids are believed to be due in part to selective alteration of arachidonate metabolism that involves cyclooxygenase (COX) enzymes. Here we investigated the effect of eicosapentaenoic acid (EPA) on the proliferation of human non-small cell lung cancer A549 (COX-2 over-expressing) and H1299 (COX-2 null) cells as well as their xenograft models. While EPA inhibited 50% of proliferation of A549 cells at 6.05 µM, almost 80 µM of EPA was needed to reach similar levels of inhibition of H1299 cells. The formation of prostaglandin (PG)E3 in A549 cells was almost threefold higher than that of H1299 cells when these cells were treated with EPA (25 µM). Intriguingly, when COX-2 expression was reduced by siRNA or shRNA in A549 cells, the antiproliferative activity of EPA was reduced substantially compared to that of control siRNA or shRNA transfected A549 cells. In line with this, dietary menhaden oil significantly inhibited the growth of A549 tumors by reducing tumor weight by 58.8 ± 7.4%. In contrast, a similar diet did not suppress the development of H1299 xenograft. Interestingly, the ratio of PGE3 to PGE2 in A549 was about 0.16 versus only 0.06 in H1299 xenograft tissues. Furthermore, PGE2 up-regulated expression of pAkt, whereas PGE3 downregulated expression of pAkt in A549 cells. Taken together, the results of our study suggest that the ability of EPA to generate PGE3 through the COX-2 enzyme might be critical for EPA-mediated tumor growth inhibition which is at least partly due to down-regulation of Akt phosphorylation by PGE3.


Assuntos
Alprostadil/análogos & derivados , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Dinoprostona/metabolismo , Ácido Eicosapentaenoico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Alprostadil/metabolismo , Animais , Ácido Araquidônico/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclo-Oxigenase 2/biossíntese , Ciclo-Oxigenase 2/genética , Dieta , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/genética , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Front Pharmacol ; 12: 659590, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349642

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer related death in western countries. The successful treatment of PDAC remains limited. We investigated the effect of Fraction B, which is a fraction purified from catfish (Arius bilineatus, Val.) skin secretions containing proteins and lipids, on PDAC biology both in-vivo and in-vitro. We report here that Fraction B potently suppressed the proliferation of both human and mouse pancreatic cancer cells in vitro and significantly reduced the growth of their relevant xenograft (Panc02) and orthotopic tumors (human Panc-1 cells) (p < 0.05). The Reverse Phase Protein Array (RPPA) data obtained from the tumor tissues derived from orthotopic tumor bearing mice treated with Fraction B showed that Fraction B altered the cancer stem cells related pathways and regulated glucose and glutamine metabolism. The down-regulation of the cancer stem cell marker CD44 expression was further confirmed in Panc-1 cells. CBC and blood chemistry analyses showed no systemic toxicity in Fraction B treated Panc-1 tumor bearing mice compared to that of control group. Our data support that Fraction B is a potential candidate for PDAC treatment.

4.
Integr Cancer Ther ; 19: 1534735420940398, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32975128

RESUMO

Studies have demonstrated that purported biofield therapy emitted from humans can inhibit the proliferation of cancer cells and suppress tumor growth in various cancers. We explored the effects of biofield therapy on tumor growth in the Lewis lung carcinoma and expanded mechanistic outcomes. We found biofield therapy did not inhibit tumor growth. However, the experimental (Ex) condition exposed tumors had a significantly higher percentage of necrosis (24.4 ± 6.8%) compared with that of the Control condition (6.5 ± 2.7%; P < .02) and cleaved caspase-3 positive cells were almost 2.3-fold higher (P < .05). Similarly, tumor-infiltrating lymphocytes profiling showed that CD8+/CD45+ immune cell population was significantly increased by 2.7-fold in Ex condition (P < .01) whereas the number of intratumoral FoxP3+/CD4+ (T-reg cells) was 30.4% lower than that of the Control group (P = .01), leading to a significant 3.1-fold increase in the ratio of CD8+/T-reg cells (P < .01). Additionally, there was a 51% lower level of strongly stained CD68+ cells (P < .01), 57.9% lower level of F4/80high/CD206+ (M2 macrophages; P < .02) and a significant 1.8-fold increase of the ratio of M1/M2 macrophages (P < .02). Furthermore, Ex exposure resulted in a 15% reduction of stem cell marker CD44 and a significant 33% reduction of SOX2 compared with that of the Controls (P < .02). The Ex group also engaged in almost 50% less movement throughout the session than the Controls. These findings suggest that exposure to purported biofields from a human is capable of enhancing cancer cell death, in part mediated through modification of the tumor microenvironment and stemness of tumor cells in mouse Lewis lung carcinoma model. Future research should focus on defining the optimal treatment duration, replication with different biofield therapists, and exploring the mechanisms of action.


Assuntos
Carcinoma , Neoplasias Pulmonares , Animais , Humanos , Pulmão , Neoplasias Pulmonares/terapia , Linfócitos do Interstício Tumoral , Camundongos , Microambiente Tumoral
5.
Integr Cancer Ther ; 18: 1534735419840797, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30947564

RESUMO

Biofield therapies have gained popularity and are being explored as possible treatments for cancer. In some cases, devices have been developed that mimic the electromagnetic fields that are emitted from people delivering biofield therapies. However, there is limited research examining if humans could potentially inhibit the proliferation of cancer cells and suppress tumor growth through modification of inflammation and the immune system. We found that human NSCLC A549 lung cancer cells exposed to Sean L. Harribance, a purported healer, showed reduced viability and downregulation of pAkt. We further observed that the experimental exposure slowed growth of mouse Lewis lung carcinoma evidenced by significantly smaller tumor volume in the experimental mice (274.3 ± 188.9 mm3) than that of control mice (740.5 ± 460.2 mm3; P < .05). Exposure to the experimental condition markedly reduced tumoral expression of pS6, a cytosolic marker of cell proliferation, by 45% compared with that of the control group. Results of reversed phase proteomic array suggested that the experimental exposure downregulated the PD-L1 expression in the tumor tissues. Similarly, the serum levels of cytokines, especially MCP-1, were significantly reduced in the experimental group ( P < .05). Furthermore, TILs profiling showed that CD8+/CD4- immune cell population was increased by almost 2-fold in the experimental condition whereas the number of intratumoral CD25+/CD4+ (T-reg cells) and CD68+ macrophages were 84% and 33%, respectively, lower than that of the control group. Together, these findings suggest that exposure to purported biofields from a human is capable of suppressing tumor growth, which might be in part mediated through modification of the tumor microenvironment, immune function, and anti-inflammatory activity in our mouse lung tumor model.


Assuntos
Carcinoma/patologia , Proliferação de Células/fisiologia , Neoplasias Pulmonares/patologia , Células A549 , Animais , Biomarcadores Tumorais/metabolismo , Carcinoma/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Citocinas/metabolismo , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Microambiente Tumoral/fisiologia
6.
Sci Rep ; 9(1): 6428, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015523

RESUMO

Mistletoe (Viscum album) is a type of parasitic plant reported to have anticancer activity including in hepatocellular carcinoma (HCC). However, the mechanism of mistletoe's anticancer activity, and its effectiveness in treating HCC are not fully understood. We report here that mistletoe extracts, including Fraxini (grown on ash trees) and Iscador Q and M (grown on oak and maple trees), exert strong antiproliferative activity in Hep3B cells, with median inhibitory concentrations (IC50) of 0.5 µg/mL, 7.49 µg/mL, and 7.51 µg/mL, respectively. Results of Reversed Phase Proteomic Array analysis (RPPA) suggests that Fraxini substantially down-regulates c-Myc expression in Hep3B cells. Fraxini-induced growth inhibition (at a concentration of 1.25 µg/ml) was less pronounced in c-Myc knockdown Hep3B cells than in control cells. Furthermore, in the Hep3B xenograft model, Fraxini-treated (8 mg/kg body weight) mice had significantly smaller tumors (34.6 ± 11.9 mm3) than control mice (161.6 ± 79.4 mm3, p < 0.036). Similarly, c-Myc protein expression was reduced in Fraxini treated Hep3B cell xenografts compared to that of control mice. The reduction of c-Myc protein levels in vitro Hep3B cells appears to be mediated by the ubiquitin-proteasome system. Our results suggest the importance of c-Myc in Fraxini's antiproliferative activity, which warrants further investigation.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/tratamento farmacológico , Lectinas de Plantas/farmacologia , Proteínas Proto-Oncogênicas c-myc/genética , Viscum album/química , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , Extratos Vegetais/química , Lectinas de Plantas/isolamento & purificação , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Ubiquitina/genética , Ubiquitina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Cancer Res ; 76(1): 24-9, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26729790

RESUMO

Epidemiologic studies have shown that dietary sugar intake has a significant impact on the development of breast cancer. One proposed mechanism for how sugar impacts cancer development involves inflammation. In the current study, we investigated the impact of dietary sugar on mammary gland tumor development in multiple mouse models, along with mechanisms that may be involved. We found that sucrose intake in mice comparable with levels of Western diets led to increased tumor growth and metastasis, when compared with a nonsugar starch diet. This effect was ascribed in part to increased expression of 12-lipoxygenase (12-LOX) and its arachidonate metabolite 12-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12-HETE). We determined that fructose derived from the sucrose was responsible for facilitating lung metastasis and 12-HETE production in breast tumors. Overall, our data suggested that dietary sugar induces 12-LOX signaling to increase risks of breast cancer development and metastasis.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinogênese/metabolismo , Sacarose Alimentar/toxicidade , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Animais , Neoplasias da Mama/enzimologia , Linhagem Celular Tumoral , Dieta , Feminino , Xenoenxertos , Humanos , Glândulas Mamárias Animais/enzimologia , Neoplasias Mamárias Experimentais/enzimologia , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Distribuição Aleatória , Fatores de Risco , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA