Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Blood ; 139(19): 2983-2997, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35226736

RESUMO

Despite advances in the field, chronic graft-versus-host-disease (cGVHD) remains a leading cause of morbidity and mortality following allogenic hematopoietic stem cell transplant. Because treatment options remain limited, we tested efficacy of anticancer, chromatin-modifying enzyme inhibitors in a clinically relevant murine model of cGVHD with bronchiolitis obliterans (BO). We observed that the novel enhancer of zeste homolog 2 (EZH2) inhibitor JQ5 and the BET-bromodomain inhibitor JQ1 each improved pulmonary function; impaired the germinal center (GC) reaction, a prerequisite in cGVHD/BO pathogenesis; and JQ5 reduced EZH2-mediated H3K27me3 in donor T cells. Using conditional EZH2 knockout donor cells, we demonstrated that EZH2 is obligatory for the initiation of cGVHD/BO. In a sclerodermatous cGVHD model, JQ5 reduced the severity of cutaneous lesions. To determine how the 2 drugs could lead to the same physiological improvements while targeting unique epigenetic processes, we analyzed the transcriptomes of splenic GCB cells (GCBs) from transplanted mice treated with either drug. Multiple inflammatory and signaling pathways enriched in cGVHD/BO GCBs were reduced by each drug. GCBs from JQ5- but not JQ1-treated mice were enriched for proproliferative pathways also seen in GCBs from bone marrow-only transplanted mice, likely reflecting their underlying biology in the unperturbed state. In conjunction with in vivo data, these insights led us to conclude that epigenetic targeting of the GC is a viable clinical approach for the treatment of cGVHD, and that the EZH2 inhibitor JQ5 and the BET-bromodomain inhibitor JQ1 demonstrated clinical potential for EZH2i and BETi in patients with cGVHD/BO.


Assuntos
Bronquiolite Obliterante , Proteína Potenciadora do Homólogo 2 de Zeste , Centro Germinativo , Doença Enxerto-Hospedeiro , Proteínas , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Linfócitos B/patologia , Bronquiolite Obliterante/genética , Bronquiolite Obliterante/metabolismo , Bronquiolite Obliterante/patologia , Doença Crônica , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Inibidores Enzimáticos/farmacologia , Centro Germinativo/efeitos dos fármacos , Centro Germinativo/patologia , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/patologia , Humanos , Camundongos , Proteínas/metabolismo , Transcriptoma
2.
Trends Immunol ; 41(1): 77-91, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31791718

RESUMO

Despite graft-versus-host disease (GVHD) prophylactic agents, the success and wider utilization of allogeneic hematopoietic stem cell transplantation (allo-HSCT) is limited by GVHD. Increasing donor graft regulatory T cell (Treg):effector T cell (Teff) ratios can substantially reduce GVHD in cancer patients, but pre-HSCT conditioning regimens and GVHD create a challenging inflammatory environment for Treg stability, persistence, and function. Metabolism plays a crucial role in T cell and Treg differentiation, and development of effector function. Although glycolysis is a main driver of allogeneic T cell-driven GVHD, oxidative phosphorylation is a main driver of Treg suppressor function. This review focuses on recent advances in our understanding of Treg metabolism in the context of GVHD, and discusses potential therapeutic applications of Tregs in the prevention or treatment of GVHD in cancer patients.


Assuntos
Doença Enxerto-Hospedeiro , Linfócitos T Reguladores , Diferenciação Celular , Doença Enxerto-Hospedeiro/imunologia , Hematopoese , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Linfócitos T Reguladores/imunologia
3.
J Nucl Med ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266296

RESUMO

Our objective is to explore quantitative imaging markers for early prediction of treatment response in patients with gastroenteropancreatic neuroendocrine tumors (GEP-NETs) undergoing [177Lu]Lu-DOTATATE therapy. By doing so, we aim to enable timely switching to more effective therapies in order to prevent time-resource waste and minimize toxicities. Methods: Patients diagnosed with unresectable or metastatic, progressive, well-differentiated, receptor-positive GEP-NETs who received 4 sessions of [177Lu]Lu-DOTATATE were retrospectively selected. Using SPECT/CT images taken at the end of treatment sessions, we counted all visible tumors and measured their largest diameters to calculate the tumor burden score (TBS). Up to 4 target lesions were selected and semiautomatically segmented. Target lesion peak counts and spleen peak counts were measured, and normalized peak counts were calculated. Changes in TBS (ΔTBS) and changes in normalized peak count (ΔnPC) throughout treatment sessions in relation to the first treatment session were calculated. Treatment responses were evaluated using third-month CT and were binarized as progressive disease (PD) or non-PD. Results: Twenty-seven patients were included (7 PD, 20 non-PD). Significant differences were observed in ΔTBSsecond-first, ΔTBSthird-first, and ΔTBSfourth-first (where second-first, third-first, and fourth-first denote scan number between the second and first, third and first, and fourth and first [177Lu]Lu-DOTATATE treatment cycles), respectively) between the PD and non-PD groups (median, 0.043 vs. -0.049, 0.08 vs. -0.116, and 0.109 vs. -0.123 [P = 0.023, P = 0.002, and P < 0.001], respectively). ΔnPCsecond-first showed significant group differences (mean, -0.107 vs. -0.282; P = 0.033); ΔnPCthird-first and ΔnPCfourth-first did not reach statistical significance (mean, -0.122 vs. -0.312 and -0.183 vs. -0.405 [P = 0.117 and 0.067], respectively). At the optimal threshold, ΔTBSfourth-first exhibited an area under the curve (AUC) of 0.957, achieving 100% sensitivity and 80% specificity. ΔTBSsecond-first and ΔTBSthird-first reached AUCs of 0.793 and 0.893, sensitivities of 71.4%, and specificities of 85% and 95%, respectively. ΔnPCsecond-first, ΔnPCthird-first, and ΔnPCfourth-first showed AUCs of 0.764, 0.693, and 0.679; sensitivities of 71.4%, 71.4%, and 100%; and specificities of 75%, 70%, and 35%, respectively. Conclusion: ΔTBS and ΔnPC can predict [177Lu]Lu-DOTATATE response by the second treatment session.

4.
Front Immunol ; 13: 765319, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359939

RESUMO

Most allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients receive peripheral blood stem cell grafts resulting in a 30%-70% incidence of chronic graft-versus-host disease (cGVHD), a major cause of mortality and morbidity in long-term survivors. While systemic steroids remain the standard of care for first-line therapy, patients may require long-term administration, and those with steroid-resistant or refractory cGVHD have a worse prognosis. Although durable and deep responses with second-line therapies can be achieved in some patients, there remains an urgent need for new therapies. In this study, we evaluated the efficacy of IRX4204, a novel agonist that activates RXRs and is in clinical trials for cancer treatment to prevent and treat cGVHD in two complementary murine models. In a major histocompatibility complex mismatched, non-sclerodermatous multiorgan system model with bronchiolitis obliterans, IRX4204 prevented and reversed cGVHD including associated pulmonary dysfunction with restoration of germinal center T-follicular helper: T-follicular regulatory cell balance. In a minor histocompatibility antigen disparate sclerodermatous model, IRX4204 treatment significantly prevented and ameliorated skin cGVHD by reducing Th1 and Th17 differentiation due to anti-inflammatory properties. Together, these results indicate that IRX4204 is a promising therapeutic option to treat cGVHD with bronchiolitis obliterans or sclerodermatous manifestations.


Assuntos
Bronquiolite Obliterante , Doença Enxerto-Hospedeiro , Animais , Centro Germinativo , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/prevenção & controle , Humanos , Camundongos , Receptores X de Retinoides , Células Th17/metabolismo
5.
Front Immunol ; 12: 757836, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712243

RESUMO

The therapeutic efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT) is limited by the development of graft-versus-host disease (GVHD). In GVHD, rigorous pre-conditioning regimen resets the immune landscape and inflammatory milieu causing immune dysregulation, characterized by an expansion of alloreactive cells and a reduction in immune regulatory cells. In acute GVHD (aGVHD), the release of damage- and pathogen- associated molecular patterns from damaged tissue caused by the conditioning regimen sets the stage for T cell priming, activation and expansion further exacerbating tissue injury and organ damage, particularly in the gastrointestinal tract. Studies have shown that donor T cells utilize multiple energetic and biosynthetic pathways to mediate GVHD that can be distinct from the pathways used by regulatory T cells for their suppressive function. In chronic GVHD (cGVHD), donor T cells may differentiate into IL-21 producing T follicular helper cells or tissue resident T helper cells that cooperate with germinal center B cells or memory B cells, respectively, to produce allo- and auto-reactive antibodies with subsequent tissue fibrosis. Alternatively, donor T cells can become IFN- γ/IL-17 cytokine expressing T cells that mediate sclerodermatous skin injury. Patients refractory to the first line standard regimens for GVHD treatment have a poor prognosis indicating an urgent need for new therapies to restore the balance between effector and regulatory immune cells while preserving the beneficial graft-versus-tumor effect. Emerging data points toward a role for metabolism in regulating these allo- and auto-immune responses. Here, we will discuss the preclinical and clinical data available on the distinct metabolic demands of acute and chronic GVHD and recent efforts in identifying therapeutic targets using metabolomics. Another dimension of this review will examine the changing microbiome after allo-HSCT and the role of microbial metabolites such as short chain fatty acids and long chain fatty acids on regulating immune responses. Lastly, we will examine the metabolic implications of coinhibitory pathway blockade and cellular therapies in allo-HSCT. In conclusion, greater understanding of metabolic pathways involved in immune cell dysregulation during allo-HSCT may pave the way to provide novel therapies to prevent and treat GVHD.


Assuntos
Doença Enxerto-Hospedeiro/terapia , Metabolômica/tendências , Doença Aguda , Aminoácidos/metabolismo , Doença Crônica , Disbiose/complicações , Disbiose/imunologia , Metabolismo Energético , Ácidos Graxos/fisiologia , Microbioma Gastrointestinal/imunologia , Glutamina/metabolismo , Glicólise , Doença Enxerto-Hospedeiro/metabolismo , Efeito Enxerto vs Tumor , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Proteínas de Checkpoint Imunológico/fisiologia , Imunomodulação , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Metabolômica/métodos , Espécies Reativas de Oxigênio , Subpopulações de Linfócitos T/imunologia , Condicionamento Pré-Transplante/efeitos adversos , Transplante Homólogo/efeitos adversos , Vitaminas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA