Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Proteins ; 92(8): 959-974, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38602129

RESUMO

Peptides are promising therapeutic agents for various biological targets due to their high efficacy and low toxicity, and the design of peptide ligands with high binding affinity to the target of interest is of utmost importance in peptide-based drug design. Introducing a conformational constraint to a flexible peptide ligand using a side-chain lactam-bridge is a convenient and efficient method to improve its binding affinity to the target. However, in general, such a small structural modification to a flexible ligand made with the intent of lowering the configurational entropic penalty for binding may have unintended consequences in different components of the binding enthalpy and entropy, including the configurational entropy component, which are still not clearly understood. Toward probing this, we examine different components of the binding enthalpy and entropy as well as the underlying structure and dynamics, for a side-chain lactam-bridged peptide inhibitor and its flexible analog forming complexes with vascular endothelial growth factor (VEGF), using all-atom molecular dynamics simulations. It is found that introducing a side-chain lactam-bridge constraint into the flexible peptide analog led to a gain in configurational entropy change but losses in solvation entropy, solute internal energy, and solvation energy changes upon binding, pinpointing the opportunities and challenges in drug design. The present study features an interplay between configurational and solvation entropy changes, as well as the one between binding enthalpy and entropy, in ligand-target binding upon imposing a conformational constraint into a flexible ligand.


Assuntos
Inibidores da Angiogênese , Entropia , Lactamas , Simulação de Dinâmica Molecular , Ligação Proteica , Termodinâmica , Fator A de Crescimento do Endotélio Vascular , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/metabolismo , Lactamas/química , Lactamas/metabolismo , Ligantes , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Humanos , Peptídeos/química , Peptídeos/metabolismo , Sítios de Ligação
2.
Small ; : e2401480, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949050

RESUMO

Azobenzene, while relevant, has faced constraints in biological system applications due to its suboptimal quantum yield and short-wavelength emission. This study presents a pioneering strategy for fabricating organic microdots by coupling foldamer-linked azobenzene, resulting in robust fluorescence intensity and stability, especially in aggregated states, thereby showing promise for bioimaging applications. Comprehensive experimental and computational examinations elucidate the mechanisms underpinning enhanced photostability and fluorescence efficacy. In vitro and in vivo evaluations disclose that the external layer of cis-azo-foldamer microdots performs a self-sacrificial function during photo-bleaching. Consequently, these red-fluorescent microdots demonstrate extraordinary structural and photochemical stabilities over extended periods. The conjugation of a ß-peptide foldamer to the azobenzene chromophore through a glycine linker instigates a blue-shifted and amplified π*-n transition. Molecular dynamics simulations reveal that the aggregated state of cis-azo-foldamers fortifies the stability of cis isomers, thereby augmenting fluorescence efficiency. This investigation furnishes crucial insights into conceptualizing novel, biologically inspired materials, promising stable and enduring imaging applications, and carries implications for diverse arenas such as medical diagnostics, drug delivery, and sensing technologies.

3.
Phys Chem Chem Phys ; 26(11): 9021-9036, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38440829

RESUMO

Interpolation of potential energy surfaces (PESs) can provide a practical route to performing molecular dynamics simulations with a reliability matching a high-level quantum chemical calculation. An obstacle to its widespread use is perhaps the lack of general and optimal interpolation settings that can be applied in a black-box manner for any given molecular system. How to set up the weights for interpolation is one such task, and we still need to diversify the approaches in order to treat various systems. Here, we develop a new interpolation weighting scheme, which allows us to choose the weighting coordinates in a system-specific manner, by amplifying the contribution from specific internal coordinates. The new weighting scheme with an appropriate selection of coordinates is proved to be effective in reducing the interpolation error along the reaction pathway. As a demonstration, we consider the photoactive yellow protein chromophore system, as it constitutes itself as an interesting target that bears long-standing questions related to excited-state dynamics inside protein environments. We build its two-state diabatic interpolated PES with the new weighting scheme. We indeed see the utility of our scheme by conducting nonadiabatic molecular dynamics simulations with the required semi-global PES based on a limited number of data points.

4.
Phys Chem Chem Phys ; 26(10): 8390-8396, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38406868

RESUMO

The realization of quantum advantage with noisy-intermediate-scale quantum (NISQ) machines has become one of the major challenges in computational sciences. Maintaining coherence of a physical system with more than ten qubits is a critical challenge that motivates research on compact system representations to reduce algorithm complexity. Toward this end, the variational quantum eigensolver (VQE) used to perform quantum simulations is considered to be one of the most promising algorithms for quantum chemistry in the NISQ era. We investigate reduced mapping of one spatial orbital to a single qubit to analyze the ground state energy in a way that the Pauli operators of qubits are mapped to the creation/annihilation of singlet pairs of electrons. To include the effect of non-bosonic (or non-paired) excitations, we introduce a simple correction scheme in the electron correlation model approximated by the geometrical mean of the bosonic (or paired) terms. Employing it in a VQE algorithm, we assess ground state energies of H2O, N2, and Li2O in good agreement with full configuration interaction (FCI) models respectively, using only 6, 8, and 12 qubits with quantum gate depths proportional to the squares of the qubit counts. With the adopted seniority-zero approximation that uses only one half of the qubit counts of a conventional VQE algorithm, we find that our non-bosonic correction method reaches reliable quantum chemistry simulations at least for the tested systems.

5.
J Chem Phys ; 160(18)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38716847

RESUMO

Environmental effects in excitation energy transfer have mostly been modeled by baths of harmonic oscillators, but to what extent such modeling provides a reliable description of actual interactions between molecular systems and environments remains an open issue. We address this issue by investigating fluctuations in the excitation energies of the light harvesting 2 complex using a realistic all-atomistic simulation of the potential energy surface. Our analyses reveal that molecular motions exhibit significant anharmonic features, even for underdamped intramolecular vibrations. In particular, we find that the anharmonicity contributes to the broadening of spectral densities and substantial overlaps between neighboring peaks, which complicates the meaning of mode frequencies constituting a bath model. Thus, we develop a strategy to construct a minimally underdamped harmonic bath that has a clear connection to all-atomistic dynamics by utilizing actual normal modes of molecules but optimizing their frequencies such that the resulting bath model can best reproduce the all-atomistic simulation results. By subtracting the underdamped contribution from the entire fluctuations, we also show that identifying a residual spectral density representing all other contributions with overdamped behavior is possible. We find that this can be fitted well with a well-established analytic form of a spectral density function or, alternatively, modeled as explicit time dependent fluctuations with muti-exponential or power law type correlation functions. We provide an assessment and the implications of these possibilities. The approach presented here can also serve as a general strategy to construct a simplified bath model that can effectively represent the underlying all-atomistic bath dynamics.

6.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612876

RESUMO

Vascular endothelial growth factor 165 (VEGF165) is a prominent isoform of the VEGF-A protein that plays a crucial role in various angiogenesis-related diseases. It is homodimeric, and each of its monomers is composed of two domains connected by a flexible linker. DNA aptamers, which have emerged as potent therapeutic molecules for many proteins with high specificity and affinity, can also work for VEGF165. A DNA aptamer heterodimer composed of monomers of V7t1 and del5-1 connected by a flexible linker (V7t1:del5-1) exhibits a greater binding affinity with VEGF165 compared to either of the two monomers alone. Although the structure of the complex formed between the aptamer heterodimer and VEGF165 is unknown due to the highly flexible linkers, gaining structural information will still be valuable for future developments. Toward this end of accessing structural information, we adopt an ensemble docking approach here. We first obtain an ensemble of structures for both VEGF165 and the aptamer heterodimer by considering both small- and large-scale motions. We then proceed through an extraction process based on ensemble docking, molecular dynamics simulations, and binding free energy calculations to predict the structures of the VEGF165/V7t1:del5-1 complex. Through the same procedures, we reach a new aptamer heterodimer that bears a locked nucleic acid-modified counterpart of V7t1, namely RNV66:del5-1, which also binds well with VEGF165. We apply the same protocol to the monomeric units V7t1, RNV66, and del5-1 to target VEGF165. We observe that V7t1:del5-1 and RNV66:del5-1 show higher binding affinities with VEGF165 than any of the monomers, consistent with experiments that support the notion that aptamer heterodimers are more effective anti-VEGF165 aptamers than monomeric aptamers. Among the five different aptamers studied here, the newly designed RNV66:del5-1 shows the highest binding affinity with VEGF165. We expect that our ensemble docking approach can help in de novo designs of homo/heterodimeric anti-angiogenic drugs to target the homodimeric VEGF165.


Assuntos
Aptâmeros de Nucleotídeos , Fator A de Crescimento do Endotélio Vascular , Inibidores da Angiogênese , Simulação de Dinâmica Molecular , Movimento (Física)
7.
J Am Chem Soc ; 145(47): 25824-25833, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37972034

RESUMO

The nature of the electron-binding forces in the dipole-bound states (DBS) of anions is interrogated through experimental and theoretical means by investigating the autodetachment dynamics from DBS Feshbach resonances of ortho-, meta-, and para-bromophenoxide (BrPhO-). Though the charge-dipole electrostatic potential has been widely regarded to be mainly responsible for the electron binding in DBS, the effect of nonclassical electron correlation has been conceived to be quite significant in terms of its static and/or dynamic contributions toward the binding of the excess electron to the neutral core. State-specific real-time autodetachment dynamics observed by picosecond time-resolved photoelectron velocity-map imaging spectroscopy reveal that the autodetachment processes from the DBS Feshbach resonances of BrPhO- anions cannot indeed be rationalized by the conventional charge-dipole potential. Specifically, the autodetachment lifetime is drastically lengthened depending on differently positioned Br-substitution, and this rate change cannot be explained within the framework of Fermi's golden rule based on the charge-dipole assumption. High-level ab initio quantum chemical calculations with EOM-EA-CCSD, which intrinsically takes into account electron correlations, generate more reasonable predictions on the binding energies than density functional theory (DFT) calculations, and semiclassical quantum dynamics simulations based on the EOM-EA-CCSD data excellently predict the trend in the autodetachment rates. These findings illustrate that static and dynamic properties of the excess electron in the DBS are strongly influenced by correlation interactions among electrons in the nonvalence orbital of the dipole-bound electron and highly polarizable valence orbitals of the bromine atom, which, in turn, dictate the interesting chemical fate of exotic anion species.

8.
J Comput Chem ; 44(11): 1129-1137, 2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-36625560

RESUMO

Macugen is a therapeutic RNA aptamer against vascular endothelial growth factor (VEGF)-165, the VEGF isoform primarily responsible for angiogenesis. It has been reported that Macugen inhibits angiogenesis by specifically binding to the heparin binding domain (HBD) of VEGF165. The mechanism of the molecular recognition between HBD and Macugen is investigated here using all-atom molecular dynamics simulations. We find that Macugen recognizes HBD by an induced-fit mechanism with major conformational changes in Macugen and almost no changes in the structure of HBD, whereas HBD recognizes Macugen by a conformational selection mechanism.


Assuntos
Aptâmeros de Nucleotídeos , Fator A de Crescimento do Endotélio Vascular , Fator A de Crescimento do Endotélio Vascular/química , Estrutura Terciária de Proteína , Aptâmeros de Nucleotídeos/química , Modelos Moleculares , Conformação de Ácido Nucleico , Biologia Computacional , Ligação Proteica
9.
J Chem Phys ; 159(1)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37403843

RESUMO

Fermi's golden rule (FGR) serves as the basis for many expressions of spectroscopic observables and quantum transition rates. The utility of FGR has been demonstrated through decades of experimental confirmation. However, there still remain important cases where the evaluation of a FGR rate is ambiguous or ill-defined. Examples are cases where the rate has divergent terms due to the sparsity in the density of final states or time dependent fluctuations of system Hamiltonians. Strictly speaking, assumptions of FGR are no longer valid for such cases. However, it is still possible to define modified FGR rate expressions that are useful as effective rates. The resulting modified FGR rate expressions resolve a long standing ambiguity often encountered in using FGR and offer more reliable ways to model general rate processes. Simple model calculations illustrate the utility and implications of new rate expressions.

10.
Proc Natl Acad Sci U S A ; 117(26): 14996-15005, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32541047

RESUMO

One of the most challenging tasks in biological science is to understand how a protein folds. In theoretical studies, the hypothesis adopting a funnel-like free-energy landscape has been recognized as a prominent scheme for explaining protein folding in views of both internal energy and conformational heterogeneity of a protein. Despite numerous experimental efforts, however, comprehensively studying protein folding with respect to its global conformational changes in conjunction with the heterogeneity has been elusive. Here we investigate the redox-coupled folding dynamics of equine heart cytochrome c (cyt-c) induced by external electron injection by using time-resolved X-ray solution scattering. A systematic kinetic analysis unveils a kinetic model for its folding with a stretched exponential behavior during the transition toward the folded state. With the aid of the ensemble optimization method combined with molecular dynamics simulations, we found that during the folding the heterogeneously populated ensemble of the unfolded state is converted to a narrowly populated ensemble of folded conformations. These observations obtained from the kinetic and the structural analyses of X-ray scattering data reveal that the folding dynamics of cyt-c accompanies many parallel pathways associated with the heterogeneously populated ensemble of unfolded conformations, resulting in the stretched exponential kinetics at room temperature. This finding provides direct evidence with a view to microscopic protein conformations that the cyt-c folding initiates from a highly heterogeneous unfolded state, passes through still diverse intermediate structures, and reaches structural homogeneity by arriving at the folded state.


Assuntos
Citocromos c/química , Animais , Cavalos , Cinética , Simulação de Dinâmica Molecular , Oxirredução , Dobramento de Proteína
11.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37569740

RESUMO

Triplet harvesting processes are essential for enhancing efficiencies of fluorescent organic light-emitting diodes. Besides more conventional thermally activated delayed fluorescence and triplet-triplet annihilation, the hot exciton mechanism has been recently noticed because it helps reduce the efficiency roll-off and improve device stability. Hot exciton materials enable the conversion of triplet excitons to singlet ones via reverse inter-system crossing from high-lying triplet states and thereby the depopulation of long-lived triplet excitons that are prone to chemical and/or efficiency degradation. Although their anti-Kasha characteristics have not been clearly explained, numerous molecules with behaviors assigned to the hot exciton mechanism have been reported. Indeed, the related developments appear to have just passed the stage of infancy now, and there will likely be more roles that computational elucidations can play. With this perspective in mind, we review some selected experimental studies on the mechanism and the related designs and then on computational studies. On the computational side, we examine what has been found and what is still missing with regard to properly understanding this interesting mechanism. We further discuss potential future points of computational interests toward aiming for eventually presenting in silico design guides.


Assuntos
Corantes , Fluorescência
12.
Int J Mol Sci ; 23(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35682617

RESUMO

Cohosts based on hole transporting and electron transporting materials often act as exciplexes in the form of intermolecular charge transfer complexes. Indeed, exciplex-forming cohosts have been widely developed as the host materials for efficient phosphorescent organic light-emitting diodes (OLEDs). In host-guest systems of OLEDs, the guest can be excited by two competing mechanisms, namely, excitation energy transfer (EET) and charge transfer (CT). Experimentally, it has been reported that the EET mechanism is dominant and the excitons are primarily formed in the host first and then transferred to the guest in phosphorescent OLEDs based on exciplex-forming cohosts. With this, exciplex-forming cohosts are widely employed for avoiding the formation of trapped charge carriers in the phosphorescent guest. However, theoretical studies are still lacking toward elucidating the relative importance between EET and CT processes in exciting the guest molecules in such systems. Here, we obtain the kinetics of guest excitation processes in a few trimer model systems consisting of an exciplex-forming cohost pair and a phosphorescent guest. We adopt the Förster resonance energy transfer (FRET) rate constants for the electronic transitions between excited states toward solving kinetic master equations. The input parameters for calculating the FRET rate constants are obtained from density functional theory (DFT) and time-dependent DFT. The results show that while the EET mechanism is important, the CT mechanism may still play a significant role in guest excitations. In fact, the relative importance of CT over EET depends strongly on the location of the guest molecule relative to the cohost pair. This is understandable as both the coupling for EET and the interaction energy for CT are strongly influenced by the geometric constraints. Understanding the energy transfer pathways from the exciplex state of cohost to the emissive state of guest may provide insights for improving exciplex-forming materials adopted in OLEDs.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Luz , Teoria da Densidade Funcional , Eletrônica
13.
Phys Chem Chem Phys ; 23(47): 26623-26639, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34842245

RESUMO

Coupling between pigment excitations and nuclear movements in photosynthetic complexes is known to modulate the excitation energy transfer (EET) efficiencies. Toward providing microscopic information, researchers often apply simulation techniques and investigate how vibrations are involved in EET processes. Here, reports on such roles of nuclear movements are discussed from a theory perspective. While vibrations naturally present random thermal fluctuations that can affect energy transferring characteristics, they can also be intertwined with exciton structures and create more specific non-adiabatic energy transfer pathways. For reliable simulations, a bath model that accurately mimics a given molecular system is required. Methods for obtaining such a model in combination with quantum chemical electronic structure calculations and molecular dynamics trajectory simulations are discussed. Various quantum dynamics simulation tools that can handle pigment-to-pigment energy transfers together with their vibrational characters are also touched on. Behaviors of molecular vibrations often deviate from ideality, especially when all-atom details are included, which practically forces us to treat them classically. We conclude this perspective by considering some recent reports that suggest that classical descriptions of bath effects with all-atom details may still produce valuable information for analyzing sophisticated contributions by vibrations to EET processes.


Assuntos
Teoria da Densidade Funcional , Simulação de Dinâmica Molecular , Complexo de Proteínas do Centro de Reação Fotossintética/química , Transferência de Energia , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Vibração
14.
J Chem Phys ; 155(4): 044106, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34340367

RESUMO

Expressions for analytical molecular gradients of core-excited states have been derived and implemented for the hierarchy of algebraic diagrammatic construction (ADC) methods up to extended second-order within the core-valence separation (CVS) approximation. We illustrate the use of CVS-ADC gradients by determining relaxed core-excited state potential energy surfaces and optimized geometries for water, formic acid, and benzene. For water, our results show that in the dissociative lowest core-excited state, a linear configuration is preferred. For formic acid, we find that the O K-edge lowest core-excited state is non-planar, a fact that is not captured by the equivalent core approximation where the core-excited atom with its hole is replaced by the "Z + 1" neighboring atom in the periodic table. For benzene, the core-excited state gradients are presented along the Jahn-Teller distorted geometry of the 1s → π* excited state. Our development may pave a new path to studying the dynamics of molecules in their core-excited states.

15.
J Phys Chem A ; 124(49): 10384-10392, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33245236

RESUMO

Minimizing the energy difference between the lowest singlet (S1) and the lowest triplet states, ΔEST, is the main strategy to design thermally activated delayed fluorescence (TADF) molecules, and spatially separating the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) is the general method in the design. However, such a separation also tends to reduce the oscillator strength of the S1 state. In real systems, vibrations change the S1 oscillator strength, and thus one needs to consider the vibronic coupling toward searching for TADF candidate molecules. Here, we evaluate the importance of vibronic coupling by including the first-order perturbative correction to the transition dipole moments of carbazolyl-phthalonitrile derivatives. Indeed, some molecules display large enhancements in their oscillator strengths, with their fluorescence lifetimes reduced by 2 orders of magnitude. The twisting mode between the carbazole groups and phthalonitrile is the most important mode in inducing the perturbations. Thus, performing the perturbative correction is crucial in attaining more reliable predictions on their fluorescence propensities. We also observe that some other molecules, whose zeroth-order predicted fluorescence rates are much slower than the actual experimental data, are affected little by the same first-order correction. For these molecules, we deduce that the geometry-dependent excited-state switching kicks in. Our results demonstrate the significance of vibronic coupling in TADF molecules and the importance of adopting correction schemes as the guidelines for screening of useful TADF molecules.

16.
J Chem Phys ; 153(21): 214103, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33291890

RESUMO

Mapping basis solutions provide efficient ways for simulating mixed quantum-classical (MQC) dynamics in complex systems by matching multiple quantum states of interest to some fictitious physical states. Recently, various MQC methods were devised such that two harmonic oscillators are employed to represent each electronic state, showing improvements over one-oscillator-based methods. Here, we introduce and analyze newly modified mapping approximations of the quantum-classical Liouville equation (QCLE) using two oscillators for each electronic state. We design two separate mapping relations that we can adopt toward simulating dynamics and computing expectation values. Through the process, two MQC methods can be constructed, one of which actually reproduces the population dynamics of the forward and backward trajectory solution of QCLE. By applying the methods to spin-boson systems with a range of parameters, we find out that the choice of mapping relations greatly affects the simulation results. We also show that further improvement is possible through using modified identity operator formulations. Our findings may be helpful in constructing improved MQC methods in the future.

17.
J Chem Phys ; 152(24): 244109, 2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32610983

RESUMO

In open quantum system dynamics, rich information about the major energy relaxation channels and corresponding relaxation rates can be elucidated by monitoring the vibrational energy flow among individual bath modes. However, such calculations often become tremendously difficult as the complexity of the subsystem-bath coupling increases. In this paper, we attempt to make this task feasible by using a mixed quantum-classical method, the Poisson-bracket mapping equation with non-Hamiltonian modification (PBME-nH) [H. W. Kim and Y. M. Rhee, J. Chem. Phys. 140, 184106 (2014)]. For a quantum subsystem bilinearly coupled to harmonic bath modes, we derive an expression for the mode energy in terms of the classical positions and momenta of the nuclei, while keeping consistency with the energy of the quantum subsystem. The accuracy of the resulting expression is then benchmarked against a numerically exact method by using relatively simple models. Although our expression predicts a qualitatively correct dissipation rate for a range of situations, cases involving a strong vibronic resonance are quite challenging. This is attributed to the inherent lack of quantum back reaction in PBME-nH, which becomes significant when the subsystem strongly interacts with a small number of bath modes. A rigorous treatment of such an effect will be crucial for developing quantitative simulation methods that can handle generic subsystem-bath coupling.

18.
J Chem Inf Model ; 59(6): 2837-2849, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31125227

RESUMO

Although the charge flux effect or the geometric dependence of the atomic partial charges have been known for a long time, how it can be effectively handled is not yet established. Here, we present a charge interpolation scheme as a new general tool for representing the charge flux in an analytically well-defined manner. By applying it to the anionic GFP chromophore with the diabatically represented atomic charges, we show that the charge interpolation provides a substantial improvement on the accuracy of the geometry-dependent changes in the molecular dipole moments in the gas phase. We also test the scheme toward describing the electrostatic term in the solvation energy in the aqueous environment and observe that it is also improved but that the extent of the improvement is somewhat limited. We show that the remaining errors can be largely corrected by introducing atomic polarizabilities. Overall, our results show that charge interpolation is an amenable approach for describing the charge flux effect and that its description in the condensed phase should be accompanied by proper treatments of polarization effects.


Assuntos
Elétrons , Modelos Moleculares , Gases/química , Conformação Molecular , Solventes/química , Eletricidade Estática
19.
J Chem Inf Model ; 59(10): 4228-4238, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31487163

RESUMO

Generating a reliable potential energy surface (PES) is an important issue for studying the dynamics of any system with computational simulations. Interpolation mechanics/molecular mechanics (IM/MM) based on a PES interpolation scheme is a useful tool in that regard as it provides an accuracy of a quantum chemistry (QC) level while maintaining its computational cost comparable to conventional MM force fields. Despite this benefit, constructing the database for interpolation itself is still challenging and time-consuming. Here, we present a method with which we can construct the IM database of one system based on a preexisting data set for another related system. We adopt the case of constructing bacteriochlorophyll PESs for the light-harvesting 2 (LH2) complex by utilizing already available IM database for the BChls from the Fenna-Matthews-Olson (FMO) complex. In this method, the IM database from FMO is first transplanted to LH2 by considering BChl displacement vectors that take into account the geometry differences induced by the protein scaffolds. From this transplanted primitive database entries, a relatively small number of effective ones are selected by a survival process based on a genetic algorithm such that the IM energies evaluated at geometries in a conveniently collected prediction set can closely match with the reference QC energies. The selection process is expedited by using two different levels of basis sets for the QC calculations. To demonstrate the utility of the PES thus constructed, we carry out 1 ns of IM/MM dynamics simulations with the finally optimized BChl database for LH2. Indeed, the energy profiles of the snapshots are found to be closely matching with the reference QC calculation data, with only ∼0.07 eV of errors in the ground- and excited-state energies and ∼0.008 eV of errors in the transition energies. We also show that properly selecting data points is actually quite important for generating an IM PES toward performing molecular dynamics simulations.


Assuntos
Bacterioclorofilas/química , Proteínas de Bactérias/química , Bases de Dados de Compostos Químicos , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Conformação Proteica , Teoria Quântica
20.
J Phys Chem A ; 123(6): 1186-1197, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30620598

RESUMO

We study excitation energy transfer (EET) in a model three-site system with a mixed-quantum classical dynamics method, by focusing on the effect of an underdamped vibration. We construct two types of models where the underdamped vibration mode is included either in the quantum subsystem or in the classical bath. We show that the two models yield practically equivalent results despite the different depictions of the vibration. In particular, both models consistently demonstrate accelerations of population relaxation induced by quasi-resonant vibration. This indicates that intricate features of EET dynamics that have been frequently ascribed to the quantal nature of vibrations, such as vibronic mixing, can be successfully reproduced by using physically equivalent but classically described bath modes. The mechanism behind the observed quantum-classical correspondence is proposed. We also systematically examine how the structure of the spectating continuum phonon modes affects the vibronic resonance and observe that phonon modes with different time scales influence the resonance in different manners.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA