Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 296
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Rev ; 104(3): 1021-1060, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300523

RESUMO

Glucagon's ability to promote hepatic glucose production has been known for over a century, with initial observations touting this hormone as a diabetogenic agent. However, glucagon receptor agonism [when balanced with an incretin, including glucagon-like peptide 1 (GLP-1) to dampen glucose excursions] is now being developed as a promising therapeutic target in the treatment of metabolic diseases, like metabolic dysfunction-associated steatotic disease/metabolic dysfunction-associated steatohepatitis (MASLD/MASH), and may also have benefit for obesity and chronic kidney disease. Conventionally regarded as the opposing tag-team partner of the anabolic mediator insulin, glucagon is gradually emerging as more than just a "catabolic hormone." Glucagon action on glucose homeostasis within the liver has been well characterized. However, growing evidence, in part thanks to new and sensitive "omics" technologies, has implicated glucagon as more than just a "glucose liberator." Elucidation of glucagon's capacity to increase fatty acid oxidation while attenuating endogenous lipid synthesis speaks to the dichotomous nature of the hormone. Furthermore, glucagon action is not limited to just glucose homeostasis and lipid metabolism, as traditionally reported. Glucagon plays key regulatory roles in hepatic amino acid and ketone body metabolism, as well as mitochondrial turnover and function, indicating broader glucagon signaling consequences for metabolic homeostasis mediated by the liver. Here we examine the broadening role of glucagon signaling within the hepatocyte and question the current dogma, to appreciate glucagon as more than just that "catabolic hormone."


Assuntos
Glucagon , Glucose , Fígado , Humanos , Glucagon/metabolismo , Fígado/metabolismo , Animais , Glucose/metabolismo , Metabolismo dos Lipídeos/fisiologia , Homeostase/fisiologia
2.
Circulation ; 147(21): 1606-1621, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37066790

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a rare disease characterized by remodeling of the pulmonary arteries, increased vascular resistance, and right-sided heart failure. Genome-wide association studies of idiopathic/heritable PAH established novel genetic risk variants, including conserved enhancers upstream of transcription factor (TF) SOX17 containing 2 independent signals. SOX17 is an important TF in embryonic development and in the homeostasis of pulmonary artery endothelial cells (hPAEC) in the adult. Rare pathogenic mutations in SOX17 cause heritable PAH. We hypothesized that PAH risk alleles in an enhancer region impair TF-binding upstream of SOX17, which in turn reduces SOX17 expression and contributes to disturbed endothelial cell function and PAH development. METHODS: CRISPR manipulation and siRNA were used to modulate SOX17 expression. Electromobility shift assays were used to confirm in silico-predicted TF differential binding to the SOX17 variants. Functional assays in hPAECs were used to establish the biological consequences of SOX17 loss. In silico analysis with the connectivity map was used to predict compounds that rescue disturbed SOX17 signaling. Mice with deletion of the SOX17-signal 1 enhancer region (SOX17-4593/enhKO) were phenotyped in response to chronic hypoxia and SU5416/hypoxia. RESULTS: CRISPR inhibition of SOX17-signal 2 and deletion of SOX17-signal 1 specifically decreased SOX17 expression. Electromobility shift assays demonstrated differential binding of hPAEC nuclear proteins to the risk and nonrisk alleles from both SOX17 signals. Candidate TFs HOXA5 and ROR-α were identified through in silico analysis and antibody electromobility shift assays. Analysis of the hPAEC transcriptomes revealed alteration of PAH-relevant pathways on SOX17 silencing, including extracellular matrix regulation. SOX17 silencing in hPAECs resulted in increased apoptosis, proliferation, and disturbance of barrier function. With the use of the connectivity map, compounds were identified that reversed the SOX17-dysfunction transcriptomic signatures in hPAECs. SOX17 enhancer knockout in mice reduced lung SOX17 expression, resulting in more severe pulmonary vascular leak and hypoxia or SU5416/hypoxia-induced pulmonary hypertension. CONCLUSIONS: Common PAH risk variants upstream of the SOX17 promoter reduce endothelial SOX17 expression, at least in part, through differential binding of HOXA5 and ROR-α. Reduced SOX17 expression results in disturbed hPAEC function and PAH. Existing drug compounds can reverse the disturbed SOX17 pulmonary endothelial transcriptomic signature.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Camundongos , Animais , Hipertensão Pulmonar/metabolismo , Estudo de Associação Genômica Ampla , Células Endoteliais/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar , Hipóxia/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Fatores de Transcrição/metabolismo , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo
3.
Circulation ; 147(24): 1809-1822, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37096577

RESUMO

BACKGROUND: Activins are novel therapeutic targets in pulmonary arterial hypertension (PAH). We therefore studied whether key members of the activin pathway could be used as PAH biomarkers. METHODS: Serum levels of activin A, activin B, α-subunit of inhibin A and B proteins, and the antagonists follistatin and follistatin-like 3 (FSTL3) were measured in controls and in patients with newly diagnosed idiopathic, heritable, or anorexigen-associated PAH (n=80) at baseline and 3 to 4 months after treatment initiation. The primary outcome was death or lung transplantation. Expression patterns of the inhibin subunits, follistatin, FSTL3, Bambi, Cripto, and the activin receptors type I (ALK), type II (ACTRII), and betaglycan were analyzed in PAH and control lung tissues. RESULTS: Death or lung transplantation occurred in 26 of 80 patients (32.5%) over a median follow-up of 69 (interquartile range, 50-81) months. Both baseline (hazard ratio, 1.001 [95% CI, 1.000-1.001]; P=0.037 and 1.263 [95% CI, 1.049-1.520]; P=0.014, respectively) and follow-up (hazard ratio, 1.003 [95% CI, 1.001-1.005]; P=0.001 and 1.365 [95% CI, 1.185-1.573]; P<0.001, respectively) serum levels of activin A and FSTL3 were associated with transplant-free survival in a model adjusted for age and sex. Thresholds determined by receiver operating characteristic analyses were 393 pg/mL for activin A and 16.6 ng/mL for FSTL3. When adjusted with New York Heart Association functional class, 6-minute walk distance, and N-terminal pro-B-type natriuretic peptide, the hazard ratios for transplant-free survival for baseline activin A <393 pg/mL and FSTL3 <16.6 ng/mL were, respectively, 0.14 (95% CI, 0.03-0.61; P=0.009) and 0.17 (95% CI, 0.06-0.45; P<0.001), and for follow-up measures, 0.23 (95% CI, 0.07-0.78; P=0.019) and 0.27 (95% CI, 0.09-0.78, P=0.015), respectively. Prognostic values of activin A and FSTL3 were confirmed in an independent external validation cohort. Histological analyses showed a nuclear accumulation of the phosphorylated form of Smad2/3, higher immunoreactivities for ACTRIIB, ALK2, ALK4, ALK5, ALK7, Cripto, and FSTL3 in vascular endothelial and smooth muscle layers, and lower immunostaining for inhibin-α and follistatin. CONCLUSIONS: These findings offer new insights into the activin signaling system in PAH and show that activin A and FSTL3 are prognostic biomarkers for PAH.


Assuntos
Folistatina , Hipertensão Arterial Pulmonar , Humanos , Folistatina/metabolismo , Inibinas/metabolismo , Ativinas/metabolismo , Pulmão/metabolismo
4.
Circ Res ; 130(9): 1423-1444, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35482840

RESUMO

Pulmonary hypertension is a complex disease with multiple causes, corresponding to phenotypic heterogeneity and variable therapeutic responses. Advancing understanding of pulmonary hypertension pathogenesis is likely to hinge on integrated methods that leverage data from health records, imaging, novel molecular -omics profiling, and other modalities. In this review, we summarize key data sets generated thus far in the field and describe analytical methods that hold promise for deciphering the molecular mechanisms that underpin pulmonary vascular remodeling, including machine learning, network medicine, and functional genetics. We also detail how genetic and subphenotyping approaches enable earlier diagnosis, refined prognostication, and optimized treatment prediction. We propose strategies that identify functionally important molecular pathways, bolstered by findings across multi-omics platforms, which are well-positioned to individualize drug therapy selection and advance precision medicine in this highly morbid disease.


Assuntos
Big Data , Hipertensão Pulmonar , Humanos , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/genética , Aprendizado de Máquina , Medicina de Precisão/métodos
5.
Eur Respir J ; 61(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36549710

RESUMO

BACKGROUND: Risk stratification and assessment of disease progression in patients with pulmonary arterial hypertension (PAH) are challenged by the lack of accurate disease-specific and prognostic biomarkers. To date, brain natriuretic peptide (BNP) and/or its N-terminal fragment (NT-proBNP) are the only markers for right ventricular dysfunction used in clinical practice, in association with echocardiographic and invasive haemodynamic variables to predict outcome in patients with PAH. METHODS: This study was designed to identify an easily measurable biomarker panel in the serum of 80 well-phenotyped PAH patients with idiopathic, heritable or drug-induced PAH at baseline and at first follow-up. The prognostic value of identified cytokines of interest was secondly analysed in an external validation cohort of 125 PAH patients. RESULTS: Among the 20 biomarkers studied with the multiplex Ella platform, we identified a three-biomarker panel composed of ß-NGF, CXCL9 and TRAIL that were independently associated with prognosis both at the time of PAH diagnosis and at the first follow-up after initiation of PAH therapy. ß-NGF and CXCL9 were predictors of death or transplantation, whereas high levels of TRAIL were associated with a better prognosis. Furthermore, the prognostic value of the three cytokines was more powerful for predicting survival than usual non-invasive variables (New York Heart Association Functional Class, 6-min walk distance and BNP/NT-proBNP). The results were validated in a fully independent external validation cohort. CONCLUSION: The monitoring of ß-NGF, CXCL9 and TRAIL levels in serum should be considered in the management and treatment of patients with PAH to objectively guide therapeutic options.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Humanos , Prognóstico , Citocinas , Hipertensão Pulmonar Primária Familiar , Biomarcadores , Peptídeo Natriurético Encefálico , Fragmentos de Peptídeos
6.
Am J Respir Crit Care Med ; 205(9): 1102-1111, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35081018

RESUMO

Rationale: NT-proBNP (N-terminal pro-brain natriuretic peptide), a biomarker of cardiac origin, is used to risk stratify patients with pulmonary arterial hypertension (PAH). Its limitations include poor sensitivity to early vascular pathology. Other biomarkers of vascular or systemic origin may also be useful in the management of PAH. Objectives: Identify prognostic proteins in PAH that complement NT-proBNP and clinical risk scores. Methods: An aptamer-based assay (SomaScan version 4) targeting 4,152 proteins was used to measure plasma proteins in patients with idiopathic, heritable, or drug-induced PAH from the UK National Cohort of PAH (n = 357) and the French EFORT (Evaluation of Prognostic Factors and Therapeutic Targets in PAH) study (n = 79). Prognostic proteins were identified in discovery-replication analyses of UK samples. Proteins independent of 6-minute-walk distance and NT-proBNP entered least absolute shrinkage and selection operator modeling, and the best combination in a single score was evaluated against clinical targets in EFORT. Measurements and Main Results: Thirty-one proteins robustly informed prognosis independent of NT-proBNP and 6-minute-walk distance in the UK cohort. A weighted combination score of six proteins was validated at baseline (5-yr mortality; area under the curve [AUC], 0.73; 95% confidence interval [CI], 0.63-0.85) and follow-up in EFORT (AUC, 0.84; 95% CI, 0.75-0.94; P = 9.96 × 10-6). The protein score risk stratified patients independent of established clinical targets and risk equations. The addition of the six-protein model score to NT-proBNP improved prediction of 5-year outcomes from AUC 0.762 (0.702-0.821) to 0.818 (0.767-0.869) by receiver operating characteristic analysis (P = 0.00426 for difference in AUC) in the UK replication and French samples combined. Conclusions: The plasma proteome informs prognosis beyond established factors in PAH and may provide a more sensitive measure of therapeutic response.


Assuntos
Hipertensão Arterial Pulmonar , Área Sob a Curva , Biomarcadores , Hipertensão Pulmonar Primária Familiar , Humanos , Peptídeo Natriurético Encefálico , Fragmentos de Peptídeos , Prognóstico , Proteoma
7.
Am J Respir Crit Care Med ; 205(12): 1449-1460, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35394406

RESUMO

Rationale: Pulmonary arterial hypertension (PAH) is characterized by structural remodeling of pulmonary arteries and arterioles. Underlying biological processes are likely reflected in a perturbation of circulating proteins. Objectives: To quantify and analyze the plasma proteome of patients with PAH using inherited genetic variation to inform on underlying molecular drivers. Methods: An aptamer-based assay was used to measure plasma proteins in 357 patients with idiopathic or heritable PAH, 103 healthy volunteers, and 23 relatives of patients with PAH. In discovery and replication subgroups, the plasma proteomes of PAH and healthy individuals were compared, and the relationship to transplantation-free survival in PAH was determined. To examine causal relationships to PAH, protein quantitative trait loci (pQTL) that influenced protein levels in the patient population were used as instruments for Mendelian randomization (MR) analysis. Measurements and Main Results: From 4,152 annotated plasma proteins, levels of 208 differed between patients with PAH and healthy subjects, and 49 predicted long-term survival. MR based on cis-pQTL located in proximity to the encoding gene for proteins that were prognostic and distinguished PAH from health estimated an adverse effect for higher levels of netrin-4 (odds ratio [OR], 1.55; 95% confidence interval [CI], 1.16-2.08) and a protective effect for higher levels of thrombospondin-2 (OR, 0.83; 95% CI, 0.74-0.94) on PAH. Both proteins tracked the development of PAH in previously healthy relatives and changes in thrombospondin-2 associated with pulmonary arterial pressure at disease onset. Conclusions: Integrated analysis of the plasma proteome and genome implicates two secreted matrix-binding proteins, netrin-4 and thrombospondin-2, in the pathobiology of PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Proteínas Sanguíneas/genética , Hipertensão Pulmonar Primária Familiar , Humanos , Netrinas , Patologia Molecular , Proteoma , Trombospondinas
8.
Am J Respir Crit Care Med ; 206(1): 81-93, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35316153

RESUMO

Rationale: Autoimmunity is believed to play a role in idiopathic pulmonary arterial hypertension (IPAH). It is not clear whether this is causative or a bystander of disease and if it carries any prognostic or treatment significance. Objectives: To study autoimmunity in IPAH using a large cross-sectional cohort. Methods: Assessment of the circulating immune cell phenotype was undertaken using flow cytometry, and the profile of serum immunoglobulins was generated using a standardized multiplex array of 19 clinically validated autoantibodies in 473 cases and 946 control subjects. Additional glutathione S-transferase fusion array and ELISA data were used to identify a serum autoantibody to BMPR2 (bone morphogenetic protein receptor type 2). Clustering analyses and clinical correlations were used to determine associations between immunogenicity and clinical outcomes. Measurements and Main Results: Flow cytometric immune profiling demonstrates that IPAH is associated with an altered humoral immune response in addition to raised IgG3. Multiplexed autoantibodies were significantly raised in IPAH, and clustering demonstrated three distinct clusters: "high autoantibody," "low autoantibody," and a small "intermediate" cluster exhibiting high concentrations of ribonucleic protein complex. The high-autoantibody cluster had worse hemodynamics but improved survival. A small subset of patients demonstrated immunoglobulin reactivity to BMPR2. Conclusions: This study establishes aberrant immune regulation and presence of autoantibodies as key features in the profile of a significant proportion of patients with IPAH and is associated with clinical outcomes.


Assuntos
Autoimunidade , Hipertensão Pulmonar , Autoanticorpos , Estudos Transversais , Hipertensão Pulmonar Primária Familiar , Humanos , Hipertensão Pulmonar/genética
9.
J Biol Chem ; 297(6): 101402, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34774798

RESUMO

CRISPR/Cas9 has enabled inducible gene knockout in numerous tissues; however, its use has not been reported in brown adipose tissue (BAT). Here, we developed the brown adipocyte CRISPR (BAd-CRISPR) methodology to rapidly interrogate the function of one or multiple genes. With BAd-CRISPR, an adeno-associated virus (AAV8) expressing a single guide RNA (sgRNA) is administered directly to BAT of mice expressing Cas9 in brown adipocytes. We show that the local administration of AAV8-sgRNA to interscapular BAT of adult mice robustly transduced brown adipocytes and ablated expression of adiponectin, adipose triglyceride lipase, fatty acid synthase, perilipin 1, or stearoyl-CoA desaturase 1 by >90%. Administration of multiple AAV8 sgRNAs led to simultaneous knockout of up to three genes. BAd-CRISPR induced frameshift mutations and suppressed target gene mRNA expression but did not lead to substantial accumulation of off-target mutations in BAT. We used BAd-CRISPR to create an inducible uncoupling protein 1 (Ucp1) knockout mouse to assess the effects of UCP1 loss on adaptive thermogenesis in adult mice. Inducible Ucp1 knockout did not alter core body temperature; however, BAd-CRISPR Ucp1 mice had elevated circulating concentrations of fibroblast growth factor 21 and changes in BAT gene expression consistent with heat production through increased peroxisomal lipid oxidation. Other molecular adaptations predict additional cellular inefficiencies with an increase in both protein synthesis and turnover, and mitochondria with reduced reliance on mitochondrial-encoded gene expression and increased expression of nuclear-encoded mitochondrial genes. These data suggest that BAd-CRISPR is an efficient tool to speed discoveries in adipose tissue biology.


Assuntos
Tecido Adiposo Marrom/metabolismo , Sistemas CRISPR-Cas , Animais , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Camundongos , Camundongos Knockout , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
10.
Eur Respir J ; 59(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34588193

RESUMO

BACKGROUND: Inflammation and dysregulated immunity are important in the development of pulmonary arterial hypertension (PAH). Compelling preclinical data supports the therapeutic blockade of interleukin-6 (IL-6) signalling. METHODS: We conducted a phase 2 open-label study of intravenous tocilizumab (8 mg·kg-1) over 6 months in patients with group 1 PAH. Co-primary end-points were safety, defined by incidence and severity of adverse events, and change in pulmonary vascular resistance. Separately, a mendelian randomisation study was undertaken on 11 744 individuals with European ancestry including 2085 patients with idiopathic/heritable disease for the IL-6 receptor (IL6R) variant (rs7529229), known to associate with circulating IL-6R levels. RESULTS: We recruited 29 patients (male/female 10/19; mean±sd age 54.9±11.4 years). Of these, 19 had heritable/idiopathic PAH and 10 had connective tissue disease-associated PAH. Six were withdrawn prior to drug administration; 23 patients received at least one dose of tocilizumab. Tocilizumab was discontinued in four patients owing to serious adverse events. There were no deaths. Despite evidence of target engagement in plasma IL-6 and C-reactive protein levels, both intention-to-treat and modified intention-to-treat analyses demonstrated no change in pulmonary vascular resistance. Inflammatory markers did not predict treatment response. Mendelian randomisation did not support an effect of the lead IL6R variant on risk of PAH (OR 0.99, p=0.88). CONCLUSION: Adverse events were consistent with the known safety profile of tocilizumab. Tocilizumab did not show any consistent treatment effect.


Assuntos
Pesquisa Biomédica , Hipertensão Arterial Pulmonar , Adulto , Idoso , Hipertensão Pulmonar Primária Familiar , Feminino , Humanos , Interleucina-6 , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
11.
Mol Cell Proteomics ; 19(6): 971-993, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32265294

RESUMO

The onset of obesity-linked type 2 diabetes (T2D) is marked by an eventual failure in pancreatic ß-cell function and mass that is no longer able to compensate for the inherent insulin resistance and increased metabolic load intrinsic to obesity. However, in a commonly used model of T2D, the db/db mouse, ß-cells have an inbuilt adaptive flexibility enabling them to effectively adjust insulin production rates relative to the metabolic demand. Pancreatic ß-cells from these animals have markedly reduced intracellular insulin stores, yet high rates of (pro)insulin secretion, together with a substantial increase in proinsulin biosynthesis highlighted by expanded rough endoplasmic reticulum and Golgi apparatus. However, when the metabolic overload and/or hyperglycemia is normalized, ß-cells from db/db mice quickly restore their insulin stores and normalize secretory function. This demonstrates the ß-cell's adaptive flexibility and indicates that therapeutic approaches applied to encourage ß-cell rest are capable of restoring endogenous ß-cell function. However, mechanisms that regulate ß-cell adaptive flexibility are essentially unknown. To gain deeper mechanistic insight into the molecular events underlying ß-cell adaptive flexibility in db/db ß-cells, we conducted a combined proteomic and post-translational modification specific proteomic (PTMomics) approach on islets from db/db mice and wild-type controls (WT) with or without prior exposure to normal glucose levels. We identified differential modifications of proteins involved in redox homeostasis, protein refolding, K48-linked deubiquitination, mRNA/protein export, focal adhesion, ERK1/2 signaling, and renin-angiotensin-aldosterone signaling, as well as sialyltransferase activity, associated with ß-cell adaptive flexibility. These proteins are all related to proinsulin biosynthesis and processing, maturation of insulin secretory granules, and vesicular trafficking-core pathways involved in the adaptation of insulin production to meet metabolic demand. Collectively, this study outlines a novel and comprehensive global PTMome signaling map that highlights important molecular mechanisms related to the adaptive flexibility of ß-cell function, providing improved insight into disease pathogenesis of T2D.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Hiperglicemia/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Obesidade/metabolismo , Proinsulina/biossíntese , Proteoma/metabolismo , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/genética , Modelos Animais de Doenças , Adesões Focais , Ontologia Genética , Glucose/metabolismo , Hiperglicemia/genética , Secreção de Insulina , Células Secretoras de Insulina/patologia , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proinsulina/metabolismo , Mapas de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Proteoma/genética , Proteômica , Sistema Renina-Angiotensina , Ácidos Siálicos/metabolismo , Espectrometria de Massas em Tandem , Ubiquitinação
12.
J Biol Chem ; 295(27): 8901-8911, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32341128

RESUMO

Within the pancreatic ß-cells, insulin secretory granules (SGs) exist in functionally distinct pools, displaying variations in motility as well as docking and fusion capability. Current therapies that increase insulin secretion do not consider the existence of these distinct SG pools. Accordingly, these approaches are effective only for a short period, with a worsening of glycemia associated with continued decline in ß-cell function. Insulin granule age is underappreciated as a determinant for why an insulin granule is selected for secretion and may explain why newly synthesized insulin is preferentially secreted from ß-cells. Here, using a novel fluorescent timer protein, we aimed to investigate the preferential secretion model of insulin secretion and identify how granule aging is affected by variation in the ß-cell environment, such as hyperglycemia. We demonstrate the use of a fluorescent timer construct, syncollin-dsRedE5TIMER, which changes its fluorescence from green to red over 18 h, in both microscopy and fluorescence-assisted organelle-sorting techniques. We confirm that the SG-targeting construct localizes to insulin granules in ß-cells and does not interfere with normal insulin SG behavior. We visualize insulin SG aging behavior in MIN6 and INS1 ß-cell lines and in primary C57BL/6J mouse and nondiabetic human islet cells. Finally, we separated young and old insulin SGs, revealing that preferential secretion of younger granules occurs in glucose-stimulated insulin secretion. We also show that SG population age is modulated by the ß-cell environment in vivo in the db/db mouse islets and ex vivo in C57BL/6J islets exposed to different glucose environments.


Assuntos
Secreção de Insulina/fisiologia , Insulina/metabolismo , Vesículas Secretórias/metabolismo , Animais , Linhagem Celular , Exocitose/fisiologia , Corantes Fluorescentes/química , Glucose/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/fisiologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência/métodos , Fatores de Tempo
13.
Eur Respir J ; 58(3)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33632800

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive disease predominantly targeting pre-capillary blood vessels. Adverse structural remodelling and increased pulmonary vascular resistance result in cardiac hypertrophy and ultimately failure of the right ventricle. Recent whole-genome and whole-exome sequencing studies have identified SOX17 as a novel risk gene in PAH, with a dominant mode of inheritance and incomplete penetrance. Rare deleterious variants in the gene and more common variants in upstream enhancer sites have both been associated with the disease, and a deficiency of SOX17 expression may predispose to PAH. This review aims to consolidate the evidence linking genetic variants in SOX17 to PAH, and explores the numerous targets and effects of the transcription factor, focusing on the pulmonary vasculature and the pathobiology of PAH.


Assuntos
Hipertensão Arterial Pulmonar , Hipertensão Pulmonar Primária Familiar , Predisposição Genética para Doença , Ventrículos do Coração , Humanos , Fatores de Transcrição SOXF/genética , Sequenciamento do Exoma
14.
Eur Respir J ; 57(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33060150

RESUMO

Pulmonary hypertension is a condition with limited effective treatment options. Chronic thromboembolic pulmonary hypertension (CTEPH) is a notable exception, with pulmonary endarterectomy (PEA) often proving curative. This study investigated the plasma metabolome of CTEPH patients, estimated reversibility to an effective treatment and explored the source of metabolic perturbations.We performed untargeted analysis of plasma metabolites in CTEPH patients compared to healthy controls and disease comparators. Changes in metabolic profile were evaluated in response to PEA. A subset of patients were sampled at three anatomical locations and plasma metabolite gradients calculated.We defined and validated altered plasma metabolite profiles in patients with CTEPH. 12 metabolites were confirmed by receiver operating characteristic analysis to distinguish CTEPH and both healthy (area under the curve (AUC) 0.64-0.94, all p<2×10-5) and disease controls (AUC 0.58-0.77, all p<0.05). Many of the metabolic changes were notably similar to those observed in idiopathic pulmonary arterial hypertension (IPAH). Only five metabolites (5-methylthioadenosine, N1-methyladenosine, N1-methylinosine, 7-methylguanine, N-formylmethionine) distinguished CTEPH from chronic thromboembolic disease or IPAH. Significant corrections (15-100% of perturbation) in response to PEA were observed in some, but not all metabolites. Anatomical sampling identified 188 plasma metabolites, with significant gradients in tryptophan, sphingomyelin, methionine and Krebs cycle metabolites. In addition, metabolites associated with CTEPH and gradients showed significant associations with clinical measures of disease severity.We identified a specific metabolic profile that distinguishes CTEPH from controls and disease comparators, despite the observation that most metabolic changes were common to both CTEPH and IPAH patients. Plasma metabolite gradients implicate cardiopulmonary tissue metabolism of metabolites associated with pulmonary hypertension and metabolites that respond to PEA surgery could be a suitable noninvasive marker for evaluating future targeted therapeutic interventions.


Assuntos
Hipertensão Pulmonar , Embolia Pulmonar , Doença Crônica , Endarterectomia , Hipertensão Pulmonar Primária Familiar , Humanos , Metabolômica , Embolia Pulmonar/complicações
15.
Am J Respir Crit Care Med ; 201(2): 224-239, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31545648

RESUMO

Rationale: Pulmonary hypertension (PH) is a life-threatening cardiopulmonary disorder in which inflammation and immunity have emerged as critical early pathogenic elements. Although proinflammatory processes in PH and pulmonary arterial hypertension (PAH) are the focus of extensive investigation, the initiating mechanisms remain elusive.Objectives: We tested whether activation of the complement cascade is critical in regulating proinflammatory and pro-proliferative processes in the initiation of experimental hypoxic PH and can serve as a prognostic biomarker of outcome in human PAH.Methods: We used immunostaining of lung tissues from experimental PH models and patients with PAH, analyses of genetic murine models lacking specific complement components or circulating immunoglobulins, cultured human pulmonary adventitial fibroblasts, and network medicine analysis of a biomarker risk panel from plasma of patients with PAH.Measurements and Main Results: Pulmonary perivascular-specific activation of the complement cascade was identified as a consistent critical determinant of PH and PAH in experimental animal models and humans. In experimental hypoxic PH, proinflammatory and pro-proliferative responses were dependent on complement (alternative pathway and component 5), and immunoglobulins, particularly IgG, were critical for activation of the complement cascade. We identified Csf2/GM-CSF as a primary complement-dependent inflammatory mediator. Furthermore, using network medicine analysis of a biomarker risk panel from plasma of patients with PAH, we demonstrated that complement signaling can serve as a prognostic factor for clinical outcome in PAH.Conclusions: This study establishes immunoglobulin-driven dysregulated complement activation as a critical pathobiological mechanism regulating proinflammatory and pro-proliferative processes in the initiation of experimental hypoxic PH and demonstrates complement signaling as a critical determinant of clinical outcome in PAH.


Assuntos
Ativação do Complemento/imunologia , Fibroblastos/imunologia , Hipertensão Pulmonar/imunologia , Imunoglobulina G/imunologia , Remodelação Vascular/imunologia , Animais , Complemento C3/imunologia , Complemento C5/imunologia , Fator B do Complemento/imunologia , Via Alternativa do Complemento/imunologia , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Humanos , Hipertensão Pulmonar/etiologia , Hipóxia/complicações , Imunoglobulinas/imunologia , Inflamação , Camundongos , Camundongos Knockout , Prognóstico , Hipertensão Arterial Pulmonar/imunologia , Ratos
16.
Am J Respir Crit Care Med ; 202(4): 586-594, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32352834

RESUMO

Rationale: Idiopathic and heritable pulmonary arterial hypertension (PAH) are rare but comprise a genetically heterogeneous patient group. RNA sequencing linked to the underlying genetic architecture can be used to better understand the underlying pathology by identifying key signaling pathways and stratify patients more robustly according to clinical risk.Objectives: To use a three-stage design of RNA discovery, RNA validation and model construction, and model validation to define a set of PAH-associated RNAs and a single summarizing RNA model score. To define genes most likely to be involved in disease development, we performed Mendelian randomization (MR) analysis.Methods: RNA sequencing was performed on whole-blood samples from 359 patients with idiopathic, heritable, and drug-induced PAH and 72 age- and sex-matched healthy volunteers. The score was evaluated against disease severity markers including survival analysis using all-cause mortality from diagnosis. MR used known expression quantitative trait loci and summary statistics from a PAH genome-wide association study.Measurements and Main Results: We identified 507 genes with differential RNA expression in patients with PAH compared with control subjects. A model of 25 RNAs distinguished PAH with 87% accuracy (area under the curve 95% confidence interval: 0.791-0.945) in model validation. The RNA model score was associated with disease severity and long-term survival (P = 4.66 × 10-6) in PAH. MR detected an association between SMAD5 levels and PAH disease susceptibility (odds ratio, 0.317; 95% confidence interval, 0.129-0.776; P = 0.012).Conclusions: A whole-blood RNA signature of PAH, which includes RNAs relevant to disease pathogenesis, associates with disease severity and identifies patients with poor clinical outcomes. Genetic variants associated with lower SMAD5 expression may increase susceptibility to PAH.


Assuntos
Hipertensão Pulmonar Primária Familiar/sangue , Hipertensão Pulmonar Primária Familiar/genética , RNA/sangue , Adulto , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade
17.
Am J Respir Crit Care Med ; 201(5): 575-585, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31661308

RESUMO

Rationale: Recently, rare heterozygous mutations in GDF2 were identified in patients with pulmonary arterial hypertension (PAH). GDF2 encodes the circulating BMP (bone morphogenetic protein) type 9, which is a ligand for the BMP2 receptor.Objectives: Here we determined the functional impact of GDF2 mutations and characterized plasma BMP9 and BMP10 levels in patients with idiopathic PAH.Methods: Missense BMP9 mutant proteins were expressed in vitro and the impact on BMP9 protein processing and secretion, endothelial signaling, and functional activity was assessed. Plasma BMP9 and BMP10 levels and activity were assayed in patients with PAH with GDF2 variants and in control subjects. Levels were also measured in a larger cohort of control subjects (n = 120) and patients with idiopathic PAH (n = 260).Measurements and Main Results: We identified a novel rare variation at the GDF2 and BMP10 loci, including copy number variation. In vitro, BMP9 missense proteins demonstrated impaired cellular processing and secretion. Patients with PAH who carried these mutations exhibited reduced plasma levels of BMP9 and reduced BMP activity. Unexpectedly, plasma BMP10 levels were also markedly reduced in these individuals. Although overall BMP9 and BMP10 levels did not differ between patients with PAH and control subjects, BMP10 levels were lower in PAH females. A subset of patients with PAH had markedly reduced plasma levels of BMP9 and BMP10 in the absence of GDF2 mutations.Conclusions: Our findings demonstrate that GDF2 mutations result in BMP9 loss of function and are likely causal. These mutations lead to reduced circulating levels of both BMP9 and BMP10. These findings support therapeutic strategies to enhance BMP9 or BMP10 signaling in PAH.


Assuntos
Proteínas Morfogenéticas Ósseas/genética , Fator 2 de Diferenciação de Crescimento/genética , Hipertensão Arterial Pulmonar/genética , Adulto , Proteínas Morfogenéticas Ósseas/metabolismo , Estudos de Casos e Controles , Variações do Número de Cópias de DNA , Feminino , Fator 2 de Diferenciação de Crescimento/metabolismo , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Transporte Proteico , Hipertensão Arterial Pulmonar/metabolismo , Fatores Sexuais
18.
Int J Mol Sci ; 22(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562744

RESUMO

Kaempferol is a flavonoid that occurs in tea and in many vegetables and fruits, including broccoli, cabbage, beans, grapes, apples, and strawberries. The efficacy of Kaempferol has been demonstrated in the treatment of breast, esophageal, cervical, ovarian, and liver cancers and leukemia, which very likely arises from its prooxidant properties and the activation of pro-apoptotic pathways. Indeed, this matter has already been the focus of a number of published studies and reviews. The aim of the present study was to elucidate the antioxidant vs. prooxidant properties of flavonoids in the presence of the redox-active metal, copper (II) ion, by means of the Fenton reaction. The specific motivation of this work is that, since an increased level of Cu(II) ions is known to be associated with many disease states such as neurological conditions (Alzheimer's disease) and cancer, any interaction between these ions and flavonoids might affect the outcome of therapeutic uses of the latter. The structure of the Cu-kaempferol complex in DMSO was investigated by means of low temperature EPR spectroscopy, which confirmed the existence of at least two distinct coordination environments around the copper (II) ion. UV vis-spectra of kaempferol and its Cu(II) complex in DMSO revealed an interaction between the 5-OH (A ring) group and the 4-CO (C ring) group of kaempferol with Cu(II) ions. An ABTS assay confirmed that kaempferol acted as an effective radical scavenger, and that this effect was further enhanced in the form of the Cu(II)-kaempferol complex. Quantitative EPR spin trapping experiments, using DMPO as the spin trap, confirmed suppression of the formation of a mixture of hydroxyl, superoxide, and methyl radicals, in a Fenton reaction system, upon coordination of kaempferol to the redox-active Cu(II) ions, by 80% with respect to the free Cu(II) ions. A viscometric study revealed a better DNA-intercalating ability of the Cu-kaempferol complex than for free kaempferol, essential for conferring anticancer activity of these substances. The results of the viscometric measurements were compared with those from a DNA damage study of Cu-kaempferol complexes in a Fenton reaction system, using gel electrophoresis. At low concentrations of kaempferol (Cu-kaempferol ratios of 1:1 and 1:2), a very weak protective effect on DNA was noted, whereas when kaempferol was present in excess, a significant DNA-protective effect was found. This can be explained if the weakly intercalated kaempferol molecules present at the surface of DNA provide protection against attack by ROS that originate from the Fenton reaction involving intercalated Cu(II)-kaempferol complexes. Following the application of ROS scavengers, L-histidine, DMSO, and SOD, gel electrophoresis confirmed the formation of singlet oxygen, hydroxyl radicals, and superoxide radical anions, respectively. We propose that the prooxidant properties of Cu-kaempferol complexes may provide anticancer activity of these substances. When present in excess, kaempferol displays antioxidant properties under Cu-Fenton conditions. This suggests that kaempferol might prove a suitable candidate for the prevention or treatment of oxidative stress related medical conditions that involve a disturbed metabolism of redox metals such as copper, for example, Menkes disease, and neurological disorders, including Alzheimer's disease. For the potential use of kaempferol in clinical practice, it will be necessary to optimize the dose size and critical age of the patient so that this flavonoid may be beneficial as a preventive drug against cancer and neurological disorders.


Assuntos
Cobre/química , Dano ao DNA , Quempferóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Dimetil Sulfóxido/química , Humanos , Quempferóis/química , Estrutura Molecular , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos
19.
J Psychosoc Nurs Ment Health Serv ; 59(2): 17-24, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33180947

RESUMO

The aim of the current review is to describe the prevalence and demographic correlates of mental health disorders among undergraduate university students in the United States. A search strategy was built and conducted using PubMed, PsycINFO, and CINAHL to identify studies published between 2009 and 2019 on the prevalence of mental health disorders, as defined in the fourth and fifth editions of the Diagnostic and Statistical Manual of Mental Disorders, in undergraduate students in the United States. A total of 12 studies were included in the final data extraction. The highest prevalence rates were identified in eating disorders, which ranged from 19% to 48%, followed by compulsive disorders (2% to 12.27%), depression (22%), posttraumatic stress disorder (8%), and sleep disorders (9.4% to 36%). The identified prevalence of mental health disorders is high, and the subsequent impact on this population is worrying. There is an urgent need to develop strategies for early screening and management of mental health services in university settings. [Journal of Psychosocial Nursing and Mental Health Services, 59(2), 17-24.].


Assuntos
Transtornos Mentais , Serviços de Saúde Mental , Humanos , Transtornos Mentais/epidemiologia , Saúde Mental , Prevalência , Estudantes , Estados Unidos/epidemiologia , Universidades
20.
Biochem Biophys Res Commun ; 522(3): 731-735, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31791585

RESUMO

Rheumatoid arthritis (RA) is a highly inflammatory autoimmune disease. Although proinflammatory cytokines, including tumor necrosis factor (TNF) and interleukin (IL)-6, play a key role in the pathogenesis of RA, the causes of chronic inflammation are not fully understood. Here, we report that protein phosphatase magnesium-dependent 1A (PPM1A) levels were increased in RA synovial fluid compared with osteoarthritis (OA) synovial fluid and positively correlated with TNF levels. In addition, PPM1A expression was increased in synovial tissue from RA patients and joint tissue from a mouse model of arthritis. Finally, extracellular PPM1A induced inflammation by stimulating macrophages to produce TNF through toll-like receptor 4 (TLR4) and myeloid differentiation primary response protein 88 (MyD88) signaling pathway. Our findings suggest that extracellular PPM1A may contribute to the pathogenesis of RA by functioning as a damage-associated molecular pattern (DAMP) to induce inflammation.


Assuntos
Artrite Reumatoide/patologia , Inflamação/patologia , Proteína Fosfatase 2C/análise , Idoso , Animais , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Líquido Sinovial/química , Fator de Necrose Tumoral alfa/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA