Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 41(22): 5186-5189, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27842089

RESUMO

A technique to eliminate the offset drift in the demodulator circuitry of open-loop interferometric fiber optic gyroscopes is presented. This technique employs a demodulation scheme that uses the area of the negative half-cycles of the output signal of a sinusoidally modulated gyroscope to obtain the angular velocity. We propose an electronic circuitry that periodically reverses the demodulator input, allowing for the acquisition of two samples of the gyroscope signal with the same magnitude and opposite polarities. The angular velocity is obtained from the subtraction of these two samples, suppressing the electronic offset. Experiments showed that the proposed method reduces the demodulator offset drift from 4.4 µV/°C to about 14 nV/°C, which is equivalent to a reduction, from 0.2 deg/h/°C to about 0.0006 deg/h/°C in the tested gyroscope. The proposed technique improved the bias stability of the tested gyroscope from 0.0162 to 0.0071 deg/h.

2.
Anal Chim Acta ; 1071: 36-43, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31128753

RESUMO

This study describes for the first time the development of 3D printed microfluidic devices with integrated electrodes for label-free counting of E. coli cells incorporated inside droplets based on capacitively coupled contactless conductivity detection (C4D). Microfluidic devices were fully fabricated by 3D printing in the T-junction shape containing two channels for disperse and continuous phases and two sensing electrodes for C4D measurements. The disperse phase containing E. coli K12 cells and the continuous phase containing oil and 1% Span® 80 were pumped through flow rates fixed at 5 and 60 µL min-1, respectively. The droplets with incorporated cells were monitored in the C4D system applying a 500-kHz sinusoidal wave with 1 Vpp amplitude. The generated droplets exhibited a spherical shape with average diameter of 321 ±â€¯9 µm and presented volume of 17.3 ±â€¯0.5 nL. The proposed approach demonstrated ability to detect E. coli cells in the concentration range between 86.5 and 8650 CFU droplet-1. The number of cells per droplet was quantified through the plate counting method and revealed a good agreement with the Poisson distribution. The limit of detection achieved for counting E. coli cells was 63.66 CFU droplet-1. The label-free counting method has offered instrumental simplicity, low cost, high sensitivity and compatibility to be integrated on single microfluidic platforms entirely fabricated by 3D printing, thus opening new possibilities of applications in microbiology.


Assuntos
Contagem de Células/métodos , Condutividade Elétrica , Técnicas Eletroquímicas/métodos , Escherichia coli K12/isolamento & purificação , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/métodos , Técnicas Eletroquímicas/instrumentação , Eletrodos , Limite de Detecção , Técnicas Analíticas Microfluídicas/instrumentação , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA