Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 174(2): 422-432.e13, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-29909987

RESUMO

Increased androgen receptor (AR) activity drives therapeutic resistance in advanced prostate cancer. The most common resistance mechanism is amplification of this locus presumably targeting the AR gene. Here, we identify and characterize a somatically acquired AR enhancer located 650 kb centromeric to the AR. Systematic perturbation of this enhancer using genome editing decreased proliferation by suppressing AR levels. Insertion of an additional copy of this region sufficed to increase proliferation under low androgen conditions and to decrease sensitivity to enzalutamide. Epigenetic data generated in localized prostate tumors and benign specimens support the notion that this region is a developmental enhancer. Collectively, these observations underscore the importance of epigenomic profiling in primary specimens and the value of deploying genome editing to functionally characterize noncoding elements. More broadly, this work identifies a therapeutic vulnerability for targeting the AR and emphasizes the importance of regulatory elements as highly recurrent oncogenic drivers.


Assuntos
Elementos Facilitadores Genéticos/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/metabolismo , Acetilação , Adulto , Idoso , Antineoplásicos/farmacologia , Benzamidas , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Metilação de DNA , Edição de Genes , Histonas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Nitrilas , Feniltioidantoína/análogos & derivados , Feniltioidantoína/farmacologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/genética
2.
Int J Cancer ; 145(3): 694-704, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30694556

RESUMO

A retrospective determination of the time of metastasis formation is essential for a better understanding of the evolution of oligometastatic cancer. This study was based on the hypothesis that genomic alterations induced by cancer therapies could be used to determine the temporal order of the treatment and the formation of metastases. We analysed the whole genome sequence of a primary tumour sample and three metastatic sites derived from autopsy samples from a young never-smoker lung adenocarcinoma patient with an activating EGFR mutation. Mutation detection methods were refined to accurately detect and distinguish clonal and subclonal mutations. In comparison to a panel of samples from untreated smoker or never-smoker patients, we showed that the mutagenic effect of cisplatin treatment could be specifically detected from the base substitution mutations. Metastases that arose before or after chemotherapeutic treatment could be distinguished based on the allele frequency of cisplatin-induced dinucleotide mutations. In addition, genomic rearrangements and late amplification of the EGFR gene likely induced by afatinib treatment following the acquisition of a T790M gefitinib resistance mutation provided further evidence to tie the time of metastasis formation to treatment history. The established analysis pipeline for the detection of treatment-derived mutations allows the drawing of tumour evolutionary paths based on genomic data, showing that metastases may be seeded well before they become detectable by clinical imaging.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Cisplatino/administração & dosagem , Gefitinibe/administração & dosagem , Impressão Genômica/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/administração & dosagem , Adenocarcinoma de Pulmão/sangue , Adenocarcinoma de Pulmão/patologia , Algoritmos , Cisplatino/efeitos adversos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Gefitinibe/efeitos adversos , Rearranjo Gênico , Estudo de Associação Genômica Ampla , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/patologia , Modelos Genéticos , Mutagênese/efeitos dos fármacos , Metástase Neoplásica , Estudos Retrospectivos
3.
Res Sq ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38645014

RESUMO

We analyzed genomic data derived from the prostate cancer of African and European American men in order to identify differences that may contribute to racial disparity of outcome and that could also define novel therapeutic strategies. In addition to analyzing patient derived next generation sequencing data, we performed FISH based confirmatory studies of Chromodomain helicase DNA-binding protein 1 (CHD1) loss on prostate cancer tissue microarrays. We created CRISPR edited, CHD1 deficient prostate cancer cell lines for genomic, drug sensitivity and functional homologous recombination (HR) activity analysis. We found that subclonal deletion of CHD1 is nearly three times as frequent in prostate tumors of African American men than in men of European ancestry and it associates with rapid disease progression. We further showed that CHD1 deletion is not associated with homologous recombination deficiency associated mutational signatures in prostate cancer. In prostate cancer cell line models CHD1 deletion did not induce HR deficiency as detected by RAD51 foci formation assay or mutational signatures, which was consistent with the moderate increase of olaparib sensitivity. CHD1 deficient prostate cancer cells, however, showed higher sensitivity to talazoparib. CHD1 loss may contribute to worse outcome of prostate cancer in African American men. A deeper understanding of the interaction between CHD1 loss and PARP inhibitor sensitivity will be needed to determine the optimal use of targeted agents such as talazoparib in the context of castration resistant prostate cancer.

4.
Nat Commun ; 14(1): 5118, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612286

RESUMO

To date, single-nucleotide polymorphisms (SNPs) have been the most intensively investigated class of polymorphisms in genome wide associations studies (GWAS), however, other classes such as insertion-deletion or multiple nucleotide length polymorphism (MNLPs) may also confer disease risk. Multiple reports have shown that the 5p15.33 prostate cancer risk region is a particularly strong expression quantitative trait locus (eQTL) for Iroquois Homeobox 4 (IRX4) transcripts. Here, we demonstrate using epigenome and genome editing that a biallelic (21 and 47 base pairs (bp)) MNLP is the causal variant regulating IRX4 transcript levels. In LNCaP prostate cancer cells (homozygous for the 21 bp short allele), a single copy knock-in of the 47 bp long allele potently alters the chromatin state, enabling de novo functional binding of the androgen receptor (AR) associated with increased chromatin accessibility, Histone 3 lysine 27 acetylation (H3K27ac), and ~3-fold upregulation of IRX4 expression. We further show that an MNLP is amongst the strongest candidate susceptibility variants at two additional prostate cancer risk loci. We estimated that at least 5% of prostate cancer risk loci could be explained by functional non-SNP causal variants, which may have broader implications for other cancers GWAS. More generally, our results underscore the importance of investigating other classes of inherited variation as causal mediators of human traits.


Assuntos
Neoplasias , Polimorfismo de Nucleotídeo Único , Humanos , Masculino , Cromatina/genética , Acetilação , Alelos , Nucleotídeos
5.
Sci Data ; 9(1): 370, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764660

RESUMO

Histopathology is the gold standard method for staging and grading human tumors and provides critical information for the oncoteam's decision making. Highly-trained pathologists are needed for careful microscopic analysis of the slides produced from tissue taken from biopsy. This is a time-consuming process. A reliable decision support system would assist healthcare systems that often suffer from a shortage of pathologists. Recent advances in digital pathology allow for high-resolution digitalization of pathological slides. Digital slide scanners combined with modern computer vision models, such as convolutional neural networks, can help pathologists in their everyday work, resulting in shortened diagnosis times. In this study, 200 digital whole-slide images are published which were collected via hematoxylin-eosin stained colorectal biopsy. Alongside the whole-slide images, detailed region level annotations are also provided for ten relevant pathological classes. The 200 digital slides, after pre-processing, resulted in 101,389 patches. A single patch is a 512 × 512 pixel image, covering 248 × 248 µm2 tissue area. Versions at higher resolution are available as well. Hopefully, HunCRC, this widely accessible dataset will aid future colorectal cancer computer-aided diagnosis and research.


Assuntos
Neoplasias Colorretais , Aprendizado Profundo , Neoplasias Colorretais/diagnóstico , Diagnóstico por Computador , Detecção Precoce de Câncer , Humanos , Redes Neurais de Computação
6.
JAMA Netw Open ; 3(3): e200265, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32119094

RESUMO

Importance: Mammography screening currently relies on subjective human interpretation. Artificial intelligence (AI) advances could be used to increase mammography screening accuracy by reducing missed cancers and false positives. Objective: To evaluate whether AI can overcome human mammography interpretation limitations with a rigorous, unbiased evaluation of machine learning algorithms. Design, Setting, and Participants: In this diagnostic accuracy study conducted between September 2016 and November 2017, an international, crowdsourced challenge was hosted to foster AI algorithm development focused on interpreting screening mammography. More than 1100 participants comprising 126 teams from 44 countries participated. Analysis began November 18, 2016. Main Outcomes and Measurements: Algorithms used images alone (challenge 1) or combined images, previous examinations (if available), and clinical and demographic risk factor data (challenge 2) and output a score that translated to cancer yes/no within 12 months. Algorithm accuracy for breast cancer detection was evaluated using area under the curve and algorithm specificity compared with radiologists' specificity with radiologists' sensitivity set at 85.9% (United States) and 83.9% (Sweden). An ensemble method aggregating top-performing AI algorithms and radiologists' recall assessment was developed and evaluated. Results: Overall, 144 231 screening mammograms from 85 580 US women (952 cancer positive ≤12 months from screening) were used for algorithm training and validation. A second independent validation cohort included 166 578 examinations from 68 008 Swedish women (780 cancer positive). The top-performing algorithm achieved an area under the curve of 0.858 (United States) and 0.903 (Sweden) and 66.2% (United States) and 81.2% (Sweden) specificity at the radiologists' sensitivity, lower than community-practice radiologists' specificity of 90.5% (United States) and 98.5% (Sweden). Combining top-performing algorithms and US radiologist assessments resulted in a higher area under the curve of 0.942 and achieved a significantly improved specificity (92.0%) at the same sensitivity. Conclusions and Relevance: While no single AI algorithm outperformed radiologists, an ensemble of AI algorithms combined with radiologist assessment in a single-reader screening environment improved overall accuracy. This study underscores the potential of using machine learning methods for enhancing mammography screening interpretation.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Aprendizado Profundo , Interpretação de Imagem Assistida por Computador/métodos , Mamografia/métodos , Radiologistas , Adulto , Idoso , Algoritmos , Inteligência Artificial , Detecção Precoce de Câncer , Feminino , Humanos , Pessoa de Meia-Idade , Radiologia , Sensibilidade e Especificidade , Suécia , Estados Unidos
7.
Orv Hetil ; 160(4): 138-143, 2019 Jan.
Artigo em Húngaro | MEDLINE | ID: mdl-30661383

RESUMO

INTRODUCTION AND AIM: The technology, named 'deep learning' is the promising result of the last two decades of development in computer science. It poses an unavoidable challenge for medicine, how to understand, apply and adopt the - today not fully explored - possibilities that have become available by these new methods. METHOD: It is a gift and a mission, since the exponentially growing volume of raw data (from imaging, laboratory, therapy diagnostics or therapy interactions, etc.) did not solve until now our wished and aimed goal to treat patients according to their personal status and setting or specific to their tumor and disease. RESULTS: Currently, as a responsible health care provider and financier, we face the problem of supporting suboptimal procedures and protocols either at individual or at community level. The problem roots in the overwhelming amount of data and, at the same time, the lack of targeted information for treatment. We expect from the deep learning technology an aid which helps to reinforce and extend the human-human cooperations in patient-doctor visits. We expect that computers take over the tedious work allowing to revive the core of healing medicine: the insightful meeting and discussion between patients and medical experts. CONCLUSION: We should learn the revelational possibilities of deep learning techniques that can help to overcome our recognized finite capacities in data processing and integration. If we, doctors and health care providers or decision makers, are able to abandon our fears and prejudices, then we can utilize this new tool not only in imaging diagnostics but also for daily therapies (e.g., immune therapy). The paper aims to make a great mind to do this. Orv Hetil. 2019; 160(4): 138-143.


Assuntos
Inteligência Artificial , Aprendizado Profundo , Mamografia , Interface Usuário-Computador , Humanos , Hungria , Motivação , Relações Médico-Paciente
8.
Sci Rep ; 8(1): 4165, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29545529

RESUMO

In the last two decades, Computer Aided Detection (CAD) systems were developed to help radiologists analyse screening mammograms, however benefits of current CAD technologies appear to be contradictory, therefore they should be improved to be ultimately considered useful. Since 2012, deep convolutional neural networks (CNN) have been a tremendous success in image recognition, reaching human performance. These methods have greatly surpassed the traditional approaches, which are similar to currently used CAD solutions. Deep CNN-s have the potential to revolutionize medical image analysis. We propose a CAD system based on one of the most successful object detection frameworks, Faster R-CNN. The system detects and classifies malignant or benign lesions on a mammogram without any human intervention. The proposed method sets the state of the art classification performance on the public INbreast database, AUC = 0.95. The approach described here has achieved 2nd place in the Digital Mammography DREAM Challenge with AUC = 0.85. When used as a detector, the system reaches high sensitivity with very few false positive marks per image on the INbreast dataset. Source code, the trained model and an OsiriX plugin are published online at https://github.com/riblidezso/frcnn_cad .


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Aprendizado Profundo , Diagnóstico por Computador/métodos , Detecção Precoce de Câncer/métodos , Mamografia/métodos , Neoplasias da Mama/classificação , Confiabilidade dos Dados , Bases de Dados Factuais , Feminino , Humanos , Aprendizado de Máquina , Programas de Rastreamento , Redes Neurais de Computação , Curva ROC
10.
Genome Biol ; 17: 99, 2016 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-27161042

RESUMO

BACKGROUND: Genomic mutations caused by cytotoxic agents used in cancer chemotherapy may cause secondary malignancies as well as contribute to the evolution of treatment-resistant tumour cells. The stable diploid genome of the chicken DT40 lymphoblast cell line, an established DNA repair model system, is well suited to accurately assay genomic mutations. RESULTS: We use whole genome sequencing of multiple DT40 clones to determine the mutagenic effect of eight common cytotoxics used for the treatment of millions of patients worldwide. We determine the spontaneous mutagenesis rate at 2.3 × 10(-10) per base per cell division and find that cisplatin, cyclophosphamide and etoposide induce extra base substitutions with distinct spectra. After four cycles of exposure, cisplatin induces 0.8 mutations per Mb, equivalent to the median mutational burden in common leukaemias. Cisplatin-induced mutations, including short insertions and deletions, are mainly located at sites of putative intrastrand crosslinks. We find two of the newly defined cisplatin-specific mutation types as causes of the reversion of BRCA2 mutations in emerging cisplatin-resistant tumours or cell clones. Gemcitabine, 5-fluorouracil, hydroxyurea, doxorubicin and paclitaxel have no measurable mutagenic effect. The cisplatin-induced mutation spectrum shows good correlation with cancer mutation signatures attributed to smoking and other sources of guanine-directed base damage. CONCLUSION: This study provides support for the use of cell line mutagenesis assays to validate or predict the mutagenic effect of environmental and iatrogenic exposures. Our results suggest genetic reversion due to cisplatin-induced mutations as a distinct mechanism for developing resistance.


Assuntos
Antineoplásicos/toxicidade , Cisplatino/toxicidade , Citotoxinas/toxicidade , Mutagênicos/toxicidade , Taxa de Mutação , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Galinhas , Cisplatino/efeitos adversos , Cisplatino/farmacologia , Citotoxinas/efeitos adversos , Citotoxinas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Genes BRCA2 , Genoma , Mutagênicos/efeitos adversos , Mutagênicos/farmacologia
11.
Epigenetics ; 11(8): 588-602, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27245242

RESUMO

The WNT signaling pathway has an essential role in colorectal carcinogenesis and progression, which involves a cascade of genetic and epigenetic changes. We aimed to analyze DNA methylation affecting the WNT pathway genes in colorectal carcinogenesis in promoter and gene body regions using whole methylome analysis in 9 colorectal cancer, 15 adenoma, and 6 normal tumor adjacent tissue (NAT) samples by methyl capture sequencing. Functional methylation was confirmed on 5-aza-2'-deoxycytidine-treated colorectal cancer cell line datasets. In parallel with the DNA methylation analysis, mutations of WNT pathway genes (APC, ß-catenin/CTNNB1) were analyzed by 454 sequencing on GS Junior platform. Most differentially methylated CpG sites were localized in gene body regions (95% of WNT pathway genes). In the promoter regions, 33 of the 160 analyzed WNT pathway genes were differentially methylated in colorectal cancer vs. normal, including hypermethylated AXIN2, CHP1, PRICKLE1, SFRP1, SFRP2, SOX17, and hypomethylated CACYBP, CTNNB1, MYC; 44 genes in adenoma vs. NAT; and 41 genes in colorectal cancer vs. adenoma comparisons. Hypermethylation of AXIN2, DKK1, VANGL1, and WNT5A gene promoters was higher, while those of SOX17, PRICKLE1, DAAM2, and MYC was lower in colon carcinoma compared to adenoma. Inverse correlation between expression and methylation was confirmed in 23 genes, including APC, CHP1, PRICKLE1, PSEN1, and SFRP1. Differential methylation affected both canonical and noncanonical WNT pathway genes in colorectal normal-adenoma-carcinoma sequence. Aberrant DNA methylation appears already in adenomas as an early event of colorectal carcinogenesis.


Assuntos
Adenoma/genética , Neoplasias Colorretais/genética , Metilação de DNA , Via de Sinalização Wnt , Adenoma/metabolismo , Adenoma/patologia , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Loci Gênicos , Genoma Humano , Humanos , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas
12.
EBioMedicine ; 2(12): 1957-64, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26844274

RESUMO

Evaluation of cancer genomes in global context is of great interest in light of changing ethnic distribution of the world population. We focused our study on men of African ancestry because of their disproportionately higher rate of prostate cancer (CaP) incidence and mortality. We present a systematic whole genome analyses, revealing alterations that differentiate African American (AA) and Caucasian American (CA) CaP genomes. We discovered a recurrent deletion on chromosome 3q13.31 centering on the LSAMP locus that was prevalent in tumors from AA men (cumulative analyses of 435 patients: whole genome sequence, 14; FISH evaluations, 101; and SNP array, 320 patients). Notably, carriers of this deletion experienced more rapid disease progression. In contrast, PTEN and ERG common driver alterations in CaP were significantly lower in AA prostate tumors compared to prostate tumors from CA. Moreover, the frequency of inter-chromosomal rearrangements was significantly higher in AA than CA tumors. These findings reveal differentially distributed somatic mutations in CaP across ancestral groups, which have implications for precision medicine strategies.


Assuntos
Negro ou Afro-Americano/genética , Moléculas de Adesão Celular Neuronais/genética , Estudos de Associação Genética , Variação Genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Idoso , Biomarcadores Tumorais , Análise por Conglomerados , Progressão da Doença , Proteínas Ligadas por GPI/genética , Deleção de Genes , Rearranjo Gênico , Loci Gênicos , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Gradação de Tumores , Estadiamento de Neoplasias , Proteínas de Fusão Oncogênica/genética , PTEN Fosfo-Hidrolase , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/metabolismo , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA