Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ther ; 31(8): 2342-2359, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37312451

RESUMO

The high mortality rate of osteosarcoma (OSA) patients highlights the requirement of alternative strategies. The young age of patients, as well as the rarity and aggressiveness of the disease, limits opportunities for the robust testing of novel therapies, suggesting the need for valuable preclinical systems. Having previously shown the overexpression of the chondroitin sulfate proteoglycan (CSPG)4 in OSA, herein the functional consequences of its downmodulation in human OSA cells were evaluated in vitro, with a significant impairment of cell proliferation, migration, and osteosphere generation. The potential of a chimeric human/dog (HuDo)-CSPG4 DNA vaccine was explored in translational comparative OSA models, including human xenograft mouse models and canine patients affected by spontaneous OSA. The adoptive transfer of HuDo-CSPG4 vaccine-induced CD8+ T cells and sera in immunodeficient human OSA-bearing mice delayed tumor growth and metastasis development. HuDo-CSPG4 vaccination resulted safe and effective in inducing anti-CSPG4 immunity in OSA-affected dogs, which displayed prolonged survival as compared to controls. Finally, HuDo-CSPG4 was also able to induce a cytotoxic response in a human surrogate setting in vitro. On the basis of these results and the high predictive value of spontaneous OSA in dogs, this study paves the way for a possible translation of this approach to humans.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Apneia Obstrutiva do Sono , Vacinas de DNA , Humanos , Cães , Animais , Camundongos , Linfócitos T CD8-Positivos , Proteoglicanas de Sulfatos de Condroitina , Osteossarcoma/genética , Osteossarcoma/terapia , Neoplasias Ósseas/genética , Neoplasias Ósseas/terapia , Vacinação
2.
Int J Mol Sci ; 22(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652578

RESUMO

Teneurins have been identified in vertebrates as four different genes (TENM1-4), coding for membrane proteins that are mainly involved in embryonic and neuronal development. Genetic studies have correlated them with various diseases, including developmental problems, neurological disorders and congenital general anosmia. There is some evidence to suggest their possible involvement in cancer initiation and progression, and drug resistance. Indeed, mutations, chromosomal alterations and the deregulation of teneurins expression have been associated with several tumor types and patient survival. However, the role of teneurins in cancer-related regulatory networks is not fully understood, as both a tumor-suppressor role and pro-tumoral functions have been proposed, depending on tumor histotype. Here, we summarize and discuss the literature data on teneurins expression and their potential role in different tumor types, while highlighting the possibility of using teneurins as novel molecular diagnostic and prognostic biomarkers and as targets for cancer treatments, such as immunotherapy, in some tumors.


Assuntos
Biomarcadores Tumorais/biossíntese , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/biossíntese , Proteínas de Neoplasias/biossíntese , Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/metabolismo , Neoplasias/terapia
3.
Cancer Immunol Immunother ; 68(11): 1839-1853, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31222484

RESUMO

Despite the significant progress in tumor prevention, early detection, diagnosis and treatment made over recent decades, cancer is still an enormous public health challenge all around the world, with the number of people affected increasing every year. A great deal of effort is therefore being devoted to the search for novel safe, effective and economically sustainable treatments for the growing population of neoplastic patients. One main obstacle to this process is the extremely low percentage of therapeutic approaches that, after successfully passing pre-clinical testing, actually demonstrate activity when finally tested in humans. This disappointing and expensive failure rate is partly due to the pre-clinical murine models used for in vivo testing, which cannot faithfully recapitulate the multifaceted nature and evolution of human malignancies. These features are better mirrored in natural disease models, i.e., companion animals affected by cancers. Herein, we discuss the relevance of spontaneous canine tumors for the evaluation of the safety and anti-tumor activity of novel therapeutic strategies before in-human trials, and present our experience in the development of a vaccine that targets chondroitin sulphate proteoglycan (CSPG)4 as an example of these comparative oncology studies.


Assuntos
Neoplasias/imunologia , Neoplasias/terapia , Animais , Modelos Animais de Doenças , Doenças do Cão/imunologia , Doenças do Cão/terapia , Cães , Humanos , Imunoterapia/métodos
4.
Cancer Immunol Immunother ; 68(1): 131-141, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29947961

RESUMO

Tumor relapse and metastatic spreading act as major hindrances to achieve complete cure of breast cancer. Evidence suggests that cancer stem cells (CSC) would function as a reservoir for the local and distant recurrence of the disease, due to their resistance to radio- and chemotherapy and their ability to regenerate the tumor. Therefore, the identification of appropriate molecular targets expressed by CSC may be critical in the development of more effective therapies. Our studies focused on the identification of mammary CSC antigens and on the development of CSC-targeting vaccines. We compared the transcriptional profile of CSC-enriched tumorspheres from an Her2+ breast cancer cell line with that of the more differentiated parental cells. Among the molecules strongly upregulated in tumorspheres we selected the transmembrane amino-acid antiporter xCT. In this review, we summarize the results we obtained with different xCT-targeting vaccines. We show that, despite xCT being a self-antigen, vaccination was able to induce a humoral immune response that delayed primary tumor growth and strongly impaired pulmonary metastasis formation in mice challenged with tumorsphere-derived cells. Moreover, immunotargeting of xCT was able to increase CSC chemosensitivity to doxorubicin, suggesting that it may act as an adjuvant to chemotherapy. In conclusion, our approach based on the comparison of the transcriptome of tumorspheres and parental cells allowed us to identify a novel CSC-related target and to develop preclinical therapeutic approaches able to impact on CSC biology, and therefore, hampering tumor growth and dissemination.


Assuntos
Sistema y+ de Transporte de Aminoácidos/imunologia , Neoplasias da Mama/imunologia , Vacinas Anticâncer/imunologia , Células-Tronco Neoplásicas/imunologia , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/terapia , Camundongos Endogâmicos BALB C
5.
Curr Top Microbiol Immunol ; 405: 99-122, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-25294003

RESUMO

The fact that cancer immunotherapy is considered to be a safe and successful weapon for use in combination with surgery, radiation, and chemotherapy treatments means that it has recently been chosen as Breakthrough of the Year 2013 by Science editors. Anticancer vaccines have been extensively tested, in this field, both in preclinical cancer models and in the clinic. However, tumor-associated antigens (TAAs) are often self-tolerated molecules and cancer patients suffer from strong immunosuppressive effects, meaning that the triggering of an effective anti-tumor immune response is difficult. One possible means to overcome immunological tolerance to self-TAAs is of course the use of vaccines that code for xenogeneic proteins. However, a low-affinity antibody response against the self-homologous protein expressed by cancer cells is generally induced by xenovaccination. This issue becomes extremely limiting when working with tumors in which the contribution of the humoral rather than the cellular immune response is required if tumor growth is to be hampered. A possible way to avoid this problem is to use hybrid vaccines which code for chimeric proteins that include both homologous and xenogeneic moieties. In fact, a superior protective anti-tumor immune response against ErbB2+ transplantable and autochthonous mammary tumors was observed over plasmids that coded for the fully rat or fully human proteins when hybrid plasmids that coded for chimeric rat/human ErbB2 protein were tested in ErbB2 transgenic mice. In principle, these findings may become the basis for a new rational means of designing effective vaccines against TAAs.


Assuntos
Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Quimera/imunologia , Xenoenxertos/imunologia , Tolerância Imunológica/imunologia , Imunoterapia/métodos , Vacinas de DNA/imunologia , Animais , Antígenos de Neoplasias/imunologia , Humanos , Camundongos , Ratos , Vacinas de DNA/genética
6.
Int J Mol Sci ; 19(3)2018 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-29534457

RESUMO

Despite several therapeutic advances, malignant melanoma still remains a fatal disease for which novel and long-term curative treatments are needed. The successful development of innovative therapies strongly depends on the availability of appropriate pre-clinical models. For this purpose, several mouse models holding the promise to provide insight into molecular biology and clinical behavior of melanoma have been generated. The most relevant ones and their contribution for the advancement of therapeutic approaches for the treatment of human melanoma patients will be here summarized. However, as models, mice do not recapitulate all the features of human melanoma, thus their strengths and weaknesses need to be carefully identified and considered for the translation of the results into the human clinics. In this panorama, the concept of comparative oncology acquires a priceless value. The revolutionary importance of spontaneous canine melanoma as a translational model for the pre-clinical investigation of melanoma progression and treatment will be here discussed, with a special consideration to the development of innovative immunotherapeutic approaches.


Assuntos
Modelos Animais de Doenças , Doenças do Cão/terapia , Avaliação Pré-Clínica de Medicamentos/métodos , Imunoterapia/métodos , Melanoma/terapia , Animais , Doenças do Cão/tratamento farmacológico , Cães , Avaliação Pré-Clínica de Medicamentos/normas , Humanos , Imunoterapia/normas , Melanoma/tratamento farmacológico , Camundongos
7.
J Transl Med ; 15(1): 151, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28668095

RESUMO

Thanks to striking progress in both the understanding of anti-tumor immune response and the characterization of several tumor associated antigens (TAA), a more rational design and more sophisticated strategies for anti-tumor vaccination have been possible. However, the effectiveness of cancer vaccines in clinical trial is still partial, indicating that additional studies are needed to optimize their design and their pre-clinical testing. Indeed, anti-tumor vaccination success relies on the choice of the best TAA to be targeted and on the translational power of the pre-clinical model used to assess its efficacy. The chondroitin sulfate proteoglycan-4 (CSPG4) is a cell surface proteoglycan overexpressed in a huge range of human and canine neoplastic lesions by tumor cells, tumor microenvironment and cancer initiating cells. CSPG4 plays a central role in the oncogenic pathways required for malignant progression and metastatization. Thanks to these features and to its poor expression in adult healthy tissues, CSPG4 represents an ideal oncoantigen and thus an attractive target for anti-tumor immunotherapy. In this review we explore the potential of CSPG4 immune-targeting. Moreover, since it has been clearly demonstrated that spontaneous canine tumors mimic the progression of human malignancies better than any other pre-clinical model available so far, we reported also our results indicating that CSPG4 DNA vaccination is safe and effective in significantly increasing the survival of canine melanoma patients. Therefore, anti-CSPG4 vaccination strategy could have a substantial impact for the treatment of the wider population of spontaneous CSPG4-positive tumor affected dogs with a priceless translational value and a revolutionary implication for human oncological patients.


Assuntos
Antígenos de Neoplasias/metabolismo , Antígenos/metabolismo , Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Proteoglicanas/metabolismo , Pesquisa Translacional Biomédica , Animais , Antígenos/química , Humanos , Neoplasias/metabolismo , Proteoglicanas/química , Vacinação
8.
Plant Biotechnol J ; 14(1): 153-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25865255

RESUMO

The rat ErbB2 (rErbB2) protein is a 185-kDa glycoprotein belonging to the epidermal growth factor-related proteins (ErbB) of receptor tyrosine kinases. Overexpression and mutations of ErbB proteins lead to several malignancies including breast, lung, pancreatic, bladder and ovary carcinomas. ErbB2 is immunogenic and is an ideal candidate for cancer immunotherapy. We investigated the possibility of expressing the extracellular (EC) domain of rErbB2 (653 amino acids, aa) in Nicotiana benthamiana plants, testing the influence of the 23 aa transmembrane (TM) sequence on protein accumulation. Synthetic variants of the rErbB2 gene portion encoding the EC domain, optimized with a human codon usage and either linked to the full TM domain (rErbB2_TM, 676 aa), to a portion of it (rErbB2-pTM, 662 aa), or deprived of it (rErbB2_noTM, 653 aa) were cloned in the pEAQ-HT expression vector as 6X His tag fusions. All rErbB2 variants (72-74.5 kDa) were transiently expressed, but the TM was detrimental for rErbB2 EC accumulation. rERbB2_noTM was the most expressed protein; it was solubilized and purified with Nickel affinity resin. When crude soluble extracts expressing rErbB2_noTM were administered to BALB/c mice, specific rErbB2 immune responses were triggered. A potent antitumour activity was induced when vaccinated mice were challenged with syngeneic transplantable ErbB2(+) mammary carcinoma cells. To our knowledge, this is the first report of expression of rErbB2 in plants and of its efficacy in inducing a protective antitumour immune response, opening interesting perspectives for further immunological testing.


Assuntos
Imunidade , Neoplasias Mamárias Animais/imunologia , Nicotiana/genética , Receptor ErbB-2/biossíntese , Receptor ErbB-2/imunologia , Sequência de Aminoácidos , Animais , Anticorpos/imunologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Imunidade/efeitos dos fármacos , Imunização , Camundongos Endogâmicos C57BL , Plantas Geneticamente Modificadas , Domínios Proteicos , Ratos , Receptor ErbB-2/química , Receptor ErbB-2/isolamento & purificação , Solubilidade , Nicotiana/imunologia
9.
Cancer Immunol Immunother ; 64(2): 137-48, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25548094

RESUMO

Human cancer is so complex that in vivo preclinical models are needed if effective therapies are to be developed. Naturally occurring cancers in companion animals are therefore a great resource, as shown by the remarkable growth that comparative oncology has seen over the last 30 years. Cancer has become a leading cause of death in companion animals now that more pets are living long enough to develop the disease. Furthermore, more owners are seeking advanced and novel therapies for their pets as they are very much considered family members. Living in the same environments, pets and humans are often afflicted by the same types of cancer which show similar behavior and, in some species, express the same antigen molecules. The treatment of pet tumors using novel therapies is of compelling translational significance.


Assuntos
Neoplasias/etiologia , Neoplasias/terapia , Pesquisa Translacional Biomédica , Animais , Modelos Animais de Doenças , Humanos , Imunidade , Imunoterapia
10.
BMC Genomics ; 15 Suppl 3: S1, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25077564

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) accounts for 81% of all cases of lung cancer and they are often fatal because 60% of the patients are diagnosed at an advanced stage. Besides the need for earlier diagnosis, there is a high need for additional effective therapies. In this work, we investigated the feasibility of a lung cancer progression mouse model, mimicking features of human aggressive NSCLC, as biological reservoir for potential therapeutic targets and biomarkers. RESULTS: We performed RNA-seq profiling on total RNA extracted from lungs of a 30 week-old K-ras(LA1)/p53(R172HΔg) and wild type (WT) mice to detect fusion genes and gene/exon-level differential expression associated to the increase of tumor mass. Fusion events were not detected in K-ras(LA1)/p53(R172HΔg) tumors. Differential expression at exon-level detected 33 genes with differential exon usage. Among them nine, i.e. those secreted or expressed on the plasma membrane, were used for a meta-analysis of more than 500 NSCLC RNA-seq transcriptomes. None of the genes showed a significant correlation between exon-level expression and disease prognosis. Differential expression at gene-level allowed the identification of 1513 genes with a significant increase in expression associated to tumor mass increase. 74 genes, i.e. those secreted or expressed on the plasma membrane, were used for a meta-analysis of two transcriptomics datasets of human NSCLC samples, encompassing more than 900 samples. SPP1 was the only molecule whose over-expression resulted statistically related to poor outcome regarding both survival and metastasis formation. Two other molecules showed over-expression associated to poor outcome due to metastasis formation: GM-CSF and ADORA3. GM-CSF is a secreted protein, and we confirmed its expression in the supernatant of a cell line derived by a K-ras(LA1)/p53(R172HΔg) mouse tumor. ADORA3 is instead involved in the induction of p53-mediated apoptosis in lung cancer cell lines. Since in our model p53 is inactivated, ADORA3 does not negatively affect tumor growth but remains expressed on tumor cells. Thus, it could represent an interesting target for the development of antibody-targeted therapy on a subset of NSCLC, which are p53 null and ADORA3 positive. CONCLUSIONS: Our study provided a complete transcription overview of the K-ras(LA1)/p53(R172HΔg) mouse NSCLC model. This approach allowed the detection of ADORA3 as a potential target for antibody-based therapy in p53 mutated tumors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Animais , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Genes p53 , Genes ras , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/mortalidade , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Knockout , Terapia de Alvo Molecular , Osteopontina/genética , Prognóstico , Transcriptoma , Carga Tumoral
11.
Am J Pathol ; 182(6): 2058-70, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23623609

RESUMO

In an attempt to reveal deregulated miRNAs associated with the progression of carcinomas developed in BALB-neuT transgenic mice, we found increased expression of miR-135b during malignancy. Relevantly, we observed that miR-135b is up-regulated in basal or normal-like human breast cancers, and it correlates with patient survival and early metastatization. Therefore, we investigated its biological functions by modulating its expression (up- or down-regulation) in mammary tumor cells. Although no effect was observed on proliferation in cell culture and in orthotopically injected mice, miR-135b was able to control cancer cell stemness in a mammosphere assay, anchorage-independent growth in vitro, and lung cancer cell dissemination in mice after tail vein injections. Focusing on the miR-135b molecular mechanism, we observed that miR-135b controls malignancy via its direct targets, midline 1 (MID1) and mitochondrial carrier homolog 2 (MTCH2), as proved by biochemical and functional rescuing/phenocopying experiments. Consistently, an anti-correlation between miR-135b and MID1 or MTCH2 was found in human primary tumor samples. In conclusion, our research led us to the identification of miR-135b and its targets, MID1 and MTCH2, as relevant coordinators of mammary gland tumor progression.


Assuntos
Neoplasias Mamárias Experimentais/metabolismo , MicroRNAs/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas/metabolismo , Animais , Neoplasias da Mama/metabolismo , Proliferação de Células , Progressão da Doença , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/fisiologia , Genes erbB-2 , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , MicroRNAs/biossíntese , MicroRNAs/genética , Invasividade Neoplásica , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , RNA Neoplásico/genética , Células Tumorais Cultivadas , Ubiquitina-Proteína Ligases , Regulação para Cima/fisiologia
12.
Sci Data ; 11(1): 159, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307867

RESUMO

Single-cell RNA sequencing (scRNA-seq) has emerged as a vital tool in tumour research, enabling the exploration of molecular complexities at the individual cell level. It offers new technical possibilities for advancing tumour research with the potential to yield significant breakthroughs. However, deciphering meaningful insights from scRNA-seq data poses challenges, particularly in cell annotation and tumour subpopulation identification. Efficient algorithms are therefore needed to unravel the intricate biological processes of cancer. To address these challenges, benchmarking datasets are essential to validate bioinformatics methodologies for analysing single-cell omics in oncology. Here, we present a 10XGenomics scRNA-seq experiment, providing a controlled heterogeneous environment using lung cancer cell lines characterised by the expression of seven different driver genes (EGFR, ALK, MET, ERBB2, KRAS, BRAF, ROS1), leading to partially overlapping functional pathways. Our dataset provides a comprehensive framework for the development and validation of methodologies for analysing cancer heterogeneity by means of scRNA-seq.


Assuntos
Benchmarking , Neoplasias Pulmonares , Humanos , Algoritmos , Perfilação da Expressão Gênica/métodos , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas/genética , Análise de Sequência de RNA/métodos , Análise da Expressão Gênica de Célula Única , Linhagem Celular Tumoral
13.
Front Vet Sci ; 9: 803093, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35224082

RESUMO

In veterinary oncology, canine melanoma is still a fatal disease for which innovative and long-lasting curative treatments are urgently required. Considering the similarities between canine and human melanoma and the clinical revolution that immunotherapy has instigated in the treatment of human melanoma patients, special attention must be paid to advancements in tumor immunology research in the veterinary field. Herein, we aim to discuss the most relevant knowledge on the immune landscape of canine melanoma and the most promising immunotherapeutic approaches under investigation. Particular attention will be dedicated to anti-cancer vaccination, and, especially, to the encouraging clinical results that we have obtained with DNA vaccines directed against chondroitin sulfate proteoglycan 4 (CSPG4), which is an appealing tumor-associated antigen with a key oncogenic role in both canine and human melanoma. In parallel with advances in therapeutic options, progress in the identification of easily accessible biomarkers to improve the diagnosis and the prognosis of melanoma should be sought, with circulating small extracellular vesicles emerging as strategically relevant players. Translational advances in melanoma management, whether achieved in the human or veterinary fields, may drive improvements with mutual clinical benefits for both human and canine patients; this is where the strength of comparative oncology lies.

14.
Cells ; 11(1)2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35011736

RESUMO

Teneurin 4 (TENM4) is a transmembrane protein that is codified by the ODZ4 gene and is involved in nervous system development, neurite outgrowth, and neuronal differentiation. In line with its involvement in the nervous system, TENM4 has also been implicated in several mental disorders such as bipolar disorder, schizophrenia, and autism. TENM4 mutations and rearrangements have recently been identified in a number of tumors. This, combined with impaired expression in tumors, suggests that it may potentially be involved in tumorigenesis. Most of the TENM4 mutations that are observed in tumors occur in breast cancer, in which TENM4 plays a role in cells' migration and stemness. However, the functional role that TENM4 plays in breast cancer still needs to be better evaluated, and further studies are required to better understand the involvement of TENM4 in breast cancer progression. Herein, we review the currently available data for TENM4's role in breast cancer and propose its use as both a novel target with which to ameliorate patient prognosis and as a potential biomarker. Moreover, we also report data on the tumorigenic role of miR-708 deregulation and the possible use of this miRNA as a novel therapeutic molecule, as miR-708 is spliced out from TENM4 mRNA.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Carcinogênese/genética , Carcinogênese/patologia , Glicoproteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Biomarcadores Tumorais/metabolismo , Feminino , Humanos , Terapia de Alvo Molecular
15.
Life (Basel) ; 12(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36556464

RESUMO

Osteosarcoma (OSA) is the most common pediatric malignant bone tumor. Although surgery together with neoadjuvant/adjuvant chemotherapy has improved survival for localized OSA, most patients develop recurrent/metastatic disease with a dismally poor outcome. Therapeutic options have not improved for these OSA patients in recent decades. As OSA is a rare and "orphan" tumor, with no distinct targetable driver antigens, the development of new efficient therapies is still an unmet and challenging clinical need. Appropriate animal models are therefore critical for advancement in the field. Despite the undoubted relevance of pre-clinical mouse models in cancer research, they present some intrinsic limitations that may be responsible for the low translational success of novel therapies from the pre-clinical setting to the clinic. From this context emerges the concept of comparative oncology, which has spurred the study of pet dogs as a uniquely valuable model of spontaneous OSA that develops in an immune-competent system with high biological and clinical similarities to corresponding human tumors, including in its metastatic behavior and resistance to conventional therapies. For these reasons, the translational power of studies conducted on OSA-bearing dogs has seen increasing recognition. The most recent and relevant veterinary investigations of novel combinatorial approaches, with a focus on immune-based strategies, that can most likely benefit both canine and human OSA patients have been summarized in this commentary.

16.
J Immunother Cancer ; 10(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35580930

RESUMO

BACKGROUND: Melanoma is the most lethal form of skin cancer in humans. Conventional therapies have limited efficacy, and overall response is still unsatisfactory considering that immune checkpoint inhibitors induce lasting clinical responses only in a low percentage of patients. This has prompted us to develop a vaccination strategy employing the tumor antigen chondroitin sulfate proteoglycan (CSPG)4 as a target. METHODS: To overcome the host's unresponsiveness to the self-antigen CSPG4, we have taken advantage of the conservation of CSPG4 sequence through phylogenetic evolution, so we have used a vaccine, based on a chimeric DNA molecule encompassing both human (Hu) and dog (Do) portions of CSPG4 (HuDo-CSPG4). We have tested its safety and immunogenicity (primary objectives), along with its therapeutic efficacy (secondary outcome), in a prospective, non-randomized, veterinary clinical trial enrolling 80 client-owned dogs with surgically resected, CSPG4-positive, stage II-IV oral melanoma. RESULTS: Vaccinated dogs developed anti-Do-CSPG4 and Hu-CSPG4 immune response. Interestingly, the antibody titer in vaccinated dogs was significantly associated with the overall survival. Our data suggest that there may be a contribution of the HuDo-CSPG4 vaccination to the improvement of survival of vaccinated dogs as compared with controls treated with conventional therapies alone. CONCLUSIONS: HuDo-CSPG4 adjuvant vaccination was safe and immunogenic in dogs with oral melanoma, with potential beneficial effects on the course of the disease. Thanks to the power of naturally occurring canine tumors as predictive models for cancer immunotherapy response, these data may represent a basis for the translation of this approach to the treatment of human patients with CSPG4-positive melanoma subtypes.


Assuntos
Vacinas Anticâncer , Proteoglicanas de Sulfatos de Condroitina , Doenças do Cão , Melanoma , Proteínas de Membrana , Neoplasias Bucais , Animais , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Proteoglicanas de Sulfatos de Condroitina/imunologia , Doenças do Cão/tratamento farmacológico , Doenças do Cão/imunologia , Cães , Melanoma/tratamento farmacológico , Melanoma/veterinária , Proteínas de Membrana/imunologia , Mimetismo Molecular/imunologia , Neoplasias Bucais/terapia , Neoplasias Bucais/veterinária , Filogenia , Estudos Prospectivos , Melanoma Maligno Cutâneo
17.
Oncoimmunology ; 11(1): 2086752, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756841

RESUMO

Cancer stem cells (CSCs) are the main drivers of disease progression and chemotherapy resistance in breast cancer. Tumor progression and chemoresistance might then be prevented by CSC-targeted therapies. We previously demonstrated that Toll-like Receptor (TLR)2 is overexpressed in CSCs and fuels their self-renewal. Here, we show that high TLR2 expression is linked to poor prognosis in breast cancer patients, therefore representing a candidate target for breast cancer treatment. By using a novel mammary cancer-prone TLR2KO mouse model, we demonstrate that TLR2 is required for CSC pool maintenance and for regulatory T cell induction. Accordingly, cancer-prone TLR2KO mice display delayed tumor onset and increased survival. Transplantation of TLR2WT and TLR2KO cancer cells in either TLR2WT or TLR2KO hosts shows that tumor initiation is mostly sustained by TLR2 expression in cancer cells. TLR2 host deficiency partially impairs cancer cell growth, implying a pro-tumorigenic effect of TLR2 expression in immune cells. Finally, we demonstrate that doxorubicin-induced release of HMGB1 activates TLR2 signaling in cancer cells, leading to a chemotherapy-resistant phenotype. Unprecedented use of TLR2 inhibitors invivo reduces tumor growth and potentiates doxorubicin efficacy with no negative impact on the host immune system, opening new perspectives for the treatment of breast cancer patients.


Assuntos
Neoplasias da Mama , Receptor 2 Toll-Like , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Progressão da Doença , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Camundongos , Camundongos Knockout , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo
18.
Biomedicines ; 10(2)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35203439

RESUMO

Amplification or mutation of the Her2 oncoantigen in human mammary glands leads to the development of an aggressive breast carcinoma. Several features of this breast carcinoma are reproduced in mammary carcinomas that spontaneously arise in female transgenic mice bearing the activated rat Her2 oncogene under transcriptional control of the mouse mammary tumor virus promoter-BALB-neuT (neuT) mice. We previously demonstrated that carcinoma progression in neuT mice can be prevented by DNA vaccination with RHuT, a plasmid coding for a chimeric rat/human Her2 protein. RHuT vaccination exerts an antitumor effect, mostly mediated by the induction of a strong anti-rat Her2 antibody response. IgG induced by RHuT vaccine mainly acts by blocking Her2 signaling, thus impairing cell cycle progression and inducing apoptosis of cancer cells, but other indirect effector mechanisms could be involved in the antibody-mediated protection. The recruitment of cells with perforin-dependent cytotoxic activity, able to perform antibody-dependent cellular cytotoxicity, has already been investigated. Less is known about the role of the complement system in sustaining antitumor response through complement-dependent cytotoxicity and cellular cytotoxicity in vaccinated mice. This work highlights that the weight of such mechanisms in RHuT-induced cancer protection is different in transplantable versus autochthonous Her2+ tumor models. These results may shed new light on the effector mechanisms involved in antibody-dependent anti-cancer responses, which might be exploited to ameliorate the therapy of Her2+ breast cancer.

19.
Vet Comp Oncol ; 20(1): 189-197, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34392602

RESUMO

Prognosis of canine oral malignant melanoma encompasses clinical, histological and immunohistochemical parameters. The aim of this study was to evaluate the prognostic impact of bone invasion in oral canine melanoma. Sixty-eight dogs bearing oral melanoma staged II and III that underwent surgery and anti-CSPG4 electrovaccination, with available histological data and a minimum follow up of minimum 1 year, were retrospectively selected. Bone invasion was detected on imaging and/or histology. Median survival time of dogs with evidence of bone invasion (group 1) was 397 days and significantly shorter compared with dogs with oral melanomas not invading the bone (group 2, 1063 days). Dogs with tumours localised at the level of the cheek, lip, tongue and soft palate (soft tissue - group 3) lived significantly longer compared with dogs having tumours within the gingiva of the maxilla or mandible (hard tissue - group 4) with a median survival time of 1063 and 470 days, respectively. Within group 4, the subgroup of dogs with tumours not invading the bone (group 5) showed a significant prolonged survival time (972 days) in comparison with dogs of group 1 (bone invasion group). Similar results were obtained for the disease-free intervals amongst the different groups. Statistical analysis showed that Ki67 and mitotic count were correlated with shorter survival in patients of group 1 (with bone invasion). Bone invasion should always be assessed since it appears to be a negative prognostic factor.


Assuntos
Doenças do Cão , Melanoma , Neoplasias Bucais , Animais , Doenças do Cão/tratamento farmacológico , Cães , Melanoma/tratamento farmacológico , Melanoma/veterinária , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/cirurgia , Neoplasias Bucais/veterinária , Prognóstico , Estudos Retrospectivos , Neoplasias Cutâneas , Vacinação/veterinária , Melanoma Maligno Cutâneo
20.
Cancers (Basel) ; 14(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36011047

RESUMO

The advent of trastuzumab has significantly improved the prognosis of HER2-positive (HER2+) breast cancer patients; nevertheless, drug resistance limits its clinical benefit. Anti-HER2 active immunotherapy represents an attractive alternative strategy, but effective immunization needs to overcome the patient's immune tolerance against the self-HER2. Phage display technology, taking advantage of phage intrinsic immunogenicity, permits one to generate effective cancer vaccines able to break immune tolerance to self-antigens. In this study, we demonstrate that both preventive and therapeutic vaccination with M13 bacteriophages, displaying the extracellular (EC) and transmembrane (TM) domains of human HER2 or its Δ16HER2 splice variant on their surface (ECTM and Δ16ECTM phages), delayed mammary tumor onset and reduced tumor growth rate and multiplicity in ∆16HER2 transgenic mice, which are tolerant to human ∆16HER2. This antitumor protection correlated with anti-HER2 antibody production. The molecular mechanisms underlying the anticancer effect of vaccine-elicited anti-HER2 antibodies were analyzed in vitro against BT-474 human breast cancer cells, sensitive or resistant to trastuzumab. Immunoglobulins (IgG) purified from immune sera reduced cell viability mainly by impairing ERK phosphorylation and reactivating retinoblastoma protein function in both trastuzumab-sensitive and -resistant BT-474 cells. In conclusion, we demonstrated that phage-based HER2 vaccines impair mammary cancer onset and progression, opening new perspectives for HER2+ breast cancer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA