RESUMO
Although limited proteolysis of the histone H3 N-terminal tail (H3NT) is frequently observed during mammalian differentiation, the specific genomic sites targeted for H3NT proteolysis and the functional significance of H3NT cleavage remain largely unknown. Here we report the first method to identify and examine H3NT-cleaved regions in mammals, called chromatin immunoprecipitation (ChIP) of acetylated chromatin (ChIPac). By applying ChIPac combined with deep sequencing (ChIPac-seq) to an established cell model of osteoclast differentiation, we discovered that H3NT proteolysis is selectively targeted near transcription start sites of a small group of genes and that most H3NT-cleaved genes displayed significant expression changes during osteoclastogenesis. We also discovered that the principal H3NT protease of osteoclastogenesis is matrix metalloproteinase 9 (MMP-9). In contrast to other known H3NT proteases, MMP-9 primarily cleaved H3K18-Q19 in vitro and in cells. Furthermore, our results support CBP/p300-mediated acetylation of H3K18 as a central regulator of MMP-9 H3NT protease activity both in vitro and at H3NT cleavage sites during osteoclastogenesis. Importantly, we found that abrogation of H3NT proteolysis impaired osteoclastogenic gene activation concomitant with defective osteoclast differentiation. Our collective results support the necessity of MMP-9-dependent H3NT proteolysis in regulating gene pathways required for proficient osteoclastogenesis.
Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Osteoclastos/citologia , Osteoclastos/enzimologia , Acetilação , Animais , Células Cultivadas , Camundongos , ProteóliseRESUMO
Protein lysine methyltransferases (PKMTs) regulate diverse physiological processes including transcription and the maintenance of genomic integrity. Genetic studies suggest that the PKMTs SUV420H1 and SUV420H2 facilitate proficient nonhomologous end-joining (NHEJ)-directed DNA repair by catalyzing the di- and trimethylation (me2 and me3, respectively) of lysine 20 on histone 4 (H4K20). Here we report the identification of A-196, a potent and selective inhibitor of SUV420H1 and SUV420H2. Biochemical and co-crystallization analyses demonstrate that A-196 is a substrate-competitive inhibitor of both SUV4-20 enzymes. In cells, A-196 induced a global decrease in H4K20me2 and H4K20me3 and a concomitant increase in H4K20me1. A-196 inhibited 53BP1 foci formation upon ionizing radiation and reduced NHEJ-mediated DNA-break repair but did not affect homology-directed repair. These results demonstrate the role of SUV4-20 enzymatic activity in H4K20 methylation and DNA repair. A-196 represents a first-in-class chemical probe of SUV4-20 to investigate the role of histone methyltransferases in genomic integrity.
Assuntos
Inibidores Enzimáticos/farmacologia , Epigênese Genética/efeitos dos fármacos , Instabilidade Genômica/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Linhagem Celular Tumoral , Cristalografia por Raios X , Reparo do DNA/efeitos dos fármacos , Inibidores Enzimáticos/química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Metilação/efeitos dos fármacos , Modelos Moleculares , Estrutura MolecularRESUMO
Although the PR-Set7/Set8/KMT5a histone H4 Lys 20 monomethyltransferase (H4K20me1) plays an essential role in mammalian cell cycle progression, especially during G2/M, it remained unknown how PR-Set7 itself was regulated. In this study, we discovered the mechanisms that govern the dynamic regulation of PR-Set7 during mitosis, and that perturbation of these pathways results in defective mitotic progression. First, we found that PR-Set7 is phosphorylated at Ser 29 (S29) specifically by the cyclin-dependent kinase 1 (cdk1)/cyclinB complex, primarily from prophase through early anaphase, subsequent to global accumulation of H4K20me1. While S29 phosphorylation did not affect PR-Set7 methyltransferase activity, this event resulted in the removal of PR-Set7 from mitotic chromosomes. S29 phosphorylation also functions to stabilize PR-Set7 by directly inhibiting its interaction with the anaphase-promoting complex (APC), an E3 ubiquitin ligase. The dephosphorylation of S29 during late mitosis by the Cdc14 phosphatases was required for APC(cdh1)-mediated ubiquitination of PR-Set7 and subsequent proteolysis. This event is important for proper mitotic progression, as constitutive phosphorylation of PR-Set7 resulted in a substantial delay between metaphase and anaphase. Collectively, we elucidated the molecular mechanisms that control PR-Set7 protein levels during mitosis, and demonstrated that its orchestrated regulation is important for normal mitotic progression.
Assuntos
Células/citologia , Células/enzimologia , Regulação Enzimológica da Expressão Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Mitose/fisiologia , Sequência de Aminoácidos , Proteína Quinase CDC2/metabolismo , Cromossomos/metabolismo , Células HEK293 , Células HeLa , Histona-Lisina N-Metiltransferase/genética , Humanos , Dados de Sequência Molecular , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Proteínas Tirosina Fosfatases , Alinhamento de Sequência , UbiquitinaçãoRESUMO
SET and MYND domain containing protein 3 (SMYD3) is a histone methyltransferase, which has been implicated in cell growth and cancer pathogenesis. Increasing evidence suggests that SMYD3 can influence distinct oncogenic processes by acting as a gene-specific transcriptional regulator. However, the mechanistic aspects of SMYD3 transactivation and whether SMYD3 acts in concert with other transcription modulators remain unclear. Here, we show that SMYD3 interacts with the human positive coactivator 4 (PC4) and that such interaction potentiates a group of genes whose expression is linked to cell proliferation and invasion. SMYD3 cooperates functionally with PC4, because PC4 depletion results in the loss of SMYD3-mediated H3K4me3 and target gene expression. Individual depletion of SMYD3 and PC4 diminishes the recruitment of both SMYD3 and PC4, indicating that SMYD3 and PC4 localize at target genes in a mutually dependent manner. Artificial tethering of a SMYD3 mutant incapable of binding to its cognate elements and interacting with PC4 to target genes is sufficient for achieving an active transcriptional state in SMYD3-deficient cells. These observations suggest that PC4 contributes to SMYD3-mediated transactivation primarily by stabilizing SMYD3 occupancy at target genes. Together, these studies define expanded roles for SMYD3 and PC4 in gene regulation and provide an unprecedented documentation of their cooperative functions in stimulating oncogenic transcription.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Neoplasias/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Linhagem Celular Tumoral , Proliferação de Células/genética , Histonas/metabolismo , Humanos , Invasividade Neoplásica , Neoplasias/metabolismoRESUMO
Fibroblast growth factor receptor 2 (FGFR2) promotes osteoprogenitor proliferation and differentiation during bone development, yet how the receptor elicits these distinct cellular responses remains unclear. Analysis of the FGFR2-skeletal disorder bent bone dysplasia syndrome (BBDS) demonstrates that FGFR2, in addition to its canonical signaling activities at the plasma membrane, regulates bone formation from within the nucleolus. Previously, we showed that the unique FGFR2 mutations that cause BBDS reduce receptor levels at the plasma membrane and diminish responsiveness to extracellular FGF2. In this study, we find that these mutations, despite reducing canonical signaling, enhance nucleolar occupancy of FGFR2 at the ribosomal DNA (rDNA) promoter. Nucleolar FGFR2 activates rDNA transcription via interactions with FGF2 and UBF1 by de-repressing RUNX2. An increase in the nucleolar activity of FGFR2 in BBDS elevates levels of ribosomal RNA in the developing bone, consequently promoting osteoprogenitor cell proliferation and decreasing differentiation. Identifying FGFR2 as a transcriptional regulator of rDNA in bone unexpectedly reveals a nucleolar route for FGF signaling that allows for independent regulation of osteoprogenitor cell proliferation and differentiation.
Assuntos
Acrocefalossindactilia/genética , Acrocefalossindactilia/metabolismo , Núcleo Celular/metabolismo , DNA Ribossômico/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Transcrição Gênica , Animais , Sítios de Ligação , Diferenciação Celular , Linhagem Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Mutação , Osteoblastos/citologia , Osteoblastos/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Ligação Proteica , Transporte Proteico , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Sequências Repetitivas de Ácido NucleicoRESUMO
Genome-wide association studies of colorectal cancer (CRC) have identified a number of common variants associated with modest risk, including rs3802842 at chromosome 11q23.1. Several genes map to this region but rs3802842 does not map to any known transcribed or regulatory sequences. We reasoned, therefore, that rs3802842 is not the functional single-nucleotide polymorphism (SNP), but is in linkage disequilibrium (LD) with a functional SNP(s). We performed ChIP-seq for histone modifications in SW480 and HCT-116 CRC cells, and incorporated ChIP-seq and DNase I hypersensitivity data available through ENCODE within a 137-kb genomic region containing rs3802842 on 11q23.1. We identified SNP rs10891246 in LD with rs3802842 that mapped within a bidirectional promoter region of genes C11orf92 and C11orf93. Following mutagenesis to the risk allele, the promoter demonstrated lower levels of reporter gene expression. A second SNP rs7130173 was identified in LD with rs3802842 that mapped to a candidate enhancer region, which showed strong unidirectional activity in both HCT-116 and SW480 CRC cells. The risk allele of rs7130173 demonstrated reduced enhancer activity compared with the common allele, and reduced nuclear protein binding affinity in electromobility shift assays compared with the common allele suggesting differential transcription factor (TF) binding. SNPs rs10891246 and rs7130173 are on the same haplotype, and expression quantitative trait loci (eQTL) analyses of neighboring genes implicate C11orf53, C11orf92 and C11orf93 as candidate target genes. These data imply that rs10891246 and rs7130173 are functional SNPs mapping to 11q23.1 and that C11orf53, C11orf92 and C11orf93 represent novel candidate target genes involved in CRC etiology.
Assuntos
Mapeamento Cromossômico , Cromossomos Humanos Par 11/genética , Neoplasias Colorretais/genética , Elementos Facilitadores Genéticos/genética , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Luciferases/metabolismo , Repetições de Microssatélites/genética , Locos de Características Quantitativas , Fatores de Risco , Fatores de Transcrição/metabolismo , Células Tumorais CultivadasRESUMO
PR-Set7/Set8/KMT5a is the sole histone H4 lysine 20 monomethyltransferase (H4K20me1) in metazoans and is essential for proper cell division and genomic stability. We unexpectedly discovered that normal cellular levels of monomethylated histone H3 lysine 9 (H3K9me1) were also dependent on PR-Set7, but independent of its catalytic activity. This observation suggested that PR-Set7 interacts with an H3K9 monomethyltransferase to establish the previously reported H4K20me1-H3K9me1 trans-tail 'histone code'. Here we show that PR-Set7 specifically and directly binds the C-terminus of the Riz1/PRDM2/KMT8 tumor suppressor and demonstrate that the N-terminal PR/SET domain of Riz1 preferentially monomethylates H3K9. The PR-Set7 binding domain was required for Riz1 nuclear localization and maintenance of the H4K20me1-H3K9me1 trans-tail 'histone code'. Although Riz1 can function as a repressor, Riz1/H3K9me1 was dispensable for the repression of genes regulated by PR-Set7/H4K20me1. Frameshift mutations resulting in a truncated Riz1 incapable of binding PR-Set7 occur frequently in various aggressive cancers. In these cancer cells, expression of wild-type Riz1 restored tumor suppression by decreasing proliferation and increasing apoptosis. These phenotypes were not observed in cells expressing either the Riz1 PR/SET domain or PR-Set7 binding domain indicating that Riz1 methyltransferase activity and PR-Set7 binding domain are both essential for Riz1 tumor suppressor function.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Código das Histonas , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/enzimologia , Proteínas de Ligação a DNA/química , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Histona-Lisina N-Metiltransferase/química , Humanos , Proteínas Nucleares/química , Domínios e Motivos de Interação entre Proteínas , Fatores de Transcrição/química , Proteínas Supressoras de Tumor/químicaRESUMO
PGC-1α4, a novel isoform of the transcriptional coactivator PGC-1α, was recently postulated to modulate the expression of anabolic and catabolic genes and therefore regulate skeletal muscle hypertrophy. Resting levels of PGC-1α4 messenger RNA (mRNA) expression were found to increase in healthy adults after resistance training. However, the acute effect of resistance exercise (RE) on PGC-1α4 expression in populations prone to progressive muscle loss, such as postmenopausal women, has not been evaluated. Here, we investigated alterations in mRNA expression of PGC-1α4 and PGC-1α1, a regulator of muscle oxidative changes, in postmenopausal women after high-intensity eccentric RE and analyzed these findings with respect to changes in insulin-like growth factor (IGF)-1 and catabolic gene expression. Nine postmenopausal women (age, 57.9 ± 3.2 years) performed 10 sets of 10 maximal eccentric repetitions of single-leg extension with 20-second rest periods between sets. Muscle biopsies were obtained from the vastus lateralis of the exercised leg before and 4 hours after the RE bout with mRNA expression determined by quantitative real-time polymerase chain reaction. No significant changes in the mRNA expression of either PGC-1α isoform were observed after acute eccentric RE (p > 0.05). IGF-1Ea mRNA expression significantly increased (p ≤ 0.05), whereas IGF-1Eb and mechano-growth factor (MGF) did not significantly change (p > 0.05). PGC-1α4 mRNA expression was associated with reduced mRNA expression of the catabolic gene myostatin (R = -0.88, p < 0.01), whereas MGF mRNA expression was associated with reduced mRNA expression of the catabolic gene FOXO3A (R = -0.81, p ≤ 0.05). These data demonstrate an attenuated response of PGC-1α isoforms to an acute bout of maximal eccentric exercise with short rest periods in postmenopausal women.
Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Pós-Menopausa/metabolismo , Treinamento Resistido , Idoso , Biópsia , Feminino , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Expressão Gênica , Humanos , Fator de Crescimento Insulin-Like I/genética , Pessoa de Meia-Idade , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismoRESUMO
SFMBT1 belongs to the malignant brain tumor domain-containing chromatin reader family that recognizes repressive histone marks and represses transcription. The biological functions and molecular basis underlying SFMBT1-mediated transcriptional repression are poorly elucidated. Here, our proteomic analysis revealed that SFMBT1 is associated with multiple transcriptional corepressor complexes, including CtBP/LSD1/HDAC complexes, polycomb repressive complexes, and malignant brain tumor family proteins, that collectively contribute to SFMBT1 repressor activity. During myogenesis, Sfmbt1 represses myogenic differentiation of cultured and primary myoblasts. Mechanistically, Sfmbt1 interacts with MyoD and mediates epigenetic silencing of MyoD target genes via recruitment of its associated corepressors and subsequent induction of epigenetic modifications and chromatin compaction. Therefore, our study identified novel mechanisms accounting for SFMBT1-mediated transcription repression and revealed an essential role of Sfmbt1 in regulating MyoD-mediated transcriptional silencing that is required for the maintenance of undifferentiated states of myogenic progenitor cells.
Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Inativação Gênica/fisiologia , Desenvolvimento Muscular/fisiologia , Proteínas Repressoras/metabolismo , Transcrição Gênica/fisiologia , Linhagem Celular , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Proteína MyoD/genética , Proteína MyoD/metabolismo , Proteômica/métodos , Proteínas Repressoras/genéticaRESUMO
How is RNA Polymerase II (RNAP) regulated at poised loci in embryonic stem cells? Recent work provides new insights into Ring1-mediated transcriptional control of this important subset of developmental regulatory genes.
Assuntos
Proteínas de Ligação a DNA/fisiologia , Células-Tronco Embrionárias/metabolismo , Histonas/metabolismo , RNA Polimerase II/fisiologia , Animais , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento , Histona Desmetilases com o Domínio Jumonji , Camundongos , Oxirredutases N-Desmetilantes/metabolismo , Complexo Repressor Polycomb 1 , Proteínas Repressoras , Ubiquitina-Proteína LigasesRESUMO
The NSD (nuclear receptor-binding SET domain protein) family encodes methyltransferases that are important in multiple aspects of development and disease. Perturbations in NSD family members can lead to Sotos syndrome and Wolf-Hirschhorn syndrome as well as cancers such as acute myeloid leukemia. Previous studies have implicated NSD1 (KMT3B) in transcription and methylation of histone H3 at lysine 36 (H3-K36), but its molecular mechanism in these processes remains largely unknown. Here we describe an NSD1 regulatory network in human cells. We show that NSD1 binds near various promoter elements and regulates multiple genes that appear to have a concerted role in various processes, such as cell growth/cancer, keratin biology, and bone morphogenesis. In particular, we show that NSD1 binding is concentrated upstream of gene targets such as the bone morphogenetic protein 4 (BMP4) and zinc finger protein 36 C3H type-like 1 (ZFP36L1/TPP). NSD1 regulates the levels of the various forms of methylation at H3-K36 primarily, but not exclusively, within the promoter proximal region occupied by NSD1. At BMP4 we find that this reduces the levels of RNAP II recruited to the promoter, suggesting a role for NSD1-dependent methylation in initiation. Interestingly, we also observe that the RNAP II molecules that lie within BMP4 have inappropriate persistence of serine-5 phosphorylation and reduced levels of serine-2 phosphorylation within the C-terminal domain (CTD) of the large subunit of RNAP II. Our findings indicate that NSD1 regulates RNAP II recruitment to BMP4, and failure to do so leads to reduced gene expression and abrogated levels of H3K36Me and CTD phosphorylation.
Assuntos
Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisina/metabolismo , Metiltransferases/metabolismo , Proteínas Nucleares/metabolismo , RNA Polimerase II/metabolismo , Proteína Morfogenética Óssea 4/genética , Fator 1 de Resposta a Butirato/genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Histona Metiltransferases , Histona-Lisina N-Metiltransferase , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Metilação , Metiltransferases/genética , Proteínas Nucleares/genética , Regiões Promotoras GenéticasRESUMO
BACKGROUND: Proteolysis of the histone H3 N-terminal tail (H3NT) is an evolutionarily conserved epigenomic feature of nearly all eukaryotes, generating a cleaved H3 product that is retained in ~ 5-10% of the genome. Although H3NT proteolysis within chromatin was first reported over 60 years ago, the genomic sites targeted for H3NT proteolysis and the impact of this histone modification on chromatin structure and function remain largely unknown. The goal of this study was to identify the specific regions targeted for H3NT proteolysis and investigate the consequence of H3NT "clipping" on local histone post-translational modification (PTM) dynamics. RESULTS: Leveraging recent findings that matrix metalloproteinase 2 (MMP-2) functions as the principal nuclear H3NT protease in the human U2OS osteosarcoma cell line, a ChIP-Seq approach was used to map MMP-2 localization genome wide. The results indicate that MMP-2 is selectively targeted to the transcription start sites (TSSs) of protein coding genes, primarily at the + 1 nucleosome. MMP-2 localization was exclusive to highly expressed genes, further supporting a functional role for H3NT proteolysis in transcriptional regulation. MMP-2 dependent H3NT proteolysis at the TSSs of these genes resulted in a > twofold reduction of activation-associated histone H3 PTMs, including H3K4me3, H3K9ac and H3K18ac. One of genes requiring MMP-2 mediated H3NT proteolysis for proficient expression was the lysosomal cathepsin B protease (CTSB), which we discovered functions as a secondary nuclear H3NT protease in U2OS cells. CONCLUSIONS: This study revealed that the MMP-2 H3NT protease is selectively targeted to the TSSs of active protein coding genes in U2OS cells. The resulting H3NT proteolysis directly alters local histone H3 PTM patterns at TSSs, which likely functions to regulate transcription. MMP-2 mediated H3NT proteolysis directly activates CTSB, a secondary H3NT protease that generates additional cleaved H3 products within chromatin.
Assuntos
Metaloproteinase 2 da Matriz , Peptídeo Hidrolases , Humanos , Metaloproteinase 2 da Matriz/genética , Histonas , Sítio de Iniciação de Transcrição , CromatinaRESUMO
Increasing evidence indicates that an important consequence of protein posttranslational modification (PTM) is the creation of a high affinity binding site for the selective interaction with a PTM-specific binding protein (BP). This PTM-mediated interaction is typically required for downstream signaling propagation and corresponding biological responses. Because the vast majority of mammalian proteins contain PTMs, there is an immediate need to discover and characterize previously undescribed PTMBPs. To this end, we developed and validated an innovative in vivo approach called mammalian tethered catalysis (MTeC). By using methylated histones and methyl-specific histone binding proteins as the proof-of-principle, we determined that the new MTeC approach can compliment existing in vitro binding methods, and can also provide unique in vivo insights into PTM-dependent interactions. For example, we confirmed previous in vitro findings that endogenous HP1 preferentially binds H3K9me3. However, in contrast to recent in vitro observations, MTeC revealed that the tandem tudor domain-containing proteins, JMJD2A and 53BP1, display no preferential H4K20 methyl-selectivity in vivo. Last, by using MTeC in an unbiased manner to identify H3K9 methyl-specific PTMBPs, we determined that endogenous G9a binds methylated H3K9 in vivo. Further use of MTeC to characterize this interaction revealed that G9a selectively binds H3K9me1 in vivo, but not H3K9me2, contrary to recent in vitro findings. Although this study focused solely on methylated histones, we demonstrate how the innovative MTeC approach could be used to identify and characterize any PTMBP that binds any PTM on any protein in vivo.
Assuntos
Biocatálise , Bioquímica/métodos , Proteínas Cromossômicas não Histona/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metilação , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Ligação Proteica , Proteínas/genética , Especificidade por SubstratoRESUMO
We sought to evaluate baseline mRNA values and changes in gene expression of myostatin-related factors in postmenopausal women taking hormone therapy (HT) and not taking HT after eccentric exercise. Fourteen postmenopausal women participated including 6 controls not using HT (59 ± 4 years, 63 ± 17 kg) and 8 women using HT (59 ± 4 years, 89 ± 24 kg). The participants performed 10 sets of 10 maximal eccentric repetitions of single-leg extension on a dynamometer. Muscle biopsies from the vastus lateralis were obtained from the exercised leg at baseline and 4 hours after the exercise bout. Gene expression was determined using reverse transcriptase polymerase chain reaction for myostatin, activin receptor IIb (ActRIIb), follistatin, follistatin-related gene (FLRG), follistatin-like-3 (FSTL3), and GDF serum-associated protein-1 (GASP-1). In response to the exercise bout, myostatin and ActRIIb significantly decreased (p < 0.05), and follistatin, FLRG, FSTL3, and GASP-1 significantly increased in both groups (p < 0.05). Significantly greater changes in gene expression of all genes occurred in the HT group than in the control group after the acute eccentric exercise bout (p < 0.05). These data suggest that postmenopausal women using HT express greater myostatin-related gene expression, which may reflect a mechanism by which estrogen influences the preservation of muscle mass. Further, postmenopausal women using HT experienced a profoundly greater myostatin-related response to maximal eccentric exercise.
Assuntos
Terapia de Reposição de Estrogênios , Exercício Físico/fisiologia , Expressão Gênica , Músculo Esquelético/metabolismo , Miostatina/genética , Pós-Menopausa/genética , RNA Mensageiro/metabolismo , Receptores de Activinas Tipo II/genética , Composição Corporal , Estrogênios/uso terapêutico , Feminino , Folistatina/genética , Proteínas Relacionadas à Folistatina/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Pessoa de Meia-Idade , Força Muscular , Músculo Esquelético/anatomia & histologia , Pós-Menopausa/fisiologia , Progesterona/uso terapêutico , Proteínas/genéticaRESUMO
Heterochromatin mediates various nuclear processes including centromere function, gene silencing and nuclear organization. Although it was discovered nearly 75 years ago, the pathways involved in heterochromatin establishment, assembly and epigenetic maintenance have been elusive. Recent reports have demonstrated that distinct and novel chromatin-associated factors, including DNA, RNA and histone modifications, are involved in each of these events. These new findings define a novel conserved mechanism of heterochromatin formation that is likely to have an impact on all eukaryotic silencing pathways.
Assuntos
Heterocromatina/fisiologia , Histonas/metabolismo , Interferência de RNA , Animais , Elementos de DNA Transponíveis/genética , Epigênese Genética , Humanos , Metilação , Modelos Moleculares , Transcrição GênicaRESUMO
BACKGROUND: Selective proteolysis of the histone H3 N-terminal tail (H3NT) is frequently observed during eukaryotic development, generating a cleaved histone H3 (H3cl) product within a small, but significant, portion of the genome. Although increasing evidence supports a regulatory role for H3NT proteolysis in gene activation, the nuclear H3NT proteases and the biological significance of H3NT proteolysis remain largely unknown. RESULTS: In this study, established cell models of skeletal myogenesis were leveraged to investigate H3NT proteolysis. These cells displayed a rapid and progressive accumulation of a single H3cl product within chromatin during myoblast differentiation. Using conventional approaches, we discovered that the canonical extracellular matrix (ECM) protease, matrix metalloproteinase 2 (MMP-2), is the principal H3NT protease of myoblast differentiation that cleaves H3 between K18-Q19. Gelatin zymography demonstrated progressive increases in nuclear MMP-2 activity, concomitant with H3cl accumulation, during myoblast differentiation. RNAi-mediated depletion of MMP-2 impaired H3NT proteolysis and resulted in defective myogenic gene activation and myoblast differentiation. Supplementation of MMP-2 ECM activity in MMP-2-depleted cells was insufficient to rescue defective H3NT proteolysis and myogenic gene activation. CONCLUSIONS: This study revealed that MMP-2 is a novel H3NT protease and the principal H3NT protease of myoblast differentiation. The results indicate that myogenic signaling induces MMP-2-dependent H3NT proteolysis at early stages of myoblast differentiation. Importantly, the results support the necessity of nuclear MMP-2 H3NT protease activity, independent of MMP-2 activity in the ECM, for myogenic gene activation and proficient myoblast differentiation.
Assuntos
Histonas , Metaloproteinase 2 da Matriz , Animais , Diferenciação Celular , Histonas/metabolismo , Metaloproteinase 2 da Matriz/genética , Camundongos , Desenvolvimento Muscular , Peptídeo Hidrolases , Ativação TranscricionalRESUMO
PURPOSE: Prostate cancer survivors (PCS) receive androgen deprivation therapy (ADT) as treatment for recurrent cancer, yet ADT is associated with loss of skeletal muscle and physical function. Resistance training can counter both muscle and physical function loss; however, an understanding of the molecular responses of skeletal muscle to resistance training during ADT is still undefined. This sub-analysis of the original randomized, controlled pilot trial investigated effects of 12 weeks of periodized resistance training on mRNA expression of the anabolic genes IGF-1, myogenin, PGC-1α4 and the catabolic genes myostatin and MuRF-1 in skeletal muscle of PCS on ADT. Secondary aims investigated if changes in lean mass and physical function correlated with changes in mRNA expression. METHODS: PCS on ADT (n = 17) were randomized to 12 weeks of supervised resistance training (EXE, n = 9) or home-based stretching (STRETCH, n = 8) 3 days per week. Outcomes were assessed at baseline and post-intervention. Muscle biopsies were analyzed by RT-PCR for mRNA expression. Body composition was assessed through dual-energy X-ray absorptiometry, and physical function through muscular strength, timed up and go, stair climb, and 400 m walk. RESULTS: MuRF-1 mRNA expression was significantly greater in EXE compared to STRETCH post-intervention (P = .005). Change in MuRF-1 mRNA expression significantly correlated with improvements in strength and physical function (P < .05), while change in IGF-1 expression correlated with change in lean mass (P = .015). CONCLUSION: Twelve weeks of resistance training increased mRNA expression of MuRF-1 in skeletal muscle of PCS on ADT. Elevations in resting mRNA expression of IGF-1, myogenin and PGC-1α4, and reduction in mRNA expression of myostatin that are typically expected following resistance training were not observed.
Assuntos
Neoplasias da Próstata , Treinamento Resistido , Antagonistas de Androgênios , Androgênios , Humanos , Masculino , Força Muscular , Músculo Esquelético , Recidiva Local de Neoplasia , Projetos Piloto , Neoplasias da Próstata/tratamento farmacológicoRESUMO
Increasing evidence indicates that the post-translational modifications of the histone proteins play critical roles in all eukaryotic DNA-templated processes. To gain further biological insights into two of these modifications, the mono- and trimethylation of histone H4 lysine 20 (H4K20me1 and H4K20me3), ChIP-chip experiments were performed to identify the precise genomic regions on human chromosomes 21 and 22 occupied by these two modifications. Detailed analysis revealed that H4K20me1 was preferentially enriched within specific genes; most significantly between the first approximately 5% and 20% of gene bodies. In contrast, H4K20me3 was preferentially targeted to repetitive elements. Among genes enriched in H4K20me3, the modification was typically targeted to a small region approximately 1 kb upstream of transcription start. Our collective findings strongly suggest that H4K20me1 and H4K20me3 are both physically and functionally distinct. We next sought to determine the role of H4K20me1 in transcription since this has been controversial. Following the reduction of PR-Set7/Set8/KMT5a and H4K20me1 in cells by RNAi, all H4K20me1-associated genes analyzed displayed an approximately 2-fold increase in gene expression; H4K20me3-associated genes displayed no changes. Similar results were obtained using a catalytically dead dominant negative PR-Set7 indicating that H4K20me1, itself, is essential for the selective transcriptional repression of H4K20me1-associated genes. Furthermore, we determined that the H4K20me1-associated DNA sequences were sufficient to nucleate H4K20me1 and induce repression in vivo. Our findings reveal the molecular mechanisms of a mammalian transcriptional repressive pathway whereby the DNA sequences within specific gene bodies are sufficient to nucleate the monomethylation of H4K20 which, in turn, reduces gene expression by half.
Assuntos
Cromossomos Humanos Par 21/genética , Cromossomos Humanos Par 22/genética , Metilação de DNA , Regulação da Expressão Gênica/fisiologia , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Linhagem Celular Tumoral , Células HeLa , Humanos , Lisina/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Transcrição GênicaRESUMO
We evaluated changes in myostatin, follistatin, and MyoD messenger RNA (mRNA) gene expression using eccentric exercise (EE) and concentric exercise (CE) as probes to better understand the mechanisms of muscle hypertrophy in young women. Twelve women performed single-leg maximal eccentric (n = 6, 25 +/- 1 years, 59 +/- 7 kg) or concentric (n = 6, 24 +/- 1 years, 65 +/- 7 kg) isokinetic knee extension exercise for 7 sessions. Muscle biopsies were taken from the vastus lateralis at baseline, 8 hours after the first exercise session, and 8 hours after the seventh exercise session. In the EE group, there were no changes in myostatin and follistatin (p > or = 0.17); however, MyoD expression increased after 1 exercise bout (p = 0.02). In the CE group, there were no changes in myostatin, follistatin, or MyoD mRNA gene expression (p > or = 0.07). Differences between the EE and CE groups were not significant (p > or = 0.05). These data suggest that a single bout or multiple bouts of maximal EE or CE may not significantly alter myostatin or follistatin mRNA gene expression in young women. However, MyoD mRNA expression seems to increase only after EE.
Assuntos
Exercício Físico/fisiologia , Folistatina/metabolismo , Músculo Esquelético/metabolismo , Miostatina/metabolismo , RNA Mensageiro/metabolismo , Adulto , Análise de Variância , Biópsia , Feminino , Folistatina/genética , Expressão Gênica , Humanos , Miostatina/genética , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Hormone therapy (HT) is a potential treatment to relieve symptoms of menopause and prevent the onset of disease such as osteoporosis in postmenopausal women. We evaluated changes in markers of exercise-induced skeletal muscle damage and inflammation [serum creatine kinase (CK), serum lactate dehydrogenase (LDH), and skeletal muscle mRNA expression of IL-6, IL-8, IL-15, and TNF-alpha] in postmenopausal women after a high-intensity resistance exercise bout. Fourteen postmenopausal women were divided into two groups: women not using HT (control; n = 6, 59 +/- 4 yr, 63 +/- 17 kg) and women using traditional HT (HT; n = 8, 59 +/- 4 yr, 89 +/- 24 kg). Both groups performed 10 sets of 10 maximal eccentric repetitions of single-leg extension on the Cybex dynamometer at 60 degrees /s with 20-s rest periods between sets. Muscle biopsies of the vastus lateralis were obtained from the exercised leg at baseline and 4 h after the exercise bout. Gene expression was determined by RT-PCR for IL-6, IL-8, IL-15, and TNF-alpha. Blood draws were performed at baseline and 3 days after exercise to measure CK and LDH. Independent t-tests were performed to test group differences (control vs. HT). A probability level of P Assuntos
Terapia de Reposição de Estrogênios
, Exercício Físico/fisiologia
, Músculo Esquelético/patologia
, Músculo Esquelético/fisiologia
, Pós-Menopausa/fisiologia
, Idoso
, Antropometria
, Análise Química do Sangue
, Composição Corporal/fisiologia
, Creatina Quinase/sangue
, Citocinas/biossíntese
, DNA Complementar/biossíntese
, DNA Complementar/genética
, Dieta
, Feminino
, Gliceraldeído-3-Fosfato Desidrogenases/sangue
, Humanos
, Inflamação/patologia
, L-Lactato Desidrogenase/sangue
, Pessoa de Meia-Idade
, Atividade Motora/fisiologia
, Força Muscular/fisiologia
, Aptidão Física/fisiologia
, RNA/biossíntese
, RNA Mensageiro/biossíntese
, RNA Mensageiro/genética
, Reação em Cadeia da Polimerase Via Transcriptase Reversa
, Fator de Necrose Tumoral alfa/biossíntese
, Fator de Necrose Tumoral alfa/sangue