Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Curr Microbiol ; 77(5): 875-881, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31938805

RESUMO

A variety of potential inhibitors were tested for the first time for the suppression of Erwinia amylovora, the causal agent of fire blight in apples and pears. Strain variability was evident in susceptibility to inhibitors among five independently isolated virulent strains of E. amylovora. However, most strains were susceptible to culture supernatants from strains of Bacillus spp., and particularly to the recently described species B. nakamurai. Minimal inhibitory concentrations (MICs) were 5-20% (vol/vol) of culture supernatant from B. nakamurai against all five strains of E. amylovora. Although Bacillus species have been previously reported to produce lipopeptide inhibitors of E. amylovora, matrix-assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) and column chromatography indicated that the inhibitor from B. nakamurai was not a lipopeptide, but rather a novel inhibitor.


Assuntos
Antibiose , Bacillus/fisiologia , Erwinia amylovora/patogenicidade , Doenças das Plantas/prevenção & controle , Bacillus/crescimento & desenvolvimento , Meios de Cultura , Malus/microbiologia , Testes de Sensibilidade Microbiana , Doenças das Plantas/microbiologia , Pyrus/microbiologia
2.
Vet Res ; 49(1): 66, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30060765

RESUMO

Due to the continuing global concerns involving antibiotic resistance, there is a need for scientific forums to assess advancements in the development of antimicrobials and their alternatives that might reduce development and spread of antibiotic resistance among bacterial pathogens. The objectives of the 2nd International Symposium on Alternatives to Antibiotics were to highlight promising research results and novel technologies that can provide alternatives to antibiotics for use in animal health and production, assess challenges associated with their authorization and commercialization for use, and provide actionable strategies to support their development. The session on microbial-derived products was directed at presenting novel technologies that included exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials, probiotics development via fecal microbiome transplants among monogastric production animals such as chickens and mining microbial sources such as bacteria or yeast to identify new antimicrobial compounds. Other research has included continuing development of antimicrobial peptides such as newly discovered bacteriocins as alternatives to antibiotics, use of bacteriophages accompanied by development of unique lytic proteins with specific cell-wall binding domains and novel approaches such as microbial-ecology guided discovery of anti-biofilm compounds discovered in marine environments. The symposium was held at the Headquarters of the World Organisation for Animal Health (OIE) in Paris, France during 12-15 December 2016.


Assuntos
Criação de Animais Domésticos , Anti-Infecciosos/análise , Descoberta de Drogas , Doenças dos Animais/prevenção & controle , Animais , Bacteriocinas , Bacteriófagos , Sistemas CRISPR-Cas , França , Gado
3.
Biotechnol Lett ; 40(1): 157-163, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29038924

RESUMO

OBJECTIVE: To test the inactivation of the antibiotic, virginiamycin, by laccase-induced culture supernatants of Aureobasidium pullulans. RESULTS: Fourteen strains of A. pullulans from phylogenetic clade 7 were tested for laccase production. Three laccase-producing strains from this group and three previously identified strains from clade 5 were compared for inactivation of virginiamycin. Laccase-induced culture supernatants from clade 7 strains were more effective at inactivation of virginiamycin, particularly at 50 °C. Clade 7 strain NRRL Y-2567 inactivated 6 µg virginiamycin/ml within 24 h. HPLC analyses indicated that virginiamycin was degraded by A. pullulans. CONCLUSIONS: A. pullulans has the potential for the bioremediation of virginiamycin-contaminated materials, such as distiller's dry grains with solubles (DDGS) animal feed produced from corn-based fuel ethanol production.


Assuntos
Antibacterianos/metabolismo , Ascomicetos/metabolismo , Glucanos/metabolismo , Virginiamicina/metabolismo , Ascomicetos/crescimento & desenvolvimento , Biotransformação , Cromatografia Líquida de Alta Pressão , Meios de Cultura , Temperatura Alta
4.
Appl Environ Microbiol ; 82(17): 5068-76, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27260363

RESUMO

UNLABELLED: A total of 33 Lactobacillus strains were screened for feruloyl esterase (FE) activity using agar plates containing ethyl ferulate as the sole carbon source, and Lactobacillus fermentum NRRL B-1932 demonstrated the strongest FE activity among a dozen species showing a clearing zone on the opaque plate containing ethyl ferulate. FE activities were monitored using high-performance liquid chromatography with an acetonitrile-trifluoroacetic acid gradient. To produce sufficient purified FE from L. fermentum strain NRRL B-1932 (LfFE), the cDNA encoding LfFE (Lffae) was amplified and cloned by using available closely related genome sequences and overexpressed in Escherichia coli A 29.6-kDa LfFE protein was detected from the protein extract of E. coli BL21(pLysS) carrying pET28bLffae upon IPTG (isopropyl-ß-d-thiogalactopyranoside) induction. The recombinant LfFE containing a polyhistidine tag was purified by nickel-nitrilotriacetic acid affinity resin. The purified LfFE showed strong activities against several artificial substrates, including p-nitrophenyl acetate and 4-methylumbelliferyl p-trimethylammoniocinnamate chloride. The optimum pH and temperature of the recombinant LfFE were around 6.5 and 37°C, respectively, as determined using either crude or purified recombinant LfFE. This study will be essential for the production of the LfFE in E. coli on a larger scale that could not be readily achieved by L. fermentum fermentation. IMPORTANCE: The production of feruloyl esterase (FE) from Lactobacillus fermentum NRRL B-1932 reported in this study will have immense potential commercial applications not only in biofuel production but also in pharmaceutical, polymer, oleo chemical, cosmetic additive, and detergent industries, as well as human health-related applications, including food flavoring, functional foods, probiotic agents, preventive medicine, and animal feed. Given the essential role FE plays in the production of hydroxycinnamic acids and ferulic acid, plus the generally regarded as safe status of lactobacilli, which therefore have less regulatory concerns, LfFE from the probiotic L. fermentum reported in this work can be directly used for increased production of high-value hydroxycinnamates and ferulic acid from natural or synthetic carbon sources.


Assuntos
Proteínas de Bactérias/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Escherichia coli/genética , Limosilactobacillus fermentum/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/isolamento & purificação , Escherichia coli/metabolismo , Fermentação , Expressão Gênica , Cinética , Limosilactobacillus fermentum/genética , Dados de Sequência Molecular , Alinhamento de Sequência
5.
Biotechnol Lett ; 38(5): 863-70, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26875091

RESUMO

OBJECTIVE: The objective was to phylogenetically classify diverse strains of Aureobasidium pullulans and determine their production of feruloyl esterase. RESULTS: Seventeen strains from the A. pullulans literature were phylogenetically classified. Phenotypic traits of color variation and endo-ß-1,4-xylanase overproduction were associated with phylogenetic clade 10 and particularly clade 8. Literature strains used for pullulan production all belonged to clade 7. These strains and 36 previously classified strains were tested for feruloyl esterase production, which was found to be associated with phylogenetic clades 4, 11, and particularly clade 8. Clade 8 strains NRRL 58552 and NRRL 62041 produced the highest levels of feruloyl esterase among strains tested. CONCLUSIONS: Production of both xylanase and feruloyl esterase are associated with A. pullulans strains in phylogenetic clade 8, which is thus a promising source of enzymes with potential biotechnological applications.


Assuntos
Ascomicetos/classificação , Ascomicetos/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Filogenia , Ascomicetos/genética , Ascomicetos/isolamento & purificação , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , RNA Polimerase II/genética , Análise de Sequência de DNA , Tubulina (Proteína)/genética , Xilosidases/metabolismo
6.
World J Microbiol Biotechnol ; 32(5): 76, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27038946

RESUMO

Antibiotics are frequently used to prevent and treat bacterial contamination of commercial fuel ethanol fermentations, but there is concern that antibiotic residues may persist in the distillers grains coproducts. A study to evaluate the fate of virginiamycin during the ethanol production process was conducted in the pilot plant facilities at the National Corn to Ethanol Research Center, Edwardsville, IL. Three 15,000-liter fermentor runs were performed: one with no antibiotic (F1), one dosed with 2 parts per million (ppm) of a commercial virginiamycin product (F2), and one dosed at 20 ppm of virginiamycin product (F3). Fermentor samples, distillers dried grains with solubles (DDGS), and process intermediates (whole stillage, thin stillage, syrup, and wet cake) were collected from each run and analyzed for virginiamycin M and virginiamycin S using a liquid chromatography-mass spectrometry method. Virginiamycin M was detected in all process intermediates of the F3 run. On a dry-weight basis, virginiamycin M concentrations decreased approximately 97 %, from 41 µg/g in the fermentor to 1.4 µg/g in the DDGS. Using a disc plate bioassay, antibiotic activity was detected in DDGS from both the F2 and F3 runs, with values of 0.69 µg virginiamycin equivalent/g sample and 8.9 µg/g, respectively. No antibiotic activity (<0.6 µg/g) was detected in any of the F1 samples or in the fermentor and process intermediate samples from the F2 run. These results demonstrate that low concentrations of biologically active antibiotic may persist in distillers grains coproducts produced from fermentations treated with virginiamycin.


Assuntos
Antibacterianos/metabolismo , Biocombustíveis/análise , Etanol/metabolismo , Saccharomyces cerevisiae/metabolismo , Virginiamicina/metabolismo , Zea mays/metabolismo , Antibacterianos/análise , Cromatografia Líquida , Etanol/análise , Fermentação , Espectrometria de Massas , Virginiamicina/análise , Zea mays/química
7.
Appl Microbiol Biotechnol ; 99(22): 9723-43, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26272089

RESUMO

Increased interest in sustainable production of renewable diesel and other valuable bioproducts is redoubling efforts to improve economic feasibility of microbial-based oil production. Yarrowia lipolytica is capable of employing a wide variety of substrates to produce oil and valuable co-products. We irradiated Y. lipolytica NRRL YB-567 with UV-C to enhance ammonia (for fertilizer) and lipid (for biodiesel) production on low-cost protein and carbohydrate substrates. The resulting strains were screened for ammonia and oil production using color intensity of indicators on plate assays. Seven mutant strains were selected (based on ammonia assay) and further evaluated for growth rate, ammonia and oil production, soluble protein content, and morphology when grown on liver infusion medium (without sugars), and for growth on various substrates. Strains were identified among these mutants that had a faster doubling time, produced higher maximum ammonia levels (enzyme assay) and more oil (Sudan Black assay), and had higher maximum soluble protein levels (Bradford assay) than wild type. When grown on plates with substrates of interest, all mutant strains showed similar results aerobically to wild-type strain. The mutant strain with the highest oil production and the fastest doubling time was evaluated on coffee waste medium. On this medium, the strain produced 0.12 g/L ammonia and 0.20 g/L 2-phenylethanol, a valuable fragrance/flavoring, in addition to acylglycerols (oil) containing predominantly C16 and C18 residues. These mutant strains will be investigated further for potential application in commercial biodiesel production.


Assuntos
Amônia/metabolismo , Metabolismo dos Carboidratos , Óleos/metabolismo , Proteínas/metabolismo , Raios Ultravioleta , Yarrowia/metabolismo , Yarrowia/efeitos da radiação , Aerobiose , Café/metabolismo , Meios de Cultura/química , Programas de Rastreamento , Mutação , Yarrowia/crescimento & desenvolvimento
8.
J Ind Microbiol Biotechnol ; 42(2): 229-35, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25533632

RESUMO

The cell-free supernatant (CFS) from Lactobacillus paracasei NRRL B-50314 culture has been previously reported as containing antibacterial activity against a wide variety of Gram-positive bacteria. The CFS protein gel slice corresponding to antibacterial activities was subjected to trypsin digestion and ion trap MASS (Gel/LC-MS/MS) analysis. BlastP search of the resulted IQAVISIAEQQIGKP sequence led to a hypothetical cell-wall associated hydrolase (designated as CWH here) from Lactobacillus paracasei ATCC 25302. Further analyses of CWH revealed that the IQAVISIAEQQIGKP belongs to a highly conserved region of the NlpC/P60 superfamily. The L. paracasei NRRL B-50314 CWH gene, cloned in pStrepHIS1525CWH477, was introduced into Bacillus megaterium MS 941. The production of CWH477 protein was induced by xylose. The CWH477 protein was purified by using NiNTA column, and elution fraction E2 showed highest antibacterial activity. This study and bioinformatics analyses suggested that the antibacterial activity of CWH could originate from its cell wall degrading enzymatic function.


Assuntos
Antibacterianos/farmacologia , Bacillus megaterium/metabolismo , Parede Celular/enzimologia , Hidrolases/farmacologia , Lactobacillus/enzimologia , Sequência de Aminoácidos , Cromatografia Líquida , Clonagem Molecular , Biologia Computacional , Bactérias Gram-Positivas/efeitos dos fármacos , Hidrolases/biossíntese , Dados de Sequência Molecular , Plasmídeos , Proteínas Recombinantes/biossíntese , Espectrometria de Massas em Tandem , Xilose/metabolismo
9.
Appl Microbiol Biotechnol ; 97(16): 7265-73, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23224406

RESUMO

Several starter cultures used in the production of fermented beverages were screened for lactic acid bacteria that produced water-insoluble polysaccharides from sucrose. The strain producing the greatest amount was identified as Lactobacillus satsumensis by its 16S RNA sequence and was deposited in the ARS culture collection as NRRL B-59839. This strain produced at least two α-D-glucans from sucrose. One was a water-soluble dextran, consisting of predominantly α-(1 → 6)-linked D-glucose units, and the other was a water-insoluble glucan containing both α-(1 → 6)-linked and α-(1 → 3)-linked D-glucose units. The culture fluid was found to contain glucansucrases responsible for the two glucans, and no significant level of fructansucrase was detected. Glucansucrase activity was not present in the culture fluid when the bacteria were grown on glucose, fructose, or raffinose as the carbon source. Although the water-soluble glucans produced by cell-free enzyme and by cell suspensions were essentially identical, the same was not true for the water-insoluble glucans. The water-insoluble glucan produced by cell-free culture fluid contained a higher proportion of α-(1 → 3)-linked D-glucose units than the water-insoluble glucan produced by cell suspensions.


Assuntos
Glucanos/metabolismo , Glicosiltransferases/metabolismo , Lactobacillus/enzimologia , Bebidas/microbiologia , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Glicosiltransferases/química , Glicosiltransferases/isolamento & purificação , Lactobacillus/classificação , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Dados de Sequência Molecular , Peso Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
Biotechnol Lett ; 35(2): 225-31, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23132490

RESUMO

Laccases play an important role in the biological break down of lignin and have great potential in the deconstruction of lignocellulosic feedstocks. We examined 16 laccases, both commercially prepared and crude extracts, for their ability to oxidize veratryl alcohol in the presence of various solvents and mediators. Screening revealed complete conversion of veratryl alcohol to veratraldehyde catalyzed by a crude preparation of the laccase from Trametes versicolor ATCC 11235 and the mediator TEMPO in 20 % (v/v) tert-butanol.


Assuntos
Álcoois Benzílicos/metabolismo , Lacase/metabolismo , Trametes/enzimologia , Benzaldeídos/metabolismo , Lacase/isolamento & purificação , Oxirredução
11.
Biotechnol Lett ; 35(10): 1701-6, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23801121

RESUMO

Thirty-nine strains representing 12 diverse phylogenetic clades of Aureobasidium pullulans were surveyed for lipase production using a quantitative assay. Strains in clades 4 and 10 produced 0.2-0.3 U lipase/ml, while color variant strain NRRL Y-2311-1 in clade 8 produced 0.54 U lipase/ml. Strains in clade 9, which exhibit a dark olivaceous pigment, produced the highest levels of lipase, with strain NRRL 62034 yielding 0.57 U lipase/ml. By comparison, Candida cylindracea strain NRRL Y-17506 produced 0.05 U lipase/ml under identical conditions. A. pullulans strain NRRL 62034 reached maximal lipase levels in 5 days on lipase induction medium, while A. pullulans strain NRRL Y-2311-1 and strains in clades 4 and 10 were highest after 6 days. A. pullulans strain NRRL Y-2311-1 and strains in clade 9 produced two extracellular proteins in common, at >50 and <37 kDa.


Assuntos
Ascomicetos/enzimologia , Lipase/análise , Candida/enzimologia , Meios de Cultura/química , Eletroforese em Gel de Poliacrilamida , Lipase/química , Peso Molecular , Fatores de Tempo
12.
J Ind Microbiol Biotechnol ; 39(1): 163-73, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21748309

RESUMO

Scheffersomyces (formerly Pichia) stipitis NRRL Y-7124 was mutagenized using UV-C irradiation to produce yeast strains for anaerobic conversion of lignocellulosic sugars to ethanol. UV-C irradiation potentially produces large numbers of random mutations broadly and uniformly over the whole genome to generate unique strains. Wild-type cultures of S. stipitis NRRL Y-7124 were subjected to UV-C (234 nm) irradiation targeted at approximately 40% cell survival. When surviving cells were selected in sufficient numbers via automated plating strategies and cultured anaerobically on xylose medium for 5 months at 28°C, five novel mutagenized S. stipitis strains were obtained. Variable number tandem repeat analysis revealed that mutations had occurred in the genome, which may have produced genes that allowed the anaerobic utilization of xylose. The mutagenized strains were capable of growing anaerobically on xylose/glucose substrate with higher ethanol production during 250- to 500-h growth than a Saccharomyces cerevisiae yeast strain that is the standard for industrial fuel ethanol production. The S. stipitis strains resulting from this intense multigene mutagenesis strategy have potential application in industrial fuel ethanol production from lignocellulosic hydrolysates.


Assuntos
Etanol/metabolismo , Mutagênese , Saccharomycetales/genética , Saccharomycetales/metabolismo , Raios Ultravioleta , Xilose/metabolismo , Anaerobiose , Animais , Fermentação , Glucose/metabolismo , Lignina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomycetales/crescimento & desenvolvimento , Saccharomycetales/efeitos da radiação
13.
Toxins (Basel) ; 14(8)2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-36006210

RESUMO

Mycotoxins such as deoxynivalenol introduce a health risk to the food supply and are costly to manage or avoid. Technologies for reducing or eliminating the toxicity of deoxynivalenol could be useful in a variety of processes, such as in preserving the value as animal feed of byproducts of ethanol production. We characterized transformation products of deoxynivalenol that were formed by the combination of a fungal laccase paired with the chemical mediator 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO), using chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy. Alcohol groups at the C3 and C15 positions of deoxynivalenol were oxidized to ketones, and the chemical mediator became covalently linked to the C4 position. Conditions experienced during gas chromatography led to the dissociation of TEMPO, forming 3,15-diketodeoxynivalenol. Understanding the range of possible modifications to deoxynivalenol and other trichothecenes is a necessary step toward effective remediation of contaminated grain.


Assuntos
Micotoxinas , Tricotecenos , Animais , Óxidos N-Cíclicos , Contaminação de Alimentos/análise , Lacase , Micotoxinas/análise , Oxirredução , Tricotecenos/análise
14.
Biotechnol Lett ; 33(10): 2013-8, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21671092

RESUMO

Acremonium zeae, one of the most prevalent fungal colonists of preharvest corn, possesses a suite of hemicellulolytic activities including xylanase, xylosidase, and arabinofuranosidase. Two enzymes with arabinofuranosidase activity were purified from cell-free culture supernatants of A. zeae grown on oat spelt xylan. A 47 kDa enzyme (AF47) was optimally active at 37 °C and pH 6.0, and had a specific activity for 4-nitrophenyl-α-L-arabinofuranoside (4NPA) of 6.2 U/mg. A 30 kDa enzyme (AF30) was optimally active at 50 °C and pH 4.5, and had a specific activity for 4NPA of 12.4 U/mg. AF47 hydrolyzed 4-nitrophenyl-ß-D-xylopyranoside, 4-nitrophenyl-ß-D-glucopyranoside, and 4-nitrophenyl-ß-D-cellobioside, as well as producing reducing sugars from corn fiber, wheat, and oat spelt arabinoxylan. AF30 had little detectable activity on the 4-nitrophenyl substrates, except for 4NPA, but activity on arabinoxylans from corn fiber, wheat, and oat spelt was at least 7-fold higher than AF47, with specific activities of 109, 358, and 153 U/mg, respectively. A combination of the two enzymes released 61 and 88% of the total arabinose from corn fiber and wheat arabinoxylans. The arabinofuranosidases produced by A. zeae may have industrial application for the enzymatic hydrolysis of recalcitrant lignocellulosic feedstocks such as corn fiber and wheat straw.


Assuntos
Acremonium/enzimologia , Glicosídeo Hidrolases/química , Zea mays/microbiologia , Arabinose/metabolismo , Biomassa , Eletroforese em Gel de Poliacrilamida , Glicosídeo Hidrolases/isolamento & purificação , Glicosídeo Hidrolases/metabolismo , Cinética , Lignina/metabolismo , Especificidade por Substrato , Xilanos/metabolismo
15.
Biotechnol Lett ; 32(6): 823-8, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20155485

RESUMO

A strain of Bacillus coagulans that converted mixed sugars of glucose, xylose, and arabinose to L: -lactic acid with 85% yield at 50 degrees C was isolated from composted dairy manure. The strain was tolerant to aldehyde growth inhibitors at 2.5 g furfural/l, 2.5 g 5-hydroxymethylfurfural/l, 2.5 g vanillin/l, and 1.2 g p-hydroxybenzaldehyde/l. In a simultaneous saccharification and fermentation process, the strain converted a dilute-acid hydrolysate of 100 g corn fiber/l to 39 g lactic acid/l in 72 h at 50 degrees C. Because of its inhibitor tolerance and ability to fully utilize pentose sugars, this strain has potential to be developed as a biocatalyst for the conversion of agricultural residues into valuable chemicals.


Assuntos
Bacillus/metabolismo , Ácido Láctico/metabolismo , Zea mays/metabolismo , Animais , Antibacterianos/farmacologia , Bacillus/efeitos dos fármacos , Bacillus/isolamento & purificação , Bovinos , Fermentação , Esterco/microbiologia
16.
Biotechnol Biofuels ; 13: 157, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32944073

RESUMO

BACKGROUND: Commercial ethanol fermentation facilities traditionally rely on antibiotics for bacterial contamination control. Here we demonstrate an alternative approach to treat contamination using a novel peptidoglycan hydrolase (LysKB317) isolated from a bacteriophage, EcoSau. This endolysin was specially selected against Lactobacillus strains that were isolated as contaminants from a fuel ethanol plant. The LysKB317 gene was recombinantly expressed in Escherichia coli as a 33 kDa purified enzyme. RESULTS: In turbidity reduction assays, the recombinant enzyme was subjected to a panel of 32 bacterial strains and was active against 28 bacterial strains representing 1 species of Acetobacter, 8 species of Lactobacillus, 1 species of Pediococcus, 3 species of Streptococcus, and 1 species of Weissella. The activity of LysKB317 was optimal around pH 6, but it has broad activity and stability from pH 4.5-7.5 up to at least 48 h. Maximum activity was observed at 50 °C up to at least 72 h. In addition, LysKB317 was stable in 30% ethanol up to at least 72 h. In experimentally infected corn mash fermentations, 1 µM endolysin reduced bacterial load by 3-log fold change, while 0.01 µM reduced bacteria by 2-log fold change. Concentration of fermentation products (ethanol, residual glucose, lactic acid, and acetic acids) for infected cultures treated with ≥ 0.01 µM LysKB317 was similar to uncontaminated controls. CONCLUSION: Exogenously added LysKB317 endolysin is functional in conditions typically found in fuel ethanol fermentations tanks and may be developed as an alternative to antibiotics for contamination control during fuel ethanol fermentations.

17.
Plasmid ; 61(1): 22-38, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18831987

RESUMO

A three-plasmid yeast expression system utilizing the portable small ubiquitin-like modifier (SUMO) vector set combined with the efficient endogenous yeast protease Ulp1 was developed for production of large amounts of soluble functional protein in Saccharomyces cerevisiae. Each vector has a different selectable marker (URA, TRP, or LEU), and the system provides high expression levels of three different proteins simultaneously. This system was integrated into the protocols on a fully automated plasmid-based robotic platform to screen engineered strains of S. cerevisiae for improved growth on xylose. First, a novel PCR assembly strategy was used to clone a xylose isomerase (XI) gene into the URA-selectable SUMO vector and the plasmid was placed into the S. cerevisiae INVSc1 strain to give the strain designated INVSc1-XI. Second, amino acid scanning mutagenesis was used to generate a library of mutagenized genes encoding the bioinsecticidal peptide lycotoxin-1 (Lyt-1) and the library was cloned into the TRP-selectable SUMO vector and placed into INVSc1-XI to give the strain designated INVSc1-XI-Lyt-1. Third, the Yersinia pestis xylulokinase gene was cloned into the LEU-selectable SUMO vector and placed into the INVSc1-XI-Lyt-1 yeast. Yeast strains expressing XI and xylulokinase with or without Lyt-1 showed improved growth on xylose compared to INVSc1-XI yeast.


Assuntos
Aldose-Cetose Isomerases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Plasmídeos/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Venenos de Aranha/metabolismo , Xilose/metabolismo , Aldose-Cetose Isomerases/genética , Clonagem Molecular , Vetores Genéticos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/ultraestrutura , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Venenos de Aranha/genética , Transformação Genética
18.
Biotechnol Bioeng ; 103(1): 117-22, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19148876

RESUMO

The emergence of antibiotic-resistant bacteria may limit the effectiveness of antibiotics to treat bacterial contamination in fuel ethanol plants, and therefore, new antibacterial intervention methods and tools to test their application are needed. Using shake-flask cultures of Saccharomyces cerevisiae grown on saccharified corn mash and strains of lactic acid bacteria isolated from a dry-grind ethanol facility, a simple model to simulate bacterial contamination and infection was developed. Challenging the model with 10(8) CFU/mL Lactobacillus fermentum decreased ethanol yield by 27% and increased residual glucose from 6.2 to 45.5 g/L. The magnitude of the effect was proportional to the initial bacterial load, with 10(5) CFU/mL L. fermentum still producing an 8% decrease in ethanol and a 3.2-fold increase in residual glucose. Infection was also dependent on the bacterial species used to challenge the fermentation, as neither L. delbrueckii ATCC 4797 nor L. amylovorus 0315-7B produced a significant decrease in ethanol when inoculated at a density of 10(8) CFU/mL. In the shake-flask model, treatment with 2 microg/mL virginiamycin mitigated the infection when challenged with a susceptible strain of L. fermentum (MIC for virginiamycin < or =2 ppm), but treatment was ineffective at treating infection by a resistant strain of L. fermentum (MIC = 16 ppm). The model may find application in developing new antibacterial agents and management practices for use in controlling contamination in the fuel ethanol industry.


Assuntos
Reatores Biológicos/microbiologia , Etanol/metabolismo , Microbiologia Industrial , Limosilactobacillus fermentum/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Antibacterianos/farmacologia , Fermentação , Lactobacillus acidophilus/crescimento & desenvolvimento , Lactobacillus delbrueckii/crescimento & desenvolvimento , Limosilactobacillus fermentum/efeitos dos fármacos , Virginiamicina/farmacologia , Zea mays/metabolismo
19.
Bioorg Med Chem Lett ; 19(11): 3059-62, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19394221

RESUMO

Combinatorial biocatalysis was applied to generate a diverse set of dihydroxymethylzearalenone analogs with modified ring structure. In one representative chemoenzymatic reaction sequence, dihydroxymethylzearalenone was first subjected to a unique enzyme-catalyzed oxidative ring opening reaction that creates two new carboxylic groups on the molecule. These groups served as reaction sites for further derivatization involving biocatalytic ring closure reactions with structurally diverse bifunctional reagents, including different diols and diamines. As a result, a library of cyclic bislactones and bislactams was created, with modified ring structures covering chemical space and structure activity relationships unattainable by conventional synthetic means.


Assuntos
Zearalenona/química , Biocatálise , Desenho de Fármacos , Enzimas/metabolismo , Lipase/metabolismo , Relação Estrutura-Atividade , Zearalenona/biossíntese
20.
Curr Microbiol ; 58(5): 499-503, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19184610

RESUMO

Microorganisms that colonize plants require a number of hydrolytic enzymes to help degrade the cell wall. The maize endophyte Acremonium zeae was surveyed for production of extracellular enzymes that hydrolyze cellulose and hemicellulose. The most prominent enzyme activity in cell-free culture medium from A. zeae NRRL 6415 was xylanase, with a specific activity of 60 U/mg from cultures grown on crude corn fiber. Zymogram analysis following SDS-PAGE indicated six functional xylanase polypeptides of the following masses: 51, 44, 34, 29, 23, and 20 kDa. Xylosidase (0.39 U/mg), arabinofuranosidase (1.2 U/mg), endoglucanase (2.3 U/mg), cellobiohydrolase (1.3 U/mg), and beta-glucosidase (0.85 U/mg) activities were also detected. Although apparently possessing a full complement of hemicellulolytic activities, cell-free culture supernatants prepared from A. zeae required an exogenously added xylosidase to release more than 90% of the xylose and 80% of the arabinose from corn cob and wheat arabinoxylans. The hydrolytic enzymes from A. zeae may be suitable for application in the bioconversion of lignocellulosic biomass into fermentable sugars.


Assuntos
Acremonium/enzimologia , Celulases/metabolismo , Proteínas Fúngicas/metabolismo , Polissacarídeos/metabolismo , Zea mays/microbiologia , Celulases/química , Celulases/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Peso Molecular , Xilanos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA