Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 137(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38240353

RESUMO

The tumour suppressor, Lethal (2) giant larvae [Lgl; also known as L(2)gl], is an evolutionarily conserved protein that was discovered in the vinegar fly Drosophila, where its depletion results in tissue overgrowth and loss of cell polarity. Lgl links cell polarity and tissue growth through regulation of the Notch and the Hippo signalling pathways. Lgl regulates the Notch pathway by inhibiting V-ATPase activity via Vap33. How Lgl regulates the Hippo pathway was unclear. In this current study, we show that V-ATPase activity inhibits the Hippo pathway, whereas Vap33 acts to activate Hippo signalling. Vap33 physically and genetically interacts with the actin cytoskeletal regulators RtGEF (Pix) and Git, which also bind to the Hippo protein (Hpo) and are involved in the activation of the Hippo pathway. Additionally, we show that the ADP ribosylation factor Arf79F (Arf1), which is a Hpo interactor, is involved in the inhibition of the Hippo pathway. Altogether, our data suggest that Lgl acts via Vap33 to activate the Hippo pathway by a dual mechanism: (1) through interaction with RtGEF, Git and Arf79F, and (2) through interaction and inhibition of the V-ATPase, thereby controlling epithelial tissue growth.


Assuntos
Proteínas de Drosophila , Neoplasias , Animais , Adenosina Trifosfatases/metabolismo , Polaridade Celular , Drosophila/metabolismo , Drosophila melanogaster , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Via de Sinalização Hippo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo
2.
Development ; 146(13)2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31164352

RESUMO

One fundamental property of a stem cell niche is the exchange of molecular signals between its component cells. Niche models, such as the Drosophila melanogaster testis, have been instrumental in identifying and studying the conserved genetic factors that contribute to niche molecular signalling. Here, we identify jam packed (jam), an allele of Striatin interacting protein (Strip), which is a core member of the highly conserved Striatin-interacting phosphatase and kinase (STRIPAK) complex. In the developing Drosophila testis, Strip cell-autonomously regulates the differentiation and morphology of the somatic lineage, and non-cell-autonomously regulates the proliferation and differentiation of the germline lineage. Mechanistically, Strip acts in the somatic lineage with its STRIPAK partner, Connector of kinase to AP-1 (Cka), where they negatively regulate the Jun N-terminal kinase (JNK) signalling pathway. Our study reveals a novel role for Strip/Cka in JNK pathway regulation during spermatogenesis within the developing Drosophila testis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster , Sistema de Sinalização das MAP Quinases/genética , Proteínas de Ligação a Fosfato/fisiologia , Espermatogênese/genética , Animais , Animais Geneticamente Modificados , Diferenciação Celular , Regulação para Baixo/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Masculino , Testículo/citologia , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
3.
Proc Natl Acad Sci U S A ; 115(9): 2150-2155, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29440430

RESUMO

The Hippo signaling pathway is a master regulator of organ growth, tissue homeostasis, and tumorigenesis. The activity of the Hippo pathway is controlled by various upstream components, including Expanded (Ex), but the precise molecular mechanism of how Ex is regulated remains poorly understood. Here we identify Plenty of SH3s (POSH), an E3 ubiquitin ligase, as a key component of Hippo signaling in DrosophilaPOSH overexpression synergizes with loss of Kibra to induce overgrowth and up-regulation of Hippo pathway target genes. Furthermore, knockdown of POSH impedes dextran sulfate sodium-induced Yorkie-dependent intestinal stem cell renewal, suggesting a physiological role of POSH in modulating Hippo signaling. Mechanistically, POSH binds to the C-terminal of Ex and is essential for the Crumbs-induced ubiquitination and degradation of Ex. Our findings establish POSH as a crucial regulator that integrates the signal from the cell surface to negatively regulate Ex-mediated Hippo activation in Drosophila.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitina/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas do Citoesqueleto/genética , Sulfato de Dextrana , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Deleção de Genes , Genoma , Intestinos/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteólise , Transdução de Sinais , Células-Tronco/efeitos dos fármacos , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
4.
PLoS Genet ; 14(10): e1007688, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30325918

RESUMO

Oncogenic mutations in the small GTPase Ras contribute to ~30% of human cancers. However, Ras mutations alone are insufficient for tumorigenesis, therefore it is paramount to identify cooperating cancer-relevant signaling pathways. We devised an in vivo near genome-wide, functional screen in Drosophila and discovered multiple novel, evolutionarily-conserved pathways controlling Ras-driven epithelial tumorigenesis. Human gene orthologs of the fly hits were significantly downregulated in thousands of primary tumors, revealing novel prognostic markers for human epithelial tumors. Of the top 100 candidate tumor suppressor genes, 80 were validated in secondary Drosophila assays, identifying many known cancer genes and multiple novel candidate genes that cooperate with Ras-driven tumorigenesis. Low expression of the confirmed hits significantly correlated with the KRASG12 mutation status and poor prognosis in pancreatic cancer. Among the novel top 80 candidate cancer genes, we mechanistically characterized the function of the top hit, the Tetraspanin family member Tsp29Fb, revealing that Tsp29Fb regulates EGFR signaling, epithelial architecture and restrains tumor growth and invasion. Our functional Drosophila screen uncovers multiple novel and evolutionarily conserved epithelial cancer genes, and experimentally confirmed Tsp29Fb as a key regulator of EGFR/Ras induced epithelial tumor growth and invasion.


Assuntos
Proteínas de Drosophila/genética , IMP Desidrogenase/genética , Neoplasias/genética , Tetraspanina 29/genética , Animais , Animais Geneticamente Modificados , Carcinogênese/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Genes ras , Testes Genéticos/métodos , Humanos , IMP Desidrogenase/metabolismo , Masculino , Camundongos , Neoplasias/metabolismo , Neoplasias/patologia , Oncogenes , Transdução de Sinais , Tetraspanina 29/metabolismo , Proteínas Supressoras de Tumor/genética
5.
Int J Mol Sci ; 22(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34884538

RESUMO

Tissue homeostasis via the elimination of aberrant cells is fundamental for organism survival. Cell competition is a key homeostatic mechanism, contributing to the recognition and elimination of aberrant cells, preventing their malignant progression and the development of tumors. Here, using Drosophila as a model organism, we have defined a role for protein tyrosine phosphatase 61F (PTP61F) (orthologue of mammalian PTP1B and TCPTP) in the initiation and progression of epithelial cancers. We demonstrate that a Ptp61F null mutation confers cells with a competitive advantage relative to neighbouring wild-type cells, while elevating PTP61F levels has the opposite effect. Furthermore, we show that knockdown of Ptp61F affects the survival of clones with impaired cell polarity, and that this occurs through regulation of the JAK-STAT signalling pathway. Importantly, PTP61F plays a robust non-cell-autonomous role in influencing the elimination of adjacent polarity-impaired mutant cells. Moreover, in a neoplastic RAS-driven polarity-impaired tumor model, we show that PTP61F levels determine the aggressiveness of tumors, with Ptp61F knockdown or overexpression, respectively, increasing or reducing tumor size. These effects correlate with the regulation of the RAS-MAPK and JAK-STAT signalling by PTP61F. Thus, PTP61F acts as a tumor suppressor that can function in an autonomous and non-cell-autonomous manner to ensure cellular fitness and attenuate tumorigenesis.


Assuntos
Carcinogênese/metabolismo , Competição entre as Células , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Neoplasias/prevenção & controle , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/patologia , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Tirosina Fosfatases não Receptoras/genética , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Proteínas ras/genética , Proteínas ras/metabolismo
6.
J Biol Chem ; 293(12): 4519-4531, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29378849

RESUMO

Epithelial cell polarity is controlled by components of the Scribble polarity module, and its regulation is critical for tissue architecture and cell proliferation and migration. In Drosophila melanogaster, the adaptor protein Guk-holder (Gukh) binds to the Scribbled (Scrib) and Discs Large (Dlg) components of the Scribble polarity module and plays an important role in the formation of neuromuscular junctions. However, Gukh's role in epithelial tissue formation and the molecular basis for the Scrib-Gukh interaction remain to be defined. We now show using isothermal titration calorimetry that the Scrib PDZ1 domain is the major site for an interaction with Gukh. Furthermore, we defined the structural basis of this interaction by determining the crystal structure of the Scrib PDZ1-Gukh complex. The C-terminal PDZ-binding motif of Gukh is located in the canonical ligand-binding groove of Scrib PDZ1 and utilizes an unusually extensive network of hydrogen bonds and ionic interactions to enable binding to PDZ1 with high affinity. We next examined the role of Gukh along with those of Scrib and Dlg in Drosophila epithelial tissues and found that Gukh is expressed in larval-wing and eye-epithelial tissues and co-localizes with Scrib and Dlg at the apical cell cortex. Importantly, we show that Gukh functions with Scrib and Dlg in the development of Drosophila epithelial tissues, with depletion of Gukh enhancing the eye- and wing-tissue defects caused by Scrib or Dlg depletion. Overall, our findings reveal that Scrib's PDZ1 domain functions in the interaction with Gukh and that the Scrib-Gukh interaction has a key role in epithelial tissue development in Drosophila.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Epiteliais/citologia , Olho/citologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Asas de Animais/citologia , Animais , Polaridade Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Células Epiteliais/metabolismo , Olho/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Proteínas de Membrana , Proteínas do Tecido Nervoso/genética , Domínios PDZ , Ligação Proteica , Proteínas Supressoras de Tumor/genética , Asas de Animais/metabolismo
7.
Adv Exp Med Biol ; 1167: 37-64, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31520348

RESUMO

Cell competition is an important surveillance mechanism that measures relative fitness between cells in a tissue during development, homeostasis, and disease. Specifically, cells that are "less fit" (losers) are actively eliminated by relatively "more fit" (winners) neighbours, despite the less fit cells otherwise being able to survive in a genetically uniform tissue. Originally described in the epithelial tissues of Drosophila larval imaginal discs, cell competition has since been shown to occur in other epithelial and non-epithelial Drosophila tissues, as well as in mammalian model systems. Many genes and signalling pathways have been identified as playing conserved roles in the mechanisms of cell competition. Among them are genes required for the establishment and maintenance of apico-basal cell polarity: the Crumbs/Stardust/Patj (Crb/Sdt/Patj), Bazooka/Par-6/atypical Protein Kinase C (Baz/Par-6/aPKC), and Scribbled/Discs large 1/Lethal (2) giant larvae (Scrib/Dlg1/L(2)gl) modules. In this chapter, we describe the concepts and mechanisms of cell competition, with emphasis on the relationship between cell polarity proteins and cell competition, particularly the Scrib/Dlg1/L(2)gl module, since this is the best described module in this emerging field.


Assuntos
Polaridade Celular , Transformação Celular Neoplásica , Proteínas de Drosophila , Drosophila , Animais , Modelos Animais de Doenças
8.
Int J Mol Sci ; 19(6)2018 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-29861494

RESUMO

The Ras oncogene (Rat Sarcoma oncogene, a small GTPase) is a key driver of human cancer, however alone it is insufficient to produce malignancy, due to the induction of cell cycle arrest or senescence. In a Drosophila melanogaster genetic screen for genes that cooperate with oncogenic Ras (bearing the RasV12 mutation, or RasACT), we identified the Drosophila Src (Sarcoma virus oncogene) family non-receptor tyrosine protein kinase genes, Src42A and Src64B, as promoting increased hyperplasia in a whole epithelial tissue context in the Drosophila eye. Moreover, overexpression of Src cooperated with RasACT in epithelial cell clones to drive neoplastic tumourigenesis. We found that Src overexpression alone activated the Jun N-terminal Kinase (JNK) signalling pathway to promote actin cytoskeletal and cell polarity defects and drive apoptosis, whereas, in cooperation with RasACT, JNK led to a loss of differentiation and an invasive phenotype. Src + RasACT cooperative tumourigenesis was dependent on JNK as well as Phosphoinositide 3-Kinase (PI3K) signalling, suggesting that targeting these pathways might provide novel therapeutic opportunities in cancers dependent on Src and Ras signalling.


Assuntos
Carcinogênese , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo , Animais , Diferenciação Celular , Polaridade Celular , Olho Composto de Artrópodes/enzimologia , Olho Composto de Artrópodes/metabolismo , Olho Composto de Artrópodes/patologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Epitélio/enzimologia , Epitélio/metabolismo , Epitélio/fisiopatologia , Feminino , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Tirosina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Proto-Oncogênicas pp60(c-src)/fisiologia , Proteínas ras/fisiologia
9.
PLoS Genet ; 9(7): e1003627, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874226

RESUMO

The capacity of tumour cells to maintain continual overgrowth potential has been linked to the commandeering of normal self-renewal pathways. Using an epithelial cancer model in Drosophila melanogaster, we carried out an overexpression screen for oncogenes capable of cooperating with the loss of the epithelial apico-basal cell polarity regulator, scribbled (scrib), and identified the cell fate regulator, Abrupt, a BTB-zinc finger protein. Abrupt overexpression alone is insufficient to transform cells, but in cooperation with scrib loss of function, Abrupt promotes the formation of massive tumours in the eye/antennal disc. The steroid hormone receptor coactivator, Taiman (a homologue of SRC3/AIB1), is known to associate with Abrupt, and Taiman overexpression also drives tumour formation in cooperation with the loss of Scrib. Expression arrays and ChIP-Seq indicates that Abrupt overexpression represses a large number of genes, including steroid hormone-response genes and multiple cell fate regulators, thereby maintaining cells within an epithelial progenitor-like state. The progenitor-like state is characterised by the failure to express the conserved Eyes absent/Dachshund regulatory complex in the eye disc, and in the antennal disc by the failure to express cell fate regulators that define the temporal elaboration of the appendage along the proximo-distal axis downstream of Distalless. Loss of scrib promotes cooperation with Abrupt through impaired Hippo signalling, which is required and sufficient for cooperative overgrowth with Abrupt, and JNK (Jun kinase) signalling, which is required for tumour cell migration/invasion but not overgrowth. These results thus identify a novel cooperating oncogene, identify mammalian family members of which are also known oncogenes, and demonstrate that epithelial tumours in Drosophila can be characterised by the maintenance of a progenitor-like state.


Assuntos
Carcinogênese , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Sistema de Sinalização das MAP Quinases/genética , Neoplasias Epiteliais e Glandulares/genética , Proteínas Nucleares/genética , Animais , Proliferação de Células , Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Neoplasias Oculares/genética , Neoplasias Oculares/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Neoplasias Epiteliais e Glandulares/patologia , Proteínas Nucleares/metabolismo , Proteína Oncogênica p65(gag-jun)/genética , Proteína Oncogênica p65(gag-jun)/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
10.
Development ; 139(2): 225-30, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22129826

RESUMO

The recent Company of Biologists workshop 'Growth, Division and Differentiation: Understanding Developmental Control', which was held in September 2011 at Wiston House, West Sussex, UK, brought together researchers aiming to understand cell proliferation and differentiation in various metazoans, ranging from flies to mice. Here, we review the common themes that emerged from the meeting, highlighting novel insights into the interplay between regulators of cell proliferation and differentiation during development.


Assuntos
Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células , Crescimento e Desenvolvimento/fisiologia , Transdução de Sinais/fisiologia , Animais
12.
Nat Rev Cancer ; 5(8): 626-39, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16034367

RESUMO

The development of human cancer is a multistep process, involving the cooperation of mutations in signalling, cell-cycle and cell-death pathways, as well as interactions between the tumour and the tumour microenvironment. To dissect the steps of tumorigenesis, simple animal models are needed. This article discusses the use of the genetically amenable, multicellular organism, the vinegar fly Drosophila melanogaster. In particular, recent studies have highlighted the power of D. melanogaster for examining cooperative interactions between tumour suppressors and oncogenes and for generating in vivo models of tumour development and metastasis.


Assuntos
Drosophila melanogaster/genética , Neoplasias/genética , Oncogenes/genética , Transdução de Sinais/genética , Animais , Humanos , Modelos Animais
13.
Development ; 137(17): 2875-84, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20667914

RESUMO

An unresolved question regarding the RNA-recognition motif (RRM) protein Half pint (Hfp) has been whether its tumour suppressor behaviour occurs by a transcriptional mechanism or via effects on splicing. The data presented here demonstrate that Hfp achieves cell cycle inhibition via an essential role in the repression of Drosophila myc (dmyc) transcription. We demonstrate that regulation of dmyc requires interaction between the transcriptional repressor Hfp and the DNA helicase subunit of TFIIH, Haywire (Hay). In vivo studies show that Hfp binds to the dmyc promoter and that repression of dmyc transcription requires Hfp. In addition, loss of Hfp results in enhanced cell growth, which depends on the presence of dMyc. This is consistent with Hfp being essential for inhibition of dmyc transcription and cell growth. Further support for Hfp controlling dmyc transcriptionally comes from the demonstration that Hfp physically and genetically interacts with the XPB helicase component of the TFIIH transcription factor complex, Hay, which is required for normal levels of dmyc expression, cell growth and cell cycle progression. Together, these data demonstrate that Hfp is crucial for repression of dmyc, suggesting that a transcriptional, rather than splicing, mechanism underlies the regulation of dMyc and the tumour suppressor behaviour of Hfp.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/citologia , Drosophila/metabolismo , Genes de Insetos , Genes myc , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fator de Transcrição TFIIH/metabolismo , Fatores de Transcrição/genética , Regiões 5' não Traduzidas , Animais , Animais Geneticamente Modificados , Sequência de Bases , Proliferação de Células , DNA Helicases/metabolismo , Primers do DNA/genética , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/genética , Modelos Biológicos , Regiões Promotoras Genéticas , Interferência de RNA , Fase S , Transdução de Sinais , Transcrição Gênica , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
14.
Dis Model Mech ; 16(3)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36861754

RESUMO

Elevated Ras signalling is highly prevalent in human cancer; however, targeting Ras-driven cancers with Ras pathway inhibitors often leads to undesirable side effects and to drug resistance. Thus, identifying compounds that synergise with Ras pathway inhibitors would enable lower doses of the Ras pathway inhibitors to be used and also decrease the acquisition of drug resistance. Here, in a specialised chemical screen using a Drosophila model of Ras-driven cancer, we have identified compounds that reduce tumour size by synergising with sub-therapeutic doses of the Ras pathway inhibitor trametinib, which targets MEK, the mitogen-activated protein kinase kinase, in this pathway. Analysis of one of the hits, ritanserin, and related compounds revealed that diacyl glycerol kinase α (DGKα, Dgk in Drosophila) was the critical target required for synergism with trametinib. Human epithelial cells harbouring the H-RAS oncogene and knockdown of the cell polarity gene SCRIB were also sensitive to treatment with trametinib and DGKα inhibitors. Mechanistically, DGKα inhibition synergises with trametinib by increasing the P38 stress-response signalling pathway in H-RASG12V SCRIBRNAi cells, which could lead to cell quiescence. Our results reveal that targeting Ras-driven human cancers with Ras pathway and DGKα inhibitors should be an effective combination drug therapy.


Assuntos
Antineoplásicos , Neoplasias , Animais , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno , Drosophila , Linhagem Celular Tumoral , Transdução de Sinais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias/tratamento farmacológico
15.
Dev Biol ; 350(2): 255-66, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21111727

RESUMO

During tissue regeneration, cell proliferation replaces missing structures to restore organ function. Regenerative potential differs greatly between organs and organisms; for example some amphibians can regrow entire limbs whereas mammals cannot. The process of regeneration relies on several signaling pathways that control developmental tissue growth, and implies the existence of organ size-control checkpoints that regulate both developmental, and regenerative, growth. Here we explore the role of one such checkpoint, the Salvador-Warts-Hippo pathway, in tissue regeneration. The Salvador-Warts-Hippo pathway limits tissue growth by repressing the Yorkie transcriptional co-activator. Several proteins serve as upstream modulators of this pathway including the atypical cadherins, Dachsous and Fat, whilst the atypical myosin, Dachs, functions downstream of Fat to activate Yorkie. Using Drosophila melanogaster imaginal discs we show that Salvador-Warts-Hippo pathway activity is repressed in regenerating tissue and that Yorkie is rate-limiting for regeneration of the developing wing. We show that regeneration is compromised in dachs mutant wing discs, but that proteins in addition to Fat and Dachs are likely to modulate Yorkie activity in regenerating cells. In conclusion our data reveal the importance of Yorkie hyperactivation for tissue regeneration and suggest that multiple upstream inputs, including Fat-Dachsous signaling, sense tissue damage and regulate Yorkie activity during regeneration of epithelial tissues.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Quinases/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Regeneração , Transdução de Sinais/fisiologia , Animais , Apoptose , Proteínas Nucleares/fisiologia , Transativadores/fisiologia , Proteínas de Sinalização YAP
16.
Cell Rep ; 41(7): 111640, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36384105

RESUMO

Precise organ size control is fundamental for all metazoans, but how organ size is controlled in a three-dimensional (3D) way remains largely unexplored at the molecular level. Here, we screen and identify Drosophila Ptp61F as a pivotal regulator of organ size that integrates the Hippo pathway, TOR pathway, and actomyosin machinery. Pathologically, Ptp61F loss synergizes with RasV12 to induce tumorigenesis. Physiologically, Ptp61F depletion increases body size and drives neoplastic intestinal tumor formation and stem cell proliferation. Ptp61F also regulates cell contractility and myosin activation and controls 3D cell shape by reducing cell height and horizontal cell size. Mechanistically, Ptp61F forms a complex with Expanded (Ex) and increases endosomal localization of Ex and Yki. Furthermore, we demonstrate that PTPN2, the conserved human ortholog of Ptp61F, can functionally substitute for Ptp61F in Drosophila. Our work defines Ptp61F as an essential determinant that controls 3D organ size under both physiological and pathological conditions.


Assuntos
Actomiosina , Proteínas de Drosophila , Animais , Humanos , Proteínas de Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Serina-Treonina Quinases/genética , Tamanho do Órgão , Transativadores/metabolismo , Proteínas Nucleares/metabolismo , Drosophila/metabolismo , Proteínas Tirosina Fosfatases não Receptoras
17.
Oncogene ; 41(14): 2095-2105, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35184157

RESUMO

Oncogenic mutations in the small GTPase RAS contribute to ~30% of human cancers. In a Drosophila genetic screen, we identified novel and evolutionary conserved cancer genes that affect Ras-driven tumorigenesis and metastasis in Drosophila including confirmation of the tetraspanin Tsp29Fb. However, it was not known whether the mammalian Tsp29Fb orthologue, TSPAN6, has any role in RAS-driven human epithelial tumors. Here we show that TSPAN6 suppressed tumor growth and metastatic dissemination of human RAS activating mutant pancreatic cancer xenografts. Whole-body knockout as well as tumor cell autonomous inactivation using floxed alleles of Tspan6 in mice enhanced KrasG12D-driven lung tumor initiation and malignant progression. Mechanistically, TSPAN6 binds to the EGFR and blocks EGFR-induced RAS activation. Moreover, we show that inactivation of TSPAN6 induces an epithelial-to-mesenchymal transition and inhibits cell migration in vitro and in vivo. Finally, low TSPAN6 expression correlates with poor prognosis of patients with lung and pancreatic cancers with mesenchymal morphology. Our results uncover TSPAN6 as a novel tumor suppressor receptor that controls epithelial cell identify and restrains RAS-driven epithelial cancer.


Assuntos
Oncogenes , Neoplasias Pancreáticas , Tetraspaninas , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Genes ras , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Camundongos , Mutação , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Tetraspaninas/genética , Tetraspaninas/metabolismo
18.
Dev Biol ; 344(1): 36-51, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20416294

RESUMO

Geminin was identified in Xenopus as a dual function protein involved in the regulation of DNA replication and neural differentiation. In Xenopus, Geminin acts to antagonize the Brahma (Brm) chromatin-remodeling protein, Brg1, during neural differentiation. Here, we investigate the interaction of Geminin with the Brm complex during Drosophila development. We demonstrate that Drosophila Geminin (Gem) interacts antagonistically with the Brm-BAP complex during wing development. Moreover, we show in vivo during wing development and biochemically that Brm acts to promote EGFR-Ras-MAPK signaling, as indicated by its effects on pERK levels, while Gem opposes this. Furthermore, gem and brm alleles modulate the wing phenotype of a Raf gain-of-function mutant and the eye phenotype of a EGFR gain-of-function mutant. Western analysis revealed that Gem over-expression in a background compromised for Brm function reduces Mek (MAPKK/Sor) protein levels, consistent with the decrease in ERK activation observed. Taken together, our results show that Gem and Brm act antagonistically to modulate the EGFR-Ras-MAPK signaling pathway, by affecting Mek levels during Drosophila development.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Receptores ErbB/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Sistema de Sinalização das MAP Quinases , Transativadores/metabolismo , Proteínas ras/metabolismo , Animais , Animais Geneticamente Modificados , Geminina , Modelos Biológicos , Mutação , Fenótipo , RNA de Cadeia Dupla/metabolismo , Transdução de Sinais , Asas de Animais
19.
BMC Dev Biol ; 11: 57, 2011 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-21955824

RESUMO

BACKGROUND: Epithelial neoplasias are associated with alterations in cell polarity and excessive cell proliferation, yet how these neoplastic properties are related to one another is still poorly understood. The study of Drosophila genes that function as neoplastic tumor suppressors by regulating both of these properties has significant potential to clarify this relationship. RESULTS: Here we show in Drosophila that loss of Scribbled (Scrib), a cell polarity regulator and neoplastic tumor suppressor, results in impaired Hippo pathway signaling in the epithelial tissues of both the eye and wing imaginal disc. scrib mutant tissue overgrowth, but not the loss of cell polarity, is dependent upon defective Hippo signaling and can be rescued by knockdown of either the TEAD/TEF family transcription factor Scalloped or the transcriptional coactivator Yorkie in the eye disc, or reducing levels of Yorkie in the wing disc. Furthermore, loss of Scrib sensitizes tissue to transformation by oncogenic Ras-Raf signaling, and Yorkie-Scalloped activity is required to promote this cooperative tumor overgrowth. The inhibition of Hippo signaling in scrib mutant eye disc clones is not dependent upon JNK activity, but can be significantly rescued by reducing aPKC kinase activity, and ectopic aPKC activity is sufficient to impair Hippo signaling in the eye disc, even when JNK signaling is blocked. In contrast, warts mutant overgrowth does not require aPKC activity. Moreover, reducing endogenous levels of aPKC or increasing Scrib or Lethal giant larvae levels does not promote increased Hippo signaling, suggesting that aPKC activity is not normally rate limiting for Hippo pathway activity. Epistasis experiments suggest that Hippo pathway inhibition in scrib mutants occurs, at least in part, downstream or in parallel to both the Expanded and Fat arms of Hippo pathway regulation. CONCLUSIONS: Loss of Scrib promotes Yorkie/Scalloped-dependent epithelial tissue overgrowth, and this is also important for driving cooperative tumor overgrowth with oncogenic Ras-Raf signaling. Whether this is also the case in human cancers now warrants investigation since the cell polarity function of Scrib and its capacity to restrain oncogene-mediated transformation, as well as the tissue growth control function of the Hippo pathway, are conserved in mammals.


Assuntos
Polaridade Celular/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Animais , Proliferação de Células , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Células Epiteliais/metabolismo , Olho/embriologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana , Mutação , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteína Oncogênica p21(ras)/metabolismo , Proteína Quinase C/biossíntese , Transativadores/deficiência , Transativadores/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Asas de Animais/embriologia , Proteínas de Sinalização YAP , Quinases raf/metabolismo
20.
Dev Cell ; 11(2): 141-6, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16937557

RESUMO

The Third International Workshop on Drosophila Cell Division Cycle brought together researchers focusing on DNA replication, mitosis, meiosis, cell cycle regulation, checkpoints, asymmetric division, cell and tissue growth, and tumorgenesis. This review describes new findings presented at the meeting that particularly highlight the advantages of the Drosophila systems.


Assuntos
Ciclo Celular/fisiologia , Drosophila melanogaster/fisiologia , Animais , Ciclo Celular/genética , Replicação do DNA/fisiologia , Miose , Mitose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA