Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(16): 2848-2849, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35931017

RESUMO

Immune checkpoint blockade is effective in treating many human cancers. In this issue of Cell, Luoma et al. show that tissue-resident memory T cells in head and neck cancers rapidly respond to immune checkpoint blockade, and they identify specific CD8+ T cells in pretreatment blood that predict pathologic tumor regression.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias de Cabeça e Pescoço , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Inibidores de Checkpoint Imunológico , Células T de Memória , Microambiente Tumoral
2.
Immunity ; 57(2): 287-302.e12, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38354704

RESUMO

The interaction of the tumor necrosis factor receptor (TNFR) family member CD27 on naive CD8+ T (Tn) cells with homotrimeric CD70 on antigen-presenting cells (APCs) is necessary for T cell memory fate determination. Here, we examined CD27 signaling during Tn cell activation and differentiation. In conjunction with T cell receptor (TCR) stimulation, ligation of CD27 by a synthetic trimeric CD70 ligand triggered CD27 internalization and degradation, suggesting active regulation of this signaling axis. Internalized CD27 recruited the signaling adaptor TRAF2 and the phosphatase SHP-1, thereby modulating TCR and CD28 signals. CD27-mediated modulation of TCR signals promoted transcription factor circuits that induced memory rather than effector associated gene programs, which are induced by CD28 costimulation. CD27-costimulated chimeric antigen receptor (CAR)-engineered T cells exhibited improved tumor control compared with CD28-costimulated CAR-T cells. Thus, CD27 signaling during Tn cell activation promotes memory properties with relevance to T cell immunotherapy.


Assuntos
Antígenos CD28 , Redes Reguladoras de Genes , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Antígenos CD28/metabolismo , Transdução de Sinais , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T/metabolismo , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Ligante CD27/genética , Ligante CD27/metabolismo , Linfócitos T CD8-Positivos
4.
Blood ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39374522

RESUMO

Chimeric antigen receptor (CAR) T-cells and bispecific antibodies (BsAb) targeting B-cell maturation antigen (BCMA) have significantly advanced the treatment of relapsed and refractory multiple myeloma (MM). Resistance to BCMA-targeting therapies, nonetheless, remains a significant challenge. BCMA shedding by gamma-secretase is a known resistance mechanism, and preclinical studies suggest that inhibition may improve anti-BCMA therapy. Leveraging a phase I clinical trial of the gamma-secretase inhibitor (GSI), crenigacestat, with anti-BCMA CAR T-cells (FCARH143), we utilized single-nuclei RNA sequencing and Assay for Transposase-Accessible Chromatin (ATAC) sequencing to characterize the effects of GSI on the tumor microenvironment. The most significant impacts of GSI involved effects on monocytes, which are known to promote tumor growth. In addition to observing a reduction in the frequency of non-classical monocytes, we also detected significant changes in gene expression, chromatin accessibility, and inferred cell-cell interactions following exposure to GSI. Although many genes with altered expression are associated with gamma-secretase-dependent signaling, such as Notch, other pathways were affected, indicating GSI has far-reaching effects. Finally, we detected monoallelic deletion of the BCMA locus in some patients with prior exposure to anti-BCMA therapy, which significantly correlated with reduced progression-free survival (median PFS 57 days versus 861 days). GSIs are being explored in combination with the full spectrum of BCMA targeting agents, and our results reveal widespread effects of GSI on both tumor and immune cell populations, providing insight into mechanisms for enhancing BCMA-directed therapies.

5.
Blood ; 144(10): 1069-1082, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38683966

RESUMO

ABSTRACT: Relapse is the leading cause of death after allogeneic hematopoietic stem cell transplantation (HCT) for leukemia. T cells engineered by gene transfer to express T cell receptors (TCR; TCR-T) specific for hematopoietic-restricted minor histocompatibility (H) antigens may provide a potent selective antileukemic effect post-HCT. We conducted a phase 1 clinical trial using a novel TCR-T product targeting the minor H antigen, HA-1, to treat or consolidate treatment of persistent or recurrent leukemia and myeloid neoplasms. The primary objective was to evaluate the feasibility and safety of administration of HA-1 TCR-T after HCT. CD8+ and CD4+ T cells expressing the HA-1 TCR and a CD8 coreceptor were successfully manufactured from HA-1-disparate HCT donors. One or more infusions of HA-1 TCR-T following lymphodepleting chemotherapy were administered to 9 HCT recipients who had developed disease recurrence after HCT. TCR-T cells expanded and persisted in vivo after adoptive transfer. No dose-limiting toxicities occurred. Although the study was not designed to assess efficacy, 4 patients achieved or maintained complete remissions following lymphodepletion and HA-1 TCR-T, with 1 patient still in remission at >2 years. Single-cell RNA sequencing of relapsing/progressive leukemia after TCR-T therapy identified upregulated molecules associated with T-cell dysfunction or cancer cell survival. HA-1 TCR-T therapy appears feasible and safe and shows preliminary signals of efficacy. This clinical trial was registered at ClinicalTrials.gov as #NCT03326921.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia , Receptores de Antígenos de Linfócitos T , Humanos , Transplante de Células-Tronco Hematopoéticas/métodos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Leucemia/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Recidiva , Idoso , Receptores de Antígenos Quiméricos/imunologia , Oligopeptídeos
6.
Nature ; 565(7738): 186-191, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30626941

RESUMO

We describe a de novo computational approach for designing proteins that recapitulate the binding sites of natural cytokines, but are otherwise unrelated in topology or amino acid sequence. We use this strategy to design mimics of the central immune cytokine interleukin-2 (IL-2) that bind to the IL-2 receptor ßγc heterodimer (IL-2Rßγc) but have no binding site for IL-2Rα (also called CD25) or IL-15Rα (also known as CD215). The designs are hyper-stable, bind human and mouse IL-2Rßγc with higher affinity than the natural cytokines, and elicit downstream cell signalling independently of IL-2Rα and IL-15Rα. Crystal structures of the optimized design neoleukin-2/15 (Neo-2/15), both alone and in complex with IL-2Rßγc, are very similar to the designed model. Neo-2/15 has superior therapeutic activity to IL-2 in mouse models of melanoma and colon cancer, with reduced toxicity and undetectable immunogenicity. Our strategy for building hyper-stable de novo mimetics could be applied generally to signalling proteins, enabling the creation of superior therapeutic candidates.


Assuntos
Desenho de Fármacos , Interleucina-15/imunologia , Interleucina-2/imunologia , Mimetismo Molecular , Receptores de Interleucina-2/agonistas , Receptores de Interleucina-2/imunologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/imunologia , Simulação por Computador , Cristalografia por Raios X , Modelos Animais de Doenças , Humanos , Interleucina-15/uso terapêutico , Interleucina-2/uso terapêutico , Subunidade alfa de Receptor de Interleucina-2/imunologia , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Melanoma/tratamento farmacológico , Melanoma/imunologia , Camundongos , Modelos Moleculares , Estabilidade Proteica , Receptores de Interleucina-2/metabolismo , Transdução de Sinais/imunologia
7.
Blood ; 140(21): 2261-2275, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-35605191

RESUMO

Adoptive transfer of T cells expressing chimeric antigen receptors (CAR-T) effectively treats refractory hematologic malignancies in a subset of patients but can be limited by poor T-cell expansion and persistence in vivo. Less differentiated T-cell states correlate with the capacity of CAR-T to proliferate and mediate antitumor responses, and interventions that limit tumor-specific T-cell differentiation during ex vivo manufacturing enhance efficacy. NOTCH signaling is involved in fate decisions across diverse cell lineages and in memory CD8+ T cells was reported to upregulate the transcription factor FOXM1, attenuate differentiation, and enhance proliferation and antitumor efficacy in vivo. Here, we used a cell-free culture system to provide an agonistic NOTCH1 signal during naïve CD4+ T-cell activation and CAR-T production and studied the effects on differentiation, transcription factor expression, cytokine production, and responses to tumor. NOTCH1 agonism efficiently induced a stem cell memory phenotype in CAR-T derived from naïve but not memory CD4+ T cells and upregulated expression of AhR and c-MAF, driving heightened production of interleukin-22, interleukin-10, and granzyme B. NOTCH1-agonized CD4+ CAR-T demonstrated enhanced antigen responsiveness and proliferated to strikingly higher frequencies in mice bearing human lymphoma xenografts. NOTCH1-agonized CD4+ CAR-T also provided superior help to cotransferred CD8+ CAR-T, driving improved expansion and curative antitumor responses in vivo at low CAR-T doses. Our data expand the mechanisms by which NOTCH can shape CD4+ T-cell behavior and demonstrate that activating NOTCH1 signaling during genetic modification ex vivo is a potential strategy for enhancing the function of T cells engineered with tumor-targeting receptors.


Assuntos
Linfoma , Receptores de Antígenos Quiméricos , Humanos , Camundongos , Animais , Imunoterapia Adotiva , Linfócitos T CD4-Positivos , Fatores de Transcrição , Linfoma/tratamento farmacológico , Receptores de Antígenos de Linfócitos T , Receptor Notch1/genética
8.
Lancet Oncol ; 24(7): 811-822, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37414012

RESUMO

BACKGROUND: γ-Secretase inhibitors (GSIs) increase B cell maturation antigen (BCMA) density on malignant plasma cells and enhance antitumour activity of BCMA chimeric antigen receptor (CAR) T cells in preclinical models. We aimed to evaluate the safety and identify the recommended phase 2 dose of BCMA CAR T cells in combination with crenigacestat (LY3039478) for individuals with relapsed or refractory multiple myeloma. METHODS: We conducted a phase 1, first-in-human trial combining crenigacestat with BCMA CAR T-cells at a single cancer centre in Seattle, WA, USA. We included individuals aged 21 years or older with relapsed or refractory multiple myeloma, previous autologous stem-cell transplant or persistent disease after more than four cycles of induction therapy, and Eastern Cooperative Oncology Group performance status of 0-2, regardless of previous BCMA-targeted therapy. To assess the effect of the GSI on BCMA surface density on bone marrow plasma cells, participants received GSI during a pretreatment run-in, consisting of three doses administered 48 h apart. BCMA CAR T cells were infused at doses of 50 × 106 CAR T cells, 150 × 106 CAR T cells, 300 × 106 CAR T cells, and 450 × 106 CAR T cells (total cell dose), in combination with the 25 mg crenigacestat dosed three times a week for up to nine doses. The primary endpoints were the safety and recommended phase 2 dose of BCMA CAR T cells in combination with crenigacestat, an oral GSI. This study is registered with ClinicalTrials.gov, NCT03502577, and has met accrual goals. FINDINGS: 19 participants were enrolled between June 1, 2018, and March 1, 2021, and one participant did not proceed with BCMA CAR T-cell infusion. 18 participants (eight [44%] men and ten [56%] women) with multiple myeloma received treatment between July 11, 2018, and April 14, 2021, with a median follow up of 36 months (95% CI 26 to not reached). The most common non-haematological adverse events of grade 3 or higher were hypophosphataemia in 14 (78%) participants, fatigue in 11 (61%), hypocalcaemia in nine (50%), and hypertension in seven (39%). Two deaths reported outside of the 28-day adverse event collection window were related to treatment. Participants were treated at doses up to 450 × 106 CAR+ cells, and the recommended phase 2 dose was not reached. INTERPRETATIONS: Combining a GSI with BCMA CAR T cells appears to be well tolerated, and crenigacestat increases target antigen density. Deep responses were observed among heavily pretreated participants with multiple myeloma who had previously received BCMA-targeted therapy and those who were naive to previous BCMA-targeted therapy. Further study of GSIs given with BCMA-targeted therapeutics is warranted in clinical trials. FUNDING: Juno Therapeutics-a Bristol Myers Squibb company and the National Institutes of Health.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Masculino , Humanos , Feminino , Mieloma Múltiplo/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/uso terapêutico , Antígeno de Maturação de Linfócitos B , Imunoterapia Adotiva/efeitos adversos , Linfócitos T
9.
Nat Immunol ; 12(10): 984-91, 2011 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-21892175

RESUMO

Major histocompatibility complex (MHC) class I molecules present peptides on the cell surface to CD8(+) T cells, which is critical for the killing of virus-infected or transformed cells. Precursors of MHC class I-presented peptides are trimmed to mature epitopes by the aminopeptidase ERAP1. The US2-US11 genomic region of human cytomegalovirus (HCMV) is dispensable for viral replication and encodes three microRNAs (miRNAs). We show here that HCMV miR-US4-1 specifically downregulated ERAP1 expression during viral infection. Accordingly, the trimming of HCMV-derived peptides was inhibited, which led to less susceptibility of infected cells to HCMV-specific cytotoxic T lymphocytes (CTLs). Our findings identify a previously unknown viral miRNA-based CTL-evasion mechanism that targets a key step in the MHC class I antigen-processing pathway.


Assuntos
Aminopeptidases/antagonistas & inibidores , Linfócitos T CD8-Positivos/imunologia , Citomegalovirus/genética , MicroRNAs/fisiologia , Aminopeptidases/genética , Aminopeptidases/fisiologia , Apresentação de Antígeno , Linhagem Celular , Citomegalovirus/imunologia , Infecções por Citomegalovirus/imunologia , Regulação para Baixo , Humanos , Antígenos de Histocompatibilidade Menor , Ovalbumina/metabolismo
10.
Blood ; 137(3): 323-335, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967009

RESUMO

CD19-targeted chimeric antigen receptor-engineered (CD19 CAR) T-cell therapy has shown significant efficacy for relapsed or refractory (R/R) B-cell malignancies. Yet, CD19 CAR T cells fail to induce durable responses in most patients. Second infusions of CD19 CAR T cells (CART2) have been considered as a possible approach to improve outcomes. We analyzed data from 44 patients with R/R B-cell malignancies (acute lymphoblastic leukemia [ALL], n = 14; chronic lymphocytic leukemia [CLL], n = 9; non-Hodgkin lymphoma [NHL], n = 21) who received CART2 on a phase 1/2 trial (NCT01865617) at our institution. Despite a CART2 dose increase in 82% of patients, we observed a low incidence of severe toxicity after CART2 (grade ≥3 cytokine release syndrome, 9%; grade ≥3 neurotoxicity, 11%). After CART2, complete response (CR) was achieved in 22% of CLL, 19% of NHL, and 21% of ALL patients. The median durations of response after CART2 in CLL, NHL, and ALL patients were 33, 6, and 4 months, respectively. Addition of fludarabine to cyclophosphamide-based lymphodepletion before the first CAR T-cell infusion (CART1) and an increase in the CART2 dose compared with CART1 were independently associated with higher overall response rates and longer progression-free survival after CART2. We observed durable CAR T-cell persistence after CART2 in patients who received cyclophosphamide and fludarabine (Cy-Flu) lymphodepletion before CART1 and a higher CART2 compared with CART1 cell dose. The identification of 2 modifiable pretreatment factors independently associated with better outcomes after CART2 suggests strategies to improve in vivo CAR T-cell kinetics and responses after repeat CAR T-cell infusions, and has implications for the design of trials of novel CAR T-cell products after failure of prior CAR T-cell immunotherapies.


Assuntos
Antígenos CD19/metabolismo , Imunoterapia Adotiva , Leucemia de Células B/terapia , Leucemia Linfocítica Crônica de Células B/terapia , Linfoma não Hodgkin/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Adulto , Idoso , Proliferação de Células , Ciclofosfamida/uso terapêutico , Síndrome da Liberação de Citocina/complicações , Feminino , Humanos , Leucemia de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/imunologia , Linfoma não Hodgkin/imunologia , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Intervalo Livre de Progressão , Linfócitos T/imunologia , Resultado do Tratamento , Vidarabina/análogos & derivados , Vidarabina/uso terapêutico
11.
Immunity ; 41(1): 116-26, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25035956

RESUMO

Maintenance of immunological memory has been proposed to rely on stem-cell-like lymphocytes. However, data supporting this hypothesis are focused on the developmental potential of lymphocyte populations and are thus insufficient to establish the functional hallmarks of stemness. Here, we investigated self-renewal capacity and multipotency of individual memory lymphocytes by in vivo fate mapping of CD8(+) T cells and their descendants across three generations of serial single-cell adoptive transfer and infection-driven re-expansion. We found that immune responses derived from single naive T (Tn) cells, single primary, and single secondary central memory T (Tcm) cells reached similar size and phenotypic diversity, were subjected to comparable stochastic variation, and could ultimately reconstitute immunocompetence against an otherwise lethal infection with the bacterial pathogen Listeria monocytogenes. These observations establish that adult tissue stem cells reside within the CD62L(+) Tcm cell compartment and highlight the promising therapeutic potential of this immune cell subset.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linhagem da Célula/imunologia , Memória Imunológica/imunologia , Células-Tronco Adultas/imunologia , Animais , Linfócitos T CD8-Positivos/transplante , Diferenciação Celular/imunologia , Imunocompetência/imunologia , Imunoterapia Adotiva , Selectina L/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Multipotentes/imunologia , Subpopulações de Linfócitos T/imunologia
12.
Nature ; 545(7655): 423-431, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28541315

RESUMO

Genetically engineered T cells are powerful new medicines, offering hope for curative responses in patients with cancer. Chimaeric antigen receptors (CARs) are a class of synthetic receptors that reprogram lymphocyte specificity and function. CARs targeting CD19 have demonstrated remarkable potency in B cell malignancies. Engineered T cells are applicable in principle to many cancers, pending further progress to identify suitable target antigens, overcome immunosuppressive tumour microenvironments, reduce toxicities, and prevent antigen escape. Advances in the selection of optimal T cells, genetic engineering, and cell manufacturing are poised to broaden T-cell-based therapies and foster new applications in infectious diseases and autoimmunity.


Assuntos
Engenharia Celular/métodos , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T/metabolismo , Linfócitos T/transplante , Animais , Antígenos CD19/imunologia , Antígenos CD19/metabolismo , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Doenças Autoimunes/terapia , Humanos , Infecções/imunologia , Infecções/patologia , Infecções/terapia , Neoplasias/patologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Linfócitos T/imunologia , Microambiente Tumoral
13.
Blood ; 135(19): 1650-1660, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32076701

RESUMO

We previously reported durable responses in relapsed or refractory (R/R) chronic lymphocytic leukemia (CLL) patients treated with CD19-targeted chimeric antigen receptor-engineered (CD19 CAR) T-cell immunotherapy after ibrutinib failure. Because preclinical studies showed that ibrutinib could improve CAR T cell-antitumor efficacy and reduce cytokine release syndrome (CRS), we conducted a pilot study to evaluate the safety and feasibility of administering ibrutinib concurrently with CD19 CAR T-cell immunotherapy. Nineteen CLL patients were included. The median number of prior therapies was 5, and 17 patients (89%) had high-risk cytogenetics (17p deletion and/or complex karyotype). Ibrutinib was scheduled to begin ≥2 weeks before leukapheresis and continue for ≥3 months after CAR T-cell infusion. CD19 CAR T-cell therapy with concurrent ibrutinib was well tolerated; 13 patients (68%) received ibrutinib as planned without dose reduction. The 4-week overall response rate using 2018 International Workshop on CLL (iwCLL) criteria was 83%, and 61% achieved a minimal residual disease (MRD)-negative marrow response by IGH sequencing. In this subset, the 1-year overall survival and progression-free survival (PFS) probabilities were 86% and 59%, respectively. Compared with CLL patients treated with CAR T cells without ibrutinib, CAR T cells with concurrent ibrutinib were associated with lower CRS severity and lower serum concentrations of CRS-associated cytokines, despite equivalent in vivo CAR T-cell expansion. The 1-year PFS probabilities in all evaluable patients were 38% and 50% after CD19 CAR T-cell therapy, with and without concurrent ibrutinib, respectively (P = .91). CD19 CAR T cells with concurrent ibrutinib for R/R CLL were well tolerated, with low CRS severity, and led to high rates of MRD-negative response by IGH sequencing.


Assuntos
Adenina/análogos & derivados , Antígenos CD19/imunologia , Resistencia a Medicamentos Antineoplásicos , Imunoterapia Adotiva/métodos , Leucemia Linfocítica Crônica de Células B/terapia , Piperidinas/uso terapêutico , Receptores de Antígenos de Linfócitos T/imunologia , Terapia de Salvação , Adenina/uso terapêutico , Adulto , Idoso , Terapia Combinada , Estudos de Viabilidade , Feminino , Seguimentos , Humanos , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos
14.
Blood ; 134(19): 1585-1597, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31558469

RESUMO

B-cell maturation antigen (BCMA) is a validated target for chimeric antigen receptor (CAR) T-cell therapy in multiple myeloma (MM). Despite promising objective response rates, most patients relapse, and low levels of BCMA on a subset of tumor cells has been suggested as a probable escape mechanism. BCMA is actively cleaved from the tumor cell surface by the ubiquitous multisubunit γ-secretase (GS) complex, which reduces ligand density on tumor cells for CAR T-cell recognition and releases a soluble BCMA (sBCMA) fragment capable of inhibiting CAR T-cell function. Sufficient sBCMA can accumulate in the bone marrow of MM patients to inhibit CAR T-cell recognition of tumor cells, and potentially limit efficacy of BCMA-directed adoptive T-cell therapy. We investigated whether blocking BCMA cleavage by small-molecule GS inhibitors (GSIs) could augment BCMA-targeted CAR T-cell therapy. We found that exposure of myeloma cell lines and patient tumor samples to GSIs markedly increased surface BCMA levels in a dose-dependent fashion, concurrently decreased sBCMA concentrations, and improved tumor recognition by CAR T cells in vitro. GSI treatment of MM tumor-bearing NOD/SCID/γc-/- mice increased BCMA expression on tumor cells, decreased sBCMA in peripheral blood, and improved antitumor efficacy of BCMA-targeted CAR T-cell therapy. Importantly, short-term GSI administration to MM patients markedly increases the percentage of BCMA+ tumor cells, and the levels of BCMA surface expression in vivo. Based on these data, a US Food and Drug Administration (FDA)-approved clinical trial has been initiated, combining GSI with concurrent BCMA CAR T-cell therapy. This trial was registered at www.clinicaltrials.gov as #NCT03502577.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Antígeno de Maturação de Linfócitos B/metabolismo , Imunoterapia Adotiva/métodos , Mieloma Múltiplo , Animais , Benzazepinas/farmacologia , Ensaios Clínicos como Assunto , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mieloma Múltiplo/terapia , Receptores de Antígenos Quiméricos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Blood ; 134(7): 636-640, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31648294

RESUMO

Patients with follicular lymphoma (FL) with early relapse after initial chemoimmunotherapy, refractory disease, or histologic transformation (tFL) have limited progression-free and overall survival. We report efficacy and long-term follow-up of 21 patients with relapsed/refractory (R/R) FL (n = 8) and tFL (n = 13) treated on a phase 1/2 clinical trial with cyclophosphamide and fludarabine lymphodepletion followed by infusion of 2 × 106 CD19-directed chimeric antigen receptor-modified T (CAR-T) cells per kilogram. The complete remission (CR) rates by the Lugano criteria were 88% and 46% for patients with FL and tFL, respectively. All patients with FL who achieved CR remained in remission at a median follow-up of 24 months. The median duration of response for patients with tFL was 10.2 months at a median follow-up of 38 months. Cytokine release syndrome occurred in 50% and 39%, and neurotoxicity in 50% and 23% of patients with FL and tFL, respectively, with no severe adverse events (grade ≥3). No significant differences in CAR-T cell in vivo expansion/persistence were observed between FL and tFL patients. CD19 CAR-T cell immunotherapy is highly effective in adults with clinically aggressive R/R FL with or without transformation, with durable remission in a high proportion of FL patients. This trial was registered at clinicaltrials.gov as #NCT01865617.


Assuntos
Imunoterapia Adotiva/métodos , Linfoma Folicular/terapia , Receptores de Antígenos de Linfócitos T/uso terapêutico , Idoso , Intervalo Livre de Doença , Feminino , Seguimentos , Humanos , Depleção Linfocítica/métodos , Masculino , Pessoa de Meia-Idade , Indução de Remissão
16.
Blood ; 133(15): 1652-1663, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30728140

RESUMO

Autologous T cells engineered to express a CD19-specific chimeric antigen receptor (CAR) have produced impressive minimal residual disease-negative (MRD-negative) complete remission (CR) rates in patients with relapsed/refractory B-cell acute lymphoblastic leukemia (B-ALL). However, the factors associated with durable remissions after CAR T-cell therapy have not been fully elucidated. We studied patients with relapsed/refractory B-ALL enrolled in a phase 1/2 clinical trial evaluating lymphodepletion chemotherapy followed by CD19 CAR T-cell therapy at our institution. Forty-five (85%) of 53 patients who received CD19 CAR T-cell therapy and were evaluable for response achieved MRD-negative CR by high-resolution flow cytometry. With a median follow-up of 30.9 months, event-free survival (EFS) and overall survival (OS) were significantly better in the patients who achieved MRD-negative CR compared with those who did not (median EFS, 7.6 vs 0.8 months; P < .0001; median OS, 20.0 vs 5.0 months; P = .014). In patients who achieved MRD-negative CR by flow cytometry, absence of the index malignant clone by IGH deep sequencing was associated with better EFS (P = .034). Stepwise multivariable modeling in patients achieving MRD-negative CR showed that lower prelymphodepletion lactate dehydrogenase concentration (hazard ratio [HR], 1.38 per 100 U/L increment increase), higher prelymphodepletion platelet count (HR, 0.74 per 50 000/µL increment increase), incorporation of fludarabine into the lymphodepletion regimen (HR, 0.25), and allogeneic hematopoietic cell transplantation (HCT) after CAR T-cell therapy (HR, 0.39) were associated with better EFS. These data allow identification of patients at higher risk of relapse after CAR T-cell immunotherapy who might benefit from consolidation strategies such as allogeneic HCT. This trial was registered at www.clinicaltrials.gov as #NCT01865617.


Assuntos
Antígenos CD19/imunologia , Imunoterapia Adotiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Indução de Remissão/métodos , Adulto , Intervalo Livre de Doença , Feminino , Transplante de Células-Tronco Hematopoéticas , Humanos , Depleção Linfocítica , Masculino , Pessoa de Meia-Idade , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidade , Receptores de Antígenos Quiméricos , Terapia de Salvação/métodos , Adulto Jovem
17.
Blood ; 133(17): 1876-1887, 2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-30782611

RESUMO

Factors associated with durable remission after CD19 chimeric antigen receptor (CAR)-modified T-cell immunotherapy for aggressive B-cell non-Hodgkin lymphoma (NHL) have not been identified. We report multivariable analyses of factors affecting response and progression-free survival (PFS) in patients with aggressive NHL treated with cyclophosphamide and fludarabine lymphodepletion followed by 2 × 106 CD19-directed CAR T cells/kg. The best overall response rate was 51%, with 40% of patients achieving complete remission. The median PFS of patients with aggressive NHL who achieved complete remission was 20.0 months (median follow-up, 26.9 months). Multivariable analysis of clinical and treatment characteristics, serum biomarkers, and CAR T-cell manufacturing and pharmacokinetic data showed that a lower pre-lymphodepletion serum lactate dehydrogenase (LDH) level and a favorable cytokine profile, defined as serum day 0 monocyte chemoattractant protein-1 (MCP-1) and peak interleukin-7 (IL-7) concentrations above the median, were associated with better PFS. MCP-1 and IL-7 concentrations increased after lymphodepletion, and higher intensity of cyclophosphamide and fludarabine lymphodepletion was associated with higher probability of a favorable cytokine profile. PFS was superior in patients who received high-intensity lymphodepletion and achieved a favorable cytokine profile compared with those who received the same intensity of lymphodepletion without achieving a favorable cytokine profile. Even in high-risk patients with pre-lymphodepletion serum LDH levels above normal, a favorable cytokine profile after lymphodepletion was associated with a low risk of a PFS event. Strategies to augment the cytokine response to lymphodepletion could be tested in future studies of CD19 CAR T-cell immunotherapy for aggressive B-cell NHL. This trial was registered at www.clinicaltrials.gov as #NCT01865617.


Assuntos
Antígenos CD19/imunologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Terapia Baseada em Transplante de Células e Tecidos/métodos , Imunoterapia/métodos , Depleção Linfocítica/métodos , Linfoma não Hodgkin/mortalidade , Receptores de Antígenos de Linfócitos T/imunologia , Terapia Combinada , Ciclofosfamida/administração & dosagem , Feminino , Seguimentos , Humanos , Linfoma não Hodgkin/imunologia , Linfoma não Hodgkin/patologia , Linfoma não Hodgkin/terapia , Masculino , Pessoa de Meia-Idade , Prognóstico , Taxa de Sobrevida , Vidarabina/administração & dosagem , Vidarabina/análogos & derivados
18.
J Immunol ; 202(2): 476-483, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30541882

RESUMO

With age, the immune system becomes less effective, causing increased susceptibility to infection. Chronic CMV infection further impairs immune function and is associated with increased mortality in the elderly. CMV exposure elicits massive CD8+ T cell clonal expansions and diminishes the cytotoxic T cell response to subsequent infections, leading to the hypothesis that to maintain homeostasis, T cell clones are expelled from the repertoire, reducing T cell repertoire diversity and diminishing the ability to combat new infections. However, in humans, the impact of CMV infection on the structure and diversity of the underlying T cell repertoire remains uncharacterized. Using TCR ß-chain immunosequencing, we observed that the proportion of the peripheral blood T cell repertoire composed of the most numerous 0.1% of clones is larger in the CMV seropositive and gradually increases with age. We found that the T cell repertoire in the elderly grows to accommodate CMV-driven clonal expansions while preserving its underlying diversity and clonal structure. Our observations suggest that the maintenance of large CMV-reactive T cell clones throughout life does not compromise the underlying repertoire. Alternatively, we propose that the diminished immunity in elderly individuals with CMV is due to alterations in cellular function rather than a reduction in CD8+ T cell repertoire diversity.


Assuntos
Envelhecimento/fisiologia , Linfócitos T CD8-Positivos/imunologia , Citomegalovirus/imunologia , Citomegalovirus/fisiologia , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/genética , Linfócitos T Citotóxicos/imunologia , Idoso , Idoso de 80 Anos ou mais , Proliferação de Células , Senescência Celular , Seleção Clonal Mediada por Antígeno , Células Clonais , Estudos de Coortes , Infecções por Citomegalovirus/imunologia , Humanos , Tolerância Imunológica
19.
Blood ; 131(24): 2621-2629, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29728402

RESUMO

The ability to harness a patient's immune system to target malignant cells is now transforming the treatment of many cancers, including hematologic malignancies. The adoptive transfer of T cells selected for tumor reactivity or engineered with natural or synthetic receptors has emerged as an effective modality, even for patients with tumors that are refractory to conventional therapies. The most notable example of adoptive cell therapy is with T cells engineered to express synthetic chimeric antigen receptors (CARs) that reprogram their specificity to target CD19. CAR T cells have shown remarkable antitumor activity in patients with refractory B-cell malignancies. Ongoing research is focused on understanding the mechanisms of incomplete tumor elimination, reducing toxicities, preventing antigen escape, and identifying suitable targets and strategies based on established and emerging principles of synthetic biology for extending this approach to other hematologic malignancies. This review will discuss the current status, challenges, and potential future applications of CAR T-cell therapy in hematologic malignancies.


Assuntos
Transferência Adotiva/métodos , Antígenos CD19/imunologia , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/terapia , Receptores de Antígenos Quiméricos/imunologia , Animais , Engenharia Genética/métodos , Neoplasias Hematológicas/patologia , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/uso terapêutico , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/transplante , Evasão Tumoral
20.
Blood ; 131(1): 121-130, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29038338

RESUMO

Lymphodepletion chemotherapy with CD19-targeted chimeric antigen receptor-modified T (CAR-T)-cell immunotherapy is a novel treatment for refractory or relapsed B-cell malignancies. Infectious complications of this approach have not been systematically studied. We evaluated infections occurring between days 0 to 90 in 133 patients treated with CD19 CAR-T cells in a phase 1/2 study. We used Poisson and Cox regression to evaluate pre- and posttreatment risk factors for infection, respectively. The cohort included patients with acute lymphoblastic leukemia (ALL; n = 47), chronic lymphocytic leukemia (n = 24), and non-Hodgkin lymphoma (n = 62). There were 43 infections in 30 of 133 patients (23%) within 28 days after CAR-T-cell infusion with an infection density of 1.19 infections for every 100 days at risk. There was a lower infection density of 0.67 between days 29 and 90 (P = .02). The first infection occurred a median of 6 days after CAR-T-cell infusion. Six patients (5%) developed invasive fungal infections and 5 patients (4%) had life-threatening or fatal infections. Patients with ALL, ≥4 prior antitumor regimens, and receipt of the highest CAR-T-cell dose (2 × 107 cells per kg) had a higher infection density within 28 days in an adjusted model of baseline characteristics. Cytokine release syndrome (CRS) severity was the only factor after CAR-T-cell infusion associated with infection in a multivariable analysis. The incidence of infections was comparable to observations from clinical trials of salvage chemoimmunotherapies in similar patients. This trial was registered at www.clinicaltrials.gov as #NCT01865617.


Assuntos
Imunoterapia/efeitos adversos , Infecções/epidemiologia , Leucemia Linfocítica Crônica de Células B/terapia , Linfoma não Hodgkin/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/transplante , Adulto , Idoso , Terapia Baseada em Transplante de Células e Tecidos/efeitos adversos , Estudos de Coortes , Feminino , Seguimentos , Humanos , Infecções/etiologia , Leucemia Linfocítica Crônica de Células B/imunologia , Linfoma não Hodgkin/imunologia , Masculino , Pessoa de Meia-Idade , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Prognóstico , Índice de Gravidade de Doença , Linfócitos T/imunologia , Estados Unidos/epidemiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA