Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Mamm Genome ; 31(5-6): 181-195, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32296924

RESUMO

Maintaining genome stability is essential to an organism's health and survival. Breakdown of the mechanisms protecting the genome and the resulting genome instability are an important aspect of the aging process and have been linked to diseases such as cancer. Thus, a large network of interconnected pathways is responsible for ensuring genome integrity in the face of the continuous challenges that induce DNA damage. While these pathways are diverse, epigenetic mechanisms play a central role in many of them. DNA modifications, histone variants and modifications, chromatin structure, and non-coding RNAs all carry out a variety of functions to ensure that genome stability is maintained. Epigenetic mechanisms ensure the functions of centromeres and telomeres that are essential for genome stability. Epigenetic mechanisms also protect the genome from the invasion by transposable elements and contribute to various DNA repair pathways. In this review, we highlight the integral role of epigenetic mechanisms in the maintenance of genome stability and draw attention to issues in need of further study.


Assuntos
Envelhecimento/genética , Reparo do DNA , Epigênese Genética , Genoma , Instabilidade Genômica , Neoplasias/genética , Envelhecimento/metabolismo , Animais , Centrômero/química , Centrômero/metabolismo , Cromatina/química , Cromatina/metabolismo , DNA/genética , DNA/metabolismo , Dano ao DNA , Código das Histonas , Histonas/genética , Histonas/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Telômero/química , Telômero/metabolismo
2.
J Exp Biol ; 223(Pt 18)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32737212

RESUMO

Animals' behaviors vary in response to their environment, both biotic and abiotic. These behavioral responses have significant impacts on animal survival and fitness, and thus, many behavioral responses are at least partially under genetic control. In Drosophila, for example, genes impacting aggression, courtship behavior, circadian rhythms and sleep have been identified. Animal activity also is influenced strongly by genetics. My lab previously has used the Drosophila melanogaster Genetics Reference Panel (DGRP) to investigate activity levels and identified over 100 genes linked to activity. Here, I re-examined these data to determine whether Drosophila strains differ in their response to rotational exercise stimulation, not simply in the amount of activity, but in activity patterns and timing of activity. Specifically, I asked whether there are fly strains exhibiting either a 'marathoner' pattern of activity, i.e. remaining active throughout the 2 h exercise period, or a 'sprinter' pattern, i.e. carrying out most of the activity early in the exercise period. The DGRP strains examined differ significantly in how much activity is carried out at the beginning of the exercise period, and this pattern is influenced by both sex and genotype. Interestingly, there was no clear link between the activity response pattern and lifespan of the animals. Using genome-wide association studies (GWAS), I identified 10 high confidence candidate genes that control the degree to which Drosophila exercise behaviors fit a marathoner or sprinter activity pattern. This finding suggests that, similar to other aspects of locomotor behavior, the timing of activity patterns in response to exercise stimulation is under genetic control.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Corrida de Maratona
3.
Nature ; 512(7515): 449-52, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25164756

RESUMO

Genome function is dynamically regulated in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular mechanisms of genome function in humans, and have revealed conservation of chromatin components and mechanisms. Nevertheless, the three organisms have markedly different genome sizes, chromosome architecture and gene organization. On human and fly chromosomes, for example, pericentric heterochromatin flanks single centromeres, whereas worm chromosomes have dispersed heterochromatin-like regions enriched in the distal chromosomal 'arms', and centromeres distributed along their lengths. To systematically investigate chromatin organization and associated gene regulation across species, we generated and analysed a large collection of genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human. Here we present over 800 new data sets from our ENCODE and modENCODE consortia, bringing the total to over 1,400. Comparison of combinatorial patterns of histone modifications, nuclear lamina-associated domains, organization of large-scale topological domains, chromatin environment at promoters and enhancers, nucleosome positioning, and DNA replication patterns reveals many conserved features of chromatin organization among the three organisms. We also find notable differences in the composition and locations of repressive chromatin. These data sets and analyses provide a rich resource for comparative and species-specific investigations of chromatin composition, organization and function.


Assuntos
Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Cromatina/genética , Cromatina/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Animais , Linhagem Celular , Centrômero/genética , Centrômero/metabolismo , Cromatina/química , Montagem e Desmontagem da Cromatina/genética , Replicação do DNA/genética , Elementos Facilitadores Genéticos/genética , Epigênese Genética , Heterocromatina/química , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Anotação de Sequência Molecular , Lâmina Nuclear/metabolismo , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Regiões Promotoras Genéticas/genética , Especificidade da Espécie
4.
J Neurosci ; 36(4): 1316-23, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26818518

RESUMO

Progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) are neurodegenerative four-repeat tauopathies with no cure. Mitigating pathogenic tau levels is a rational strategy for tauopathy treatment, but therapeutic targets with clinically available drugs are lacking. Here, we report that protein levels of the Rho-associated protein kinases (ROCK1 and ROCK2), p70 S6 kinase (S6K), and mammalian target of rapamycin (mTOR) were increased in PSP and CBD brains. RNAi depletion of ROCK1 or ROCK2 reduced tau mRNA and protein level in human neuroblastoma cells. However, additional phenotypes were observed under ROCK2 knockdown, including decreased S6K and phosphorylated mTOR levels. Pharmacologic inhibition of Rho kinases in neurons diminished detergent-soluble and -insoluble tau through a combination of autophagy enhancement and tau mRNA reduction. Fasudil, a clinically approved ROCK inhibitor, suppressed rough eye phenotype and mitigated pathogenic tau levels by inducing autophagic pathways in a Drosophila model of tauopathy. Collectively, these findings highlight the Rho kinases as rational therapeutic targets to combat tau accumulation in PSP and CBD. SIGNIFICANCE STATEMENT: Studies of progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) suggest that mitigating pathogenic tau levels is a rational strategy for tauopathy treatment. In this report, the Rho-associated protein kinases (ROCK1 and ROCK2) are identified as novel drug targets for PSP and CBD. We show that elevated insoluble tau levels are associated with increased ROCK1 and ROCK2 in PSP and CBD brains, whereas experiments in cellular and animal models identify pharmacologic inhibition of ROCKs as a mechanism-based approach to reduce tau levels. Our study correlates bona fide changes in PSP and CBD brains with cellular models, identifies drug targets, and tests the therapeutic in vivo.


Assuntos
Doenças dos Gânglios da Base/patologia , Encéfalo/metabolismo , Paralisia Supranuclear Progressiva/patologia , Quinases Associadas a rho/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Animais Geneticamente Modificados , Linhagem Celular Tumoral , Drosophila , Inibidores Enzimáticos/farmacologia , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Degeneração Neural/patologia , Neuroblastoma/patologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
5.
Nature ; 471(7339): 480-5, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21179089

RESUMO

Chromatin is composed of DNA and a variety of modified histones and non-histone proteins, which have an impact on cell differentiation, gene regulation and other key cellular processes. Here we present a genome-wide chromatin landscape for Drosophila melanogaster based on eighteen histone modifications, summarized by nine prevalent combinatorial patterns. Integrative analysis with other data (non-histone chromatin proteins, DNase I hypersensitivity, GRO-Seq reads produced by engaged polymerase, short/long RNA products) reveals discrete characteristics of chromosomes, genes, regulatory elements and other functional domains. We find that active genes display distinct chromatin signatures that are correlated with disparate gene lengths, exon patterns, regulatory functions and genomic contexts. We also demonstrate a diversity of signatures among Polycomb targets that include a subset with paused polymerase. This systematic profiling and integrative analysis of chromatin signatures provides insights into how genomic elements are regulated, and will serve as a resource for future experimental investigations of genome structure and function.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Drosophila melanogaster/genética , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/análise , Proteínas Cromossômicas não Histona/metabolismo , Desoxirribonuclease I/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/crescimento & desenvolvimento , Éxons/genética , Regulação da Expressão Gênica/genética , Genes de Insetos/genética , Genoma de Inseto/genética , Histonas/química , Histonas/metabolismo , Masculino , Anotação de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Complexo Repressor Polycomb 1 , RNA/análise , RNA/genética , Análise de Sequência , Transcrição Gênica/genética
6.
Genome Res ; 22(11): 2188-98, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22767387

RESUMO

Chromatin insulator elements and associated proteins have been proposed to partition eukaryotic genomes into sets of independently regulated domains. Here we test this hypothesis by quantitative genome-wide analysis of insulator protein binding to Drosophila chromatin. We find distinct combinatorial binding of insulator proteins to different classes of sites and uncover a novel type of insulator element that binds CP190 but not any other known insulator proteins. Functional characterization of different classes of binding sites indicates that only a small fraction act as robust insulators in standard enhancer-blocking assays. We show that insulators restrict the spreading of the H3K27me3 mark but only at a small number of Polycomb target regions and only to prevent repressive histone methylation within adjacent genes that are already transcriptionally inactive. RNAi knockdown of insulator proteins in cultured cells does not lead to major alterations in genome expression. Taken together, these observations argue against the concept of a genome partitioned by specialized boundary elements and suggest that insulators are reserved for specific regulation of selected genes.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Genoma de Inseto , Elementos Isolantes , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Animais , Sítios de Ligação , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Epigênese Genética , Histonas/metabolismo , Metilação , Proteínas Associadas aos Microtúbulos/genética , Proteínas Nucleares/genética , Proteínas do Grupo Polycomb/metabolismo , Processamento de Proteína Pós-Traducional , RNA Interferente Pequeno , Transcrição Gênica
7.
PLoS Genet ; 8(4): e1002646, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22570616

RESUMO

The Drosophila MSL complex mediates dosage compensation by increasing transcription of the single X chromosome in males approximately two-fold. This is accomplished through recognition of the X chromosome and subsequent acetylation of histone H4K16 on X-linked genes. Initial binding to the X is thought to occur at "entry sites" that contain a consensus sequence motif ("MSL recognition element" or MRE). However, this motif is only ∼2 fold enriched on X, and only a fraction of the motifs on X are initially targeted. Here we ask whether chromatin context could distinguish between utilized and non-utilized copies of the motif, by comparing their relative enrichment for histone modifications and chromosomal proteins mapped in the modENCODE project. Through a comparative analysis of the chromatin features in male S2 cells (which contain MSL complex) and female Kc cells (which lack the complex), we find that the presence of active chromatin modifications, together with an elevated local GC content in the surrounding sequences, has strong predictive value for functional MSL entry sites, independent of MSL binding. We tested these sites for function in Kc cells by RNAi knockdown of Sxl, resulting in induction of MSL complex. We show that ectopic MSL expression in Kc cells leads to H4K16 acetylation around these sites and a relative increase in X chromosome transcription. Collectively, our results support a model in which a pre-existing active chromatin environment, coincident with H3K36me3, contributes to MSL entry site selection. The consequences of MSL targeting of the male X chromosome include increase in nucleosome lability, enrichment for H4K16 acetylation and JIL-1 kinase, and depletion of linker histone H1 on active X-linked genes. Our analysis can serve as a model for identifying chromatin and local sequence features that may contribute to selection of functional protein binding sites in the genome.


Assuntos
Cromatina , Mecanismo Genético de Compensação de Dose , Proteínas de Drosophila , Drosophila melanogaster/genética , Histonas , Proteínas Nucleares , Fatores de Transcrição , Acetilação , Animais , Composição de Bases , Sítios de Ligação/genética , Cromatina/genética , Cromatina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Genes Ligados ao Cromossomo X , Histonas/genética , Histonas/metabolismo , Masculino , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleossomos/genética , Motivos de Nucleotídeos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Cromossomo X/genética
8.
PLoS Genet ; 8(9): e1002954, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23028361

RESUMO

Chromatin environments differ greatly within a eukaryotic genome, depending on expression state, chromosomal location, and nuclear position. In genomic regions characterized by high repeat content and high gene density, chromatin structure must silence transposable elements but permit expression of embedded genes. We have investigated one such region, chromosome 4 of Drosophila melanogaster. Using chromatin-immunoprecipitation followed by microarray (ChIP-chip) analysis, we examined enrichment patterns of 20 histone modifications and 25 chromosomal proteins in S2 and BG3 cells, as well as the changes in several marks resulting from mutations in key proteins. Active genes on chromosome 4 are distinct from those in euchromatin or pericentric heterochromatin: while there is a depletion of silencing marks at the transcription start sites (TSSs), HP1a and H3K9me3, but not H3K9me2, are enriched strongly over gene bodies. Intriguingly, genes on chromosome 4 are less frequently associated with paused polymerase. However, when the chromatin is altered by depleting HP1a or POF, the RNA pol II enrichment patterns of many chromosome 4 genes shift, showing a significant decrease over gene bodies but not at TSSs, accompanied by lower expression of those genes. Chromosome 4 genes have a low incidence of TRL/GAGA factor binding sites and a low T(m) downstream of the TSS, characteristics that could contribute to a low incidence of RNA polymerase pausing. Our data also indicate that EGG and POF jointly regulate H3K9 methylation and promote HP1a binding over gene bodies, while HP1a targeting and H3K9 methylation are maintained at the repeats by an independent mechanism. The HP1a-enriched, POF-associated chromatin structure over the gene bodies may represent one type of adaptation for genes embedded in repetitive DNA.


Assuntos
Proteínas Cromossômicas não Histona , Heterocromatina/genética , Histona-Lisina N-Metiltransferase , Histonas , Animais , Animais Geneticamente Modificados , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Eucromatina/metabolismo , Regulação da Expressão Gênica/genética , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Metilação , Mutação
9.
Genome Res ; 21(2): 147-63, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21177972

RESUMO

Eukaryotic genomes are packaged in two basic forms, euchromatin and heterochromatin. We have examined the composition and organization of Drosophila melanogaster heterochromatin in different cell types using ChIP-array analysis of histone modifications and chromosomal proteins. As anticipated, the pericentric heterochromatin and chromosome 4 are on average enriched for the "silencing" marks H3K9me2, H3K9me3, HP1a, and SU(VAR)3-9, and are generally depleted for marks associated with active transcription. The locations of the euchromatin-heterochromatin borders identified by these marks are similar in animal tissues and most cell lines, although the amount of heterochromatin is variable in some cell lines. Combinatorial analysis of chromatin patterns reveals distinct profiles for euchromatin, pericentric heterochromatin, and the 4th chromosome. Both silent and active protein-coding genes in heterochromatin display complex patterns of chromosomal proteins and histone modifications; a majority of the active genes exhibit both "activation" marks (e.g., H3K4me3 and H3K36me3) and "silencing" marks (e.g., H3K9me2 and HP1a). The hallmark of active genes in heterochromatic domains appears to be a loss of H3K9 methylation at the transcription start site. We also observe complex epigenomic profiles of intergenic regions, repeated transposable element (TE) sequences, and genes in the heterochromatic extensions. An unexpectedly large fraction of sequences in the euchromatic chromosome arms exhibits a heterochromatic chromatin signature, which differs in size, position, and impact on gene expression among cell types. We conclude that patterns of heterochromatin/euchromatin packaging show greater complexity and plasticity than anticipated. This comprehensive analysis provides a foundation for future studies of gene activity and chromosomal functions that are influenced by or dependent upon heterochromatin.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Heterocromatina/metabolismo , Histonas/metabolismo , Animais , Linhagem Celular , Elementos de DNA Transponíveis/genética , Epigenômica , Eucromatina/metabolismo , Feminino , Regulação da Expressão Gênica , Inativação Gênica , Células HeLa , Histonas/química , Humanos , Masculino , Estrutura Terciária de Proteína
10.
Geroscience ; 46(1): 171-181, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37889438

RESUMO

Comparative studies of aging are a promising approach to identifying general properties of and processes leading to aging. While to date, many comparative studies of aging in animals have focused on relatively narrow species groups, methodological innovations now allow for studies that include evolutionary distant species. However, comparative studies of aging across a wide range of species that have distinct life histories introduce additional challenges in experimental design. Here, we discuss these challenges, highlight the most pressing problems that need to be solved, and provide suggestions based on current approaches to successfully carry out comparative aging studies across the animal kingdom.


Assuntos
Envelhecimento , Longevidade , Animais , Modelos Animais , Evolução Biológica
11.
Cell Syst ; 14(4): 252-257, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37080161

RESUMO

Collective cell behavior contributes to all stages of cancer progression. Understanding how collective behavior emerges through cell-cell interactions and decision-making will advance our understanding of cancer biology and provide new therapeutic approaches. Here, we summarize an interdisciplinary discussion on multicellular behavior in cancer, draw lessons from other scientific disciplines, and identify future directions.


Assuntos
Comportamento de Massa , Neoplasias , Humanos , Comunicação
12.
Epigenetics Chromatin ; 15(1): 14, 2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35526078

RESUMO

In eukaryotes, DNA is packaged into chromatin, which presents significant barriers to transcription. Non-histone chromatin proteins such as the Heterochromatin Protein 1 (HP1) proteins are critical regulators of transcription, contributing to gene regulation through a variety of molecular mechanisms. HP1 proteins are highly conserved, and many eukaryotic genomes contain multiple HP1 genes. Given the presence of multiple HP1 family members within a genome, HP1 proteins can have unique as well as shared functions. Here, we review the mechanisms by which HP1 proteins contribute to the regulation of transcription. Focusing on the Drosophila melanogaster HP1 proteins, we examine the role of these proteins in regulating the transcription of genes, transposable elements, and piRNA clusters. In D. melanogaster, as in other species, HP1 proteins can act as transcriptional repressors and activators. The available data reveal that the precise impact of HP1 proteins on gene expression is highly context dependent, on the specific HP1 protein involved, on its protein partners present, and on the specific chromatin context the interaction occurs in. As a group, HP1 proteins utilize a variety of mechanisms to contribute to transcriptional regulation, including both transcriptional (i.e. chromatin-based) and post-transcriptional (i.e. RNA-based) processes. Despite extensive studies of this important protein family, open questions regarding their functions in gene regulation remain, specifically regarding the role of hetero- versus homodimerization and post-translational modifications of HP1 proteins.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Cromatina/metabolismo , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/metabolismo , Elementos de DNA Transponíveis , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
13.
Integr Comp Biol ; 61(6): 2199-2207, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34028538

RESUMO

Evidence from across the tree of life suggests that epigenetic inheritance is more common than previously thought. If epigenetic inheritance is indeed as common as the data suggest, this finding has potentially important implications for evolutionary theory and our understanding of how evolution and adaptation progress. However, we currently lack an understanding of how common various epigenetic inheritance types are, and how they impact phenotypes. In this perspective, we review the open questions that need to be addressed to fully integrate epigenetic inheritance into evolutionary theory and to develop reliable predictive models for phenotypic evolution. We posit that addressing these challenges will require the collaboration of biologists from different disciplines and a focus on the exploration of data and phenomena without preconceived limits on potential mechanisms or outcomes.


Assuntos
Epigenoma , Hereditariedade , Animais , Epigênese Genética , Epigenômica , Padrões de Herança
14.
Aging Cell ; 21(2): e13542, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35072344

RESUMO

Sex differences in aging occur in many animal species, and they include sex differences in lifespan, in the onset and progression of age-associated decline, and in physiological and molecular markers of aging. Sex differences in aging vary greatly across the animal kingdom. For example, there are species with longer-lived females, species where males live longer, and species lacking sex differences in lifespan. The underlying causes of sex differences in aging remain mostly unknown. Currently, we do not understand the molecular drivers of sex differences in aging, or whether they are related to the accepted hallmarks or pillars of aging or linked to other well-characterized processes. In particular, understanding the role of sex-determination mechanisms and sex differences in aging is relatively understudied. Here, we take a comparative, interdisciplinary approach to explore various hypotheses about how sex differences in aging arise. We discuss genomic, morphological, and environmental differences between the sexes and how these relate to sex differences in aging. Finally, we present some suggestions for future research in this area and provide recommendations for promising experimental designs.


Assuntos
Envelhecimento , Longevidade , Envelhecimento/genética , Animais , Feminino , Longevidade/genética , Masculino , Caracteres Sexuais
15.
Sci Rep ; 11(1): 5144, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664357

RESUMO

Body size and weight show considerable variation both within and between species. This variation is controlled in part by genetics, but also strongly influenced by environmental factors including diet and the level of activity experienced by the individual. Due to the increasing obesity epidemic in much of the world, there is considerable interest in the genetic factors that control body weight and how weight changes in response to exercise treatments. Here, we address this question in the Drosophila model system, utilizing 38 strains of the Drosophila Genetics Reference Panel. We use GWAS to identify the molecular pathways that control weight and weight changes in response to exercise. We find that there is a complex set of molecular pathways controlling weight, with many genes linked to the central nervous system (CNS). The CNS also plays a role in the weight change with exercise, in particular, signaling from the CNS. Additional analyses revealed that weight in Drosophila is driven by two factors, animal size, and body composition, as the amount of fat mass versus lean mass impacts the density. Thus, while the CNS appears to be important for weight and exercise-induced weight change, signaling pathways are particularly important for determining how exercise impacts weight.


Assuntos
Sistema Nervoso Central/metabolismo , Exercício Físico/genética , Estudo de Associação Genômica Ampla , Obesidade/genética , Animais , Composição Corporal/genética , Composição Corporal/fisiologia , Peso Corporal/genética , Sistema Nervoso Central/fisiologia , Modelos Animais de Doenças , Drosophila/genética , Drosophila/fisiologia , Exercício Físico/fisiologia , Humanos , Obesidade/fisiopatologia , Redução de Peso/genética
16.
R Soc Open Sci ; 8(11): 211275, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34804578

RESUMO

Exercise is recommended to promote health and prevent a range of diseases. However, how exercise precipitates these benefits is unclear, nor do we understand why exercise responses differ so widely between individuals. We investigate how climbing ability in Drosophila melanogaster changes in response to an exercise treatment. We find extensive variation in baseline climbing ability and exercise-induced changes ranging from -13% to +20% in climbing ability. Climbing ability, and its exercise-induced change, is sex- and genotype-dependent. GWASs implicate 'cell-cell signalling' genes in the control of climbing ability. We also find that animal activity does not predict climbing ability and that the exercise-induced climbing ability change cannot be predicted from the activity level induced by the exercise treatment. These results provide promising new avenues for further research into the molecular pathways controlling climbing activity and illustrate the complexities involved in trying to predict individual responses to exercise.

17.
Genetics ; 219(1)2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34849911

RESUMO

Drosophila Heterochromatin Protein 1a (HP1a) is essential for heterochromatin formation and is involved in transcriptional silencing. However, certain loci require HP1a to be transcribed. One model posits that HP1a acts as a transcriptional silencer within euchromatin while acting as an activator within heterochromatin. However, HP1a has been observed as an activator of a set of euchromatic genes. Therefore, it is not clear whether, or how, chromatin context informs the function of HP1 proteins. To understand the role of HP1 proteins in transcription, we examined the genome-wide binding profile of HP1a as well as two other Drosophila HP1 family members, HP1B and HP1C, to determine whether coordinated binding of these proteins is associated with specific transcriptional outcomes. We found that HP1 proteins share many of their endogenous binding targets. These genes are marked by active histone modifications and are expressed at higher levels than nontarget genes in both heterochromatin and euchromatin. In addition, HP1 binding targets displayed increased RNA polymerase pausing compared with nontarget genes. Specifically, colocalization of HP1B and HP1C was associated with the highest levels of polymerase pausing and gene expression. Analysis of HP1 null mutants suggests these proteins coordinate activity at transcription start sites to regulate transcription. Depletion of HP1B or HP1C alters expression of protein-coding genes bound by HP1 family members. Our data broaden understanding of the mechanism of transcriptional activation by HP1a and highlight the need to consider particular protein-protein interactions, rather than broader chromatin context, to predict impacts of HP1 at transcription start sites.


Assuntos
Drosophila , Animais
18.
Genetics ; 181(4): 1303-19, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19189944

RESUMO

Methylation of histone H3 lysine 9 (H3K9) is a key feature of silent chromatin and plays an important role in stabilizing the interaction of heterochromatin protein 1 (HP1) with chromatin. Genomes of metazoans such as the fruit fly Drosophila melanogaster generally encode three types of H3K9-specific SET domain methyltransferases that contribute to chromatin homeostasis during the life cycle of the organism. SU(VAR)3-9, dG9a, and dSETDB1 all function in the generation of wild-type H3K9 methylation levels in the Drosophila genome. Two of these enzymes, dSETDB1 and SU(VAR)3-9, govern heterochromatin formation in distinct but overlapping patterns across the genome. H3K9 methylation in the small, heterochromatic fourth chromosome of D. melanogaster is governed mainly by dSETDB1, whereas dSETDB1 and SU(VAR)3-9 function in concert to methylate H3K9 in the pericentric heterochromatin of all chromosomes, with dG9a having little impact in these domains, as shown by monitoring position effect variegation. To understand how these distinct heterochromatin compartments may be differentiated, we examined the developmental timing of dSETDB1 function using a knockdown strategy. dSETDB1 acts to maintain heterochromatin during metamorphosis, at a later stage in development than the reported action of SU(VAR)3-9. Surprisingly, depletion of both of these enzymes has less deleterious effect than depletion of one. These results imply that dSETDB1 acts as a heterochromatin maintenance factor that may be required for the persistence of earlier developmental events normally governed by SU(VAR)3-9. In addition, the genetic interactions between dSETDB1 and Su(var)3-9 mutations emphasize the importance of maintaining the activities of these histone methyltransferases in balance for normal genome function.


Assuntos
Drosophila melanogaster/genética , Genoma de Inseto , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/fisiologia , Animais , Animais Geneticamente Modificados , Montagem e Desmontagem da Cromatina/genética , Montagem e Desmontagem da Cromatina/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/enzimologia , Drosophila melanogaster/metabolismo , Epistasia Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genoma de Inseto/fisiologia , Heterocromatina/química , Histona-Lisina N-Metiltransferase/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Modelos Biológicos , Mutagênese/fisiologia , Proteínas Mutantes/genética , Proteínas Mutantes/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia
19.
Theor Appl Genet ; 120(2): 341-53, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19657617

RESUMO

Heterosis and polyploidy are two important aspects of plant evolution. To examine these issues, we conducted a global gene expression study of a maize ploidy series as well as a set of tetraploid inbred and hybrid lines. This gene expression analysis complements an earlier phenotypic study of these same materials. We find that ploidy change affects a large fraction of the genome, albeit at low levels; gene expression changes rarely exceed 2-fold and are typically not statistically significant. The most common gene expression profile we detected is greater than linear increase from monoploid to diploid, and reductions from diploid to triploid and from triploid to tetraploid, a trend that mirrors plant stature. When examining heterosis in tetraploid maize lines, we found a large fraction of the genome impacted but the majority of changes were not statistically significant at 2-fold or less. Non-additive expression was common in the hybrids, and the extent of non-additivity increased both in number and magnitude from duplex to quadruplex hybrids. Overall, we find that gene expression trends mirror observations from the phenotypic studies; however, obvious mechanistic connections remain unknown.


Assuntos
Vigor Híbrido/genética , Hibridização Genética , Ploidias , Zea mays/genética , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo
20.
G3 (Bethesda) ; 10(4): 1247-1260, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32014853

RESUMO

Exercise is recommended by health professionals across the globe as part of a healthy lifestyle to prevent and/or treat the consequences of obesity. While overall, the health benefits of exercise and an active lifestyle are well understood, very little is known about how genetics impacts an individual's inclination for and response to exercise. To address this knowledge gap, we investigated the genetic architecture underlying natural variation in activity levels in the model system Drosophila melanogaster Activity levels were assayed in the Drosophila Genetics Reference Panel fly strains at baseline and in response to a gentle exercise treatment using the Rotational Exercise Quantification System. We found significant, sex-dependent variation in both activity measures and identified over 100 genes that contribute to basal and induced exercise activity levels. This gene set was enriched for genes with functions in the central nervous system and in neuromuscular junctions and included several candidate genes with known activity phenotypes such as flightlessness or uncoordinated movement. Interestingly, there were also several chromatin proteins among the candidate genes, two of which were validated and shown to impact activity levels. Thus, the study described here reveals the complex genetic architecture controlling basal and exercise-induced activity levels in D. melanogaster and provides a resource for exercise biologists.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Redes Reguladoras de Genes , Variação Genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA