RESUMO
The transport of print fluids into paper is directly dependent on the imbibition characteristic of the paper including both the z-, x- and y-directions. As the measurement of free liquid imbibition into the paper thickness (z-direction) is difficult experimentally, due to the thin nature of paper, in this paper we resort to imbibition along the y-direction of paper to analyse and explore the possibility of understanding the mechanistic differences between wicking into uncoated unfilled paper versus that of controllable pigment-filled paper and paper coating. Considering the classical imbibition dynamic, the measured imbibition was characterised firstly with respect to [Formula: see text] and secondly with respect to linear t. It is shown that the wicking behaviour of uncoated unfilled paper follows neither the classical viscous drag balance model of Lucas-Washburn ([Formula: see text]) nor the more comprehensive inertia-included imbibition described by Bosanquet. However, by increasing the filler load into the surface layer of the paper, the imbibition dynamic is seen to revert to the Bosanquet model. Thus, when using highly filled papers, the imbibition dynamic for printing liquid shows a fast imbibition at the initial stages dominated by inertial plug flow, and then transits to the Lucas-Washburn viscosity-dominated imbibition component over longer time.
RESUMO
Microencapsulation helps to improve bioavailability of a functional whey protein, lactoferrin (Lf), in adults. Herein, we report the Lf loading capacity (LC) and retention efficiency (RE) in the microparticles of surface-reacted calcium carbonate (SRCC) of different types and compare them to those of widely used vaterite microparticles. The LCs and REs are analyzed in connection to the total surface area and the volume of intraparticle pores. The best performing SRCC3 demonstrates Lf LC of 11.00 wt% achieved in a single absorption step and 74% RE after two cycles of washing with deionized water. A much larger surface area of SRCC templates and a lower pH required to release Lf do not affect its antitumor activity in MCF-7 assay. Layer-by-Layer assembly of pepsin-tannic acid multilayer shell around Lf-loaded microparticles followed by acidic decomposition of the inorganic core produces microencapsulated Lf with a yield ~36 times higher than from vaterite templates reported earlier, while the scale of encapsulated Lf production is ~12,000 times larger. In vitro digestion tests demonstrate the protection of ~65% of encapsulated Lf from gastric digestion. The developed capsules are prospective candidates for functional foods fortified with Lf.
Assuntos
Carbonato de Cálcio , Lactoferrina , Cápsulas , Lactoferrina/metabolismo , Estudos Prospectivos , TaninosRESUMO
Fast disintegrating tablets have commonly been used for fast oral drug delivery to patients with swallowing difficulties. The different characteristics of the pore structure of such formulations influence the liquid transport through the tablet and hence affect the disintegration time and the release of the drug in the body. In this work, terahertz time-domain spectroscopy and terahertz pulsed imaging were used as promising analytical techniques to quantitatively analyse the impact of the structural properties on the liquid uptake and swelling rates upon contact with the dissolution medium. Both the impact of porosity and formulation were investigated for theophylline and paracetamol based tablets. The drug substances were either formulated with functionalised calcium carbonate (FCC) with porosities of 45% and 60% or with microcrystalline cellulose (MCC) with porosities of 10% and 25%. The terahertz results reveal that the rate of liquid uptake is clearly influenced by the porosity of the tablets with a faster liquid transport observed for tablets with higher porosity, indicating that the samples exhibit structural similarity in respect to pore connectivity and pore size distribution characteristics in respect to permeability. The swelling of the FCC based tablets is fully controlled by the amount of disintegrant, whereas the liquid uptake is driven by the FCC material and the interparticle pores created during compaction. The MCC based formulations are more complex as the MCC significantly contributes to the overall tablet swelling. An increase in swelling with increasing porosity is observed in these tablets, which indicates that such formulations are performance-limited by their ability to take up liquid. Investigating the effect of the microstructure characteristics on the liquid transport and swelling kinetics is of great importance for reaching the next level of understanding of the drug delivery, and, depending on the surface nature of the pore carrier function, in turn controlling the performance of the drug mainly in respect to dissolution in the body.
Assuntos
Carbonato de Cálcio/química , Celulose/química , Química Farmacêutica/métodos , Porosidade/efeitos dos fármacos , Comprimidos/química , Acetaminofen/química , Relação Dose-Resposta a Droga , Excipientes/química , Humanos , Cinética , Espectroscopia Terahertz , Teofilina/químicaRESUMO
Heckel analysis is a widely used method for the characterisation of the compression behaviour of pharmaceutical samples during the preparation of solid dosage formulations. The present study introduces an optical version of the Heckel equation that is based on a combination of the conventional Heckel equation together with the linear relationship defined between the effective terahertz (THz) refractive index and the porosity of pharmaceutical tablets. The proposed optical Heckel equation allows us to, firstly, calculate the zero-porosity refractive index, and, secondly, predict the in-die development of the effective refractive index as a function of the compressive pressure during tablet compression. This was demonstrated for five batches of highly porous functionalised calcium carbonate (FCC) excipient compacts. The close match observed between the estimated in-die effective refractive index and the measured/out-of-die effective THz refractive index supports the validity of the proposed form of the equation. By comparing the measured and estimated in-die tablet properties, a clear change in the porosity and hence, the effective refractive index, due to post-compression elastic relaxation of the FCC compacts, has been observed. We have, therefore, proposed a THz-based compaction setup that will permit in-line monitoring of processes during tablet compression. We envisage that this new approach in tracking powder properties introduced in this preliminary study will lead to the onset of further extensive and detailed future studies.
Assuntos
Carbonato de Cálcio/química , Excipientes/química , Porosidade , Pressão , Refratometria , Comprimidos , Tecnologia FarmacêuticaRESUMO
Pharmaceutical tablets are typically manufactured by the uni-axial compaction of powder that is confined radially by a rigid die. The directional nature of the compaction process yields not only anisotropic mechanical properties (e.g. tensile strength) but also directional properties of the pore structure in the porous compact. This study derives a new quantitative parameter, Sa, to describe the anisotropy in pore structure of pharmaceutical tablets based on terahertz time-domain spectroscopy measurements. The Sa parameter analysis was applied to three different data sets including tablets with only one excipient (functionalised calcium carbonate), samples with one excipient (microcrystalline cellulose) and one drug (indomethacin), and a complex formulation (granulated product comprising several excipients and one drug). The overall porosity, tablet thickness, initial particle size distribution as well as the granule density were all found to affect the significant structural anisotropies that were observed in all investigated tablets. The Sa parameter provides new insights into the microstructure of a tablet and its potential was particularly demonstrated for the analysis of formulations comprising several components. The results clearly indicate that material attributes, such as particle size and granule density, cause a change of the pore structure, which, therefore, directly impacts the liquid imbibition that is part of the disintegration process. We show, for the first time, how the granule density impacts the pore structure, which will also affect the performance of the tablet. It is thus of great importance to gain a better understanding of the relationship of the physical properties of material attributes (e.g. intragranular porosity, particle shape), the compaction process and the microstructure of the finished product.
Assuntos
Excipientes/química , Comprimidos/química , Anisotropia , Carbonato de Cálcio/química , Celulose/química , Química Farmacêutica/métodos , Tamanho da Partícula , Porosidade , Pós/química , Resistência à Tração/efeitos dos fármacos , Espectroscopia Terahertz/métodosRESUMO
Traditionally, the development of a new solid dosage form is formulation-driven and less focus is put on the design of a specific microstructure for the drug delivery system. However, the compaction process particularly impacts the microstructure, or more precisely, the pore architecture in a pharmaceutical tablet. Besides the formulation, the pore structure is a major contributor to the overall performance of oral solid dosage forms as it directly affects the liquid uptake rate, which is the very first step of the dissolution process. In future, additive manufacturing is a potential game changer to design the inner structures and realise a tailor-made pore structure. In pharmaceutical development the pore structure is most commonly only described by the total porosity of the tablet matrix. Yet it is of great importance to consider other parameters to fully resolve the interplay between microstructure and dosage form performance. Specifically, tortuosity, connectivity, as well as pore shape, size and orientation all impact the flow paths and play an important role in describing the fluid flow in a pharmaceutical tablet. This review presents the key properties of the pore structures in solid dosage forms and it discusses how to measure these properties. In particular, the principles, advantages and limitations of helium pycnometry, mercury porosimetry, terahertz time-domain spectroscopy, nuclear magnetic resonance and X-ray computed microtomography are discussed.
Assuntos
Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos , Tecnologia Farmacêutica/métodos , Espectroscopia de Ressonância Magnética/métodos , Porosidade , Comprimidos , Espectroscopia Terahertz/métodos , Microtomografia por Raio-X/métodosRESUMO
The physical properties and mechanical integrity of pharmaceutical tablets are of major importance when loading with active pharmaceutical ingredient(s) (API) in order to ensure ease of processing, control of dosage and stability during transportation and handling prior to patient consumption. The interaction between API and excipient, acting as functional extender and binder, however, is little understood in this context. The API indomethacin is combined in this study with microcrystalline cellulose (MCC) at increasing loading levels. Tablets from the defined API/MCC ratios are made under conditions of controlled porosity and tablet thickness, resulting from different compression conditions, and thus compaction levels. Mercury intrusion porosimetry is used to establish the accessible pore volume, pore size distribution and, adopting the observed region of elastic intrusion-extrusion at high pressure, an elastic bulk modulus of the skeletal material is recorded. Porosity values are compared to previously published values derived from terahertz (THz) refractive index data obtained from exactly the same tablet sample sets. It is shown that the elastic bulk modulus is dependent on API wt% loading under constant tablet preparation conditions delivering equal dimensions and porosity. The findings are considered of novel value in respect to establishing consistency of tablet production and optimisation of physical properties.
Assuntos
Celulose/química , Excipientes/química , Comprimidos , Química Farmacêutica , Módulo de Elasticidade , Porosidade , PressãoRESUMO
Two different food grade functionalised porous calcium carbonates (FCC), with different pore size and pore size distributions, were characterised and used as carrier materials to increase the dissolution rate of poorly soluble flavouring compounds in aqueous solution. The loading level was varied between 1.3% by weight (wt%) and 35 wt%, where the upper limit of 35 wt% was the total maximum loading capacity of flavouring compound in FCC based on the fraction of the total weight of FCC plus flavouring compound. Flavouring compounds (l-carvone, vanillin, and curcumin) were selected based on their difference in hydrophilicity and capacity to crystallise. Release kinetic studies revealed that all flavouring compounds showed an accelerated release when loaded in FCC compared to dissolution of the flavouring compound itself in aqueous medium. The amorphous state and/or surface enlargement of the flavouring compound inside or on FCC explains the faster release. The flavouring compounds capable of crystallising (vanillin and curcumin) were almost exclusively amorphous within the porous FCC material as determined by X-ray powder diffraction one week after loading and after storing the loaded FCC material for up to 9 months at room temperature. A small amount of crystalline vanillin and curcumin was detected in the FCC material with large pores and high flavouring compound loading (≥30 wt%). Additionally, two different loading strategies were evaluated, loading by dissolving the flavouring compound in acetone or loading by a hot melt method. Porosimetry data showed that the melt method was more efficient in filling the smallest pores (<100 nm). The main factor influencing the release rate appears to be the amorphous state of the flavouring compound and the increase in exposed surface area. The confinement in small pores prevents crystallisation of the flavouring compounds during storage, providing a stable amorphous form retaining high release rate also after storage.
Assuntos
Carbonato de Cálcio/química , Aromatizantes/química , Cristalização , Cinética , Porosidade , Solubilidade , Difração de Raios XRESUMO
The objective of this study is to propose a novel optical compressibility parameter for porous pharmaceutical tablets. This parameter is defined with the aid of the effective refractive index of a tablet that is obtained from non-destructive and contactless terahertz (THz) time-delay transmission measurement. The optical compressibility parameter of two training sets of pharmaceutical tablets with a priori known porosity and mass fraction of a drug was investigated. Both pharmaceutical sets were compressed with one of the most commonly used excipients, namely microcrystalline cellulose (MCC) and drug Indomethacin. The optical compressibility clearly correlates with the skeletal bulk modulus determined by mercury porosimetry and the recently proposed terahertz lumped structural parameter calculated from terahertz measurements. This lumped structural parameter can be used to analyse the pattern of arrangement of excipient and drug particles in porous pharmaceutical tablets. Therefore, we propose that the optical compressibility can serve as a quality parameter of a pharmaceutical tablet corresponding with the skeletal bulk modulus of the porous tablet, which is related to structural arrangement of the powder particles in the tablet.
Assuntos
Excipientes , Comprimidos , Tecnologia Farmacêutica , Celulose , Refratometria , Espectroscopia TerahertzRESUMO
Novel excipients are entering the market to enhance the bioavailability of drug particles by having a high porosity and, thus, providing a rapid liquid uptake and disintegration to accelerate subsequent drug dissolution. One example of such a novel excipient is functionalized calcium carbonate, which enables the manufacture of compacts with a bimodal pore size distribution consisting of larger interparticle and fine intraparticle pores. Five sets of functionalized calcium carbonate tablets with a target porosity of 45%-65% were prepared in 5% steps and characterized using terahertz time-domain spectroscopy and X-ray computed microtomography. Terahertz time-domain spectroscopy was used to derive the porosity using effective medium approximations, that is, the traditional and an anisotropic Bruggeman model. The anisotropic Bruggeman model yields the better correlation with the nominal porosity (R2 = 0.995) and it provided additional information about the shape and orientation of the pores within the powder compact. The spheroidal (ellipsoids of revolution) shaped pores have a preferred orientation perpendicular to the compaction direction causing an anisotropic behavior of the dielectric porous medium. The results from X-ray computed microtomography confirmed the nonspherical shape and the orientation of the pores, and it further revealed that the anisotropic behavior is mainly caused by the interparticle pores. The information from both techniques provides a detailed insight into the pore structure of pharmaceutical tablets. This is of great interest to study the impact of tablet microstructure on the disintegration and dissolution performance.
Assuntos
Carbonato de Cálcio/química , Excipientes/química , Anisotropia , Porosidade , Pós , Solubilidade , Comprimidos , Espectroscopia Terahertz , Microtomografia por Raio-XRESUMO
The Washburn equation is widely accepted for describing capillary imbibition. It has, however, been shown to be insufficient at very short times due partly to the lack of inertial terms. Bosanquet (C. H. Bosanquet, Philos. Mag. ser. 645, 525 (1923)) applied an inertial term via momentum, Szekely et al. (J. Szekely, A. W. Neumann, and Y. K. Chang, J. Colloid Interface Sci.35, 273 (1971)) examined single capillaries based on a revised boundary-condition model, and Sorbie et al. (K. S. Sorbie, Y. Z. Wu, and S. R. McDougall, J. Colloid Interface Sci. 289 (1995)) reviewed and applied Szekely's work to examine the effects of comparative imbibition into a parallel pore doublet. The study here extends the work of Sorbie et al. by applying the equation of Bosanquet to a three-dimensional network model, Pore-Cor. All authors agree that, with the inclusion of inertial terms at short times, smaller radius capillaries will initially fill faster than larger radius capillaries which disagrees with the Washburn equation. It is shown that the aspect ratio of a capillary, defined as its length divided by its radius, plays an important role, in combination with the capillary radii themselves, in determining the filling rate of individual elements. The distribution of this ratio associated with the capillary throat elements within a network structure is investigated. The result is that a preferred pathway of permeation is observed under supersource imbibition conditions in the case where a broad size distribution of capillary elements occurs within a network structure.
RESUMO
The absorption (permeation) of alcohols into porous blocks of calcium carbonate has been studied experimentally and with a computer model. The experimental measurement was of change in apparent weight of a block with time after contact with liquid. The modeling used the previously developed 'Pore-Cor' model, based on unit cells of 1000 cubic pores connected by cylindrical throats. To gain some insight into absorption into voids of complex geometry, and to provide a representation of heterogeneities in surface interaction energy, the cylindrical throats were converted to double cones. Relative to cylinders, such geometries caused hold-ups of the percolation of nonwetting fluids with respect to increasing applied pressure, and a change in the rate of absorption of wetting fluids. Both the measured absorption of the alcohols and the simulated absorption of the alcohols and of water showed significant deviations from that predicted by an effective hydraulic radius approximation. The simulation demonstrated the development of a highly heterogeneous wetting front, and of preferred wetting pathways that were perturbed by inertial retardation. The findings are useful in the design of high-performance, low-waste pigments for paper coatings, and environmentally friendly printing inks, as well as in wider industrial, environmental, and geological contexts. Copyright 2001 Academic Press.