Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 320
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 177(1): 32-37, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901545

RESUMO

The introduction of exome sequencing in the clinic has sparked tremendous optimism for the future of rare disease diagnosis, and there is exciting opportunity to further leverage these advances. To provide diagnostic clarity to all of these patients, however, there is a critical need for the field to develop and implement strategies to understand the mechanisms underlying all rare diseases and translate these to clinical care.


Assuntos
Sequenciamento do Exoma/tendências , Doenças Raras/diagnóstico , Pesquisa Translacional Biomédica/métodos , Exoma , Testes Genéticos , Genoma Humano/genética , Sequenciamento de Nucleotídeos em Larga Escala/tendências , Humanos , Doenças Raras/genética , Análise de Sequência de DNA/métodos , Sequenciamento do Exoma/métodos
2.
Nature ; 594(7862): 265-270, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34040261

RESUMO

Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine1,2. Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes3. However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation4,5. Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm Learning-a decentralized machine-learning approach that unites edge computing, blockchain-based peer-to-peer networking and coordination while maintaining confidentiality without the need for a central coordinator, thereby going beyond federated learning. To illustrate the feasibility of using Swarm Learning to develop disease classifiers using distributed data, we chose four use cases of heterogeneous diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 16,400 blood transcriptomes derived from 127 clinical studies with non-uniform distributions of cases and controls and substantial study biases, as well as more than 95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those developed at individual sites. In addition, Swarm Learning completely fulfils local confidentiality regulations by design. We believe that this approach will notably accelerate the introduction of precision medicine.


Assuntos
Blockchain , Tomada de Decisão Clínica/métodos , Confidencialidade , Conjuntos de Dados como Assunto , Aprendizado de Máquina , Medicina de Precisão/métodos , COVID-19/diagnóstico , COVID-19/epidemiologia , Surtos de Doenças , Feminino , Humanos , Leucemia/diagnóstico , Leucemia/patologia , Leucócitos/patologia , Pneumopatias/diagnóstico , Aprendizado de Máquina/tendências , Masculino , Software , Tuberculose/diagnóstico
3.
Ann Neurol ; 95(2): 400-406, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37962377

RESUMO

Spinocerebellar ataxia type 3/Machado-Joseph disease is the most common autosomal dominant ataxia. In view of the development of targeted therapies, knowledge of early biomarker changes is needed. We analyzed cross-sectional data of 292 spinocerebellar ataxia type 3/Machado-Joseph disease mutation carriers. Blood concentrations of mutant ATXN3 were high before and after ataxia onset, whereas neurofilament light deviated from normal 13.3 years before onset. Pons and cerebellar white matter volumes decreased and deviated from normal 2.2 years and 0.6 years before ataxia onset. We propose a staging model of spinocerebellar ataxia type 3/Machado-Joseph disease that includes a biomarker stage characterized by objective indicators of neurodegeneration before ataxia onset. ANN NEUROL 2024;95:400-406.


Assuntos
Ataxia Cerebelar , Doença de Machado-Joseph , Humanos , Doença de Machado-Joseph/genética , Estudos Transversais , Ataxia , Biomarcadores
4.
Brain ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386308

RESUMO

Neurodevelopmental disorders are major indications for genetic referral and have been linked to more than 1,500 loci including genes encoding transcriptional regulators. The dysfunction of transcription factors often results in characteristic syndromic presentations, however, at least half of these patients lack a genetic diagnosis. The implementation of machine learning approaches has the potential to aid in the identification of new disease genes and delineate associated phenotypes. Next generation sequencing was performed in seven affected individuals with neurodevelopmental delay and dysmorphic features. Clinical characterization included reanalysis of available neuroimaging datasets and 2D portrait image analysis with GestaltMatcher. The functional consequences of ZSCAN10 loss were modelled in mouse embryonic stem cells (mESC), including a knock-out and a representative ZSCAN10 protein truncating variant. These models were characterized by gene expression and Western blot analyses, chromatin immunoprecipitation and quantitative PCR (ChIP-qPCR), and immunofluorescence staining. Zscan10 knockout mouse embryos were generated and phenotyped. We prioritized bi-allelic ZSCAN10 loss-of-function variants in seven affected individuals from five unrelated families as the underlying molecular cause. RNA-Seq analyses in Zscan10-/- mESCs indicated dysregulation of genes related to stem cell pluripotency. In addition, we established in mESCs the loss-of-function mechanism for a representative human ZSCAN10 protein truncating variant by showing alteration of its expression levels and subcellular localization, interfering with its binding to DNA enhancer targets. Deep phenotyping revealed global developmental delay, facial asymmetry, and malformations of the outer ear as consistent clinical features. Cerebral MRI showed dysplasia of the semicircular canals as an anatomical correlate of sensorineural hearing loss. Facial asymmetry was confirmed as a clinical feature by GestaltMatcher and was recapitulated in the Zscan10 mouse model along with inner and outer ear malformations. Our findings provide evidence of a novel syndromic neurodevelopmental disorder caused by bi-allelic loss-of-function variants in ZSCAN10.

5.
J Med Genet ; 61(2): 186-195, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37734845

RESUMO

PURPOSE: Genome sequencing (GS) is expected to reduce the diagnostic gap in rare disease genetics. We aimed to evaluate a scalable framework for genome-based analyses 'beyond the exome' in regular care of patients with inherited retinal degeneration (IRD) or inherited optic neuropathy (ION). METHODS: PCR-free short-read GS was performed on 1000 consecutive probands with IRD/ION in routine diagnostics. Complementary whole-blood RNA-sequencing (RNA-seq) was done in a subset of 74 patients. An open-source bioinformatics analysis pipeline was optimised for structural variant (SV) calling and combined RNA/DNA variation interpretation. RESULTS: A definite genetic diagnosis was established in 57.4% of cases. For another 16.7%, variants of uncertain significance were identified in known IRD/ION genes, while the underlying genetic cause remained unresolved in 25.9%. SVs or alterations in non-coding genomic regions made up for 12.7% of the observed variants. The RNA-seq studies supported the classification of two unclear variants. CONCLUSION: GS is feasible in clinical practice and reliably identifies causal variants in a substantial proportion of individuals. GS extends the diagnostic yield to rare non-coding variants and enables precise determination of SVs. The added diagnostic value of RNA-seq is limited by low expression levels of the major IRD disease genes in blood.


Assuntos
Exoma , Oftalmopatias , Humanos , Estudos Prospectivos , Sequência de Bases , RNA , Oftalmopatias/diagnóstico , Oftalmopatias/genética
6.
Neurobiol Dis ; 193: 106456, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423193

RESUMO

Spinocerebellar ataxia type 3 (SCA3)/Machado-Joseph disease (MJD) is a heritable proteinopathy disorder, whose causative gene, ATXN3, undergoes alternative splicing. Ataxin-3 protein isoforms differ in their toxicity, suggesting that certain ATXN3 splice variants may be crucial in driving the selective toxicity in SCA3. Using RNA-seq datasets we identified and determined the abundance of annotated ATXN3 transcripts in blood (n = 60) and cerebellum (n = 12) of SCA3 subjects and controls. The reference transcript (ATXN3-251), translating into an ataxin-3 isoform harbouring three ubiquitin-interacting motifs (UIMs), showed the highest abundance in blood, while the most abundant transcript in the cerebellum (ATXN3-208) was of unclear function. Noteworthy, two of the four transcripts that encode full-length ataxin-3 isoforms but differ in the C-terminus were strongly related with tissue expression specificity: ATXN3-251 (3UIM) was expressed in blood 50-fold more than in the cerebellum, whereas ATXN3-214 (2UIM) was expressed in the cerebellum 20-fold more than in the blood. These findings shed light on ATXN3 alternative splicing, aiding in the comprehension of SCA3 pathogenesis and providing guidance in the design of future ATXN3 mRNA-lowering therapies.


Assuntos
Doença de Machado-Joseph , Humanos , Doença de Machado-Joseph/metabolismo , Ataxina-3/genética , Ataxina-3/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Cerebelo/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
7.
Mov Disord ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38586902

RESUMO

BACKGROUND: Most Parkinson's disease (PD) loci have shown low prevalence in the Indian population, highlighting the need for further research. OBJECTIVE: The aim of this study was to characterize a novel phosphatase tensin homolog-induced serine/threonine kinase 1 (PINK1) mutation causing PD in an Indian family. METHODS: Exome sequencing of a well-characterized Indian family with PD. A novel PINK1 mutation was studied by in silico modeling using AlphaFold2, expression of mutant PINK1 in human cells depleted of functional endogenous PINK1, followed by quantitative image analysis and biochemical assessment. RESULTS: We identified a homozygous chr1:20648535-20648535 T>C on GRCh38 (p.F385S) mutation in exon 6 of PINK1, which was absent in 1029 genomes from India and in other known databases. PINK1 F385S lies within the highly conserved Deutsche Forschungsgemeinschaft (DFG) motif, destabilizes its active state, and impairs phosphorylation of ubiquitin at serine 65 and proper engagement of parkin upon mitochondrial depolarization. CONCLUSIONS: We characterized a novel nonconservative mutation in the DFG motif of PINK1, which causes loss of its ubiquitin kinase activity and inhibition of mitophagy. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

8.
Brain ; 146(10): 4132-4143, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37071051

RESUMO

Transcriptional dysregulation has been described in spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD), an autosomal dominant ataxia caused by a polyglutamine expansion in the ataxin-3 protein. As ataxin-3 is ubiquitously expressed, transcriptional alterations in blood may reflect early changes that start before clinical onset and might serve as peripheral biomarkers in clinical and research settings. Our goal was to describe enriched pathways and report dysregulated genes, which can track disease onset, severity or progression in carriers of the ATXN3 mutation (pre-ataxic subjects and patients). Global dysregulation patterns were identified by RNA sequencing of blood samples from 40 carriers of ATXN3 mutation and 20 controls and further compared with transcriptomic data from post-mortem cerebellum samples of MJD patients and controls. Ten genes-ABCA1, CEP72, PTGDS, SAFB2, SFSWAP, CCDC88C, SH2B1, LTBP4, MEG3 and TSPOAP1-whose expression in blood was altered in the pre-ataxic stage and simultaneously, correlated with ataxia severity in the overt disease stage, were analysed by quantitative real-time PCR in blood samples from an independent set of 170 SCA3/MJD subjects and 57 controls. Pathway enrichment analysis indicated the Gαi signalling and the oestrogen receptor signalling to be similarly affected in blood and cerebellum. SAFB2, SFSWAP and LTBP4 were consistently dysregulated in pre-ataxic subjects compared to controls, displaying a combined discriminatory ability of 79%. In patients, ataxia severity was associated with higher levels of MEG3 and TSPOAP1. We propose expression levels of SAFB2, SFSWAP and LTBP4 as well as MEG3 and TSPOAP1 as stratification markers of SCA3/MJD progression, deserving further validation in longitudinal studies and in independent cohorts.


Assuntos
Doença de Machado-Joseph , Ataxias Espinocerebelares , Humanos , Doença de Machado-Joseph/genética , Transcriptoma , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/complicações , Ataxina-3/genética , Biomarcadores , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas dos Microfilamentos/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
9.
J Med Genet ; 60(1): 48-56, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34740919

RESUMO

BACKGROUND: Fetal akinesia (FA) results in variable clinical presentations and has been associated with more than 166 different disease loci. However, the underlying molecular cause remains unclear in many individuals. We aimed to further define the set of genes involved. METHODS: We performed in-depth clinical characterisation and exome sequencing on a cohort of 23 FA index cases sharing arthrogryposis as a common feature. RESULTS: We identified likely pathogenic or pathogenic variants in 12 different established disease genes explaining the disease phenotype in 13 index cases and report 12 novel variants. In the unsolved families, a search for recessive-type variants affecting the same gene was performed; and in five affected fetuses of two unrelated families, a homozygous loss-of-function variant in the kinesin family member 21A gene (KIF21A) was found. CONCLUSION: Our study underlines the broad locus heterogeneity of FA with well-established and atypical genotype-phenotype associations. We describe KIF21A as a new factor implicated in the pathogenesis of severe neurogenic FA sequence with arthrogryposis of multiple joints, pulmonary hypoplasia and facial dysmorphisms. This hypothesis is further corroborated by a recent report on overlapping phenotypes observed in Kif21a null piglets.


Assuntos
Artrogripose , Humanos , Animais , Suínos , Mutação/genética , Artrogripose/genética , Artrogripose/patologia , Perda de Heterozigosidade , Feto , Fenótipo , Linhagem , Cinesinas/genética
10.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34785590

RESUMO

Aberrant O-GlcNAcylation, a protein posttranslational modification defined by the O-linked attachment of the monosaccharide N-acetylglucosamine (O-GlcNAc), has been implicated in neurodegenerative diseases. However, although many neuronal proteins are substrates for O-GlcNAcylation, this process has not been extensively investigated in polyglutamine disorders. We aimed to evaluate the enzyme O-GlcNAc transferase (OGT), which attaches O-GlcNAc to target proteins, in Machado-Joseph disease (MJD). MJD is a neurodegenerative condition characterized by ataxia and caused by the expansion of a polyglutamine stretch within the deubiquitinase ataxin-3, which then present increased propensity to aggregate. By analyzing MJD cell and animal models, we provide evidence that OGT is dysregulated in MJD, therefore compromising the O-GlcNAc cycle. Moreover, we demonstrate that wild-type ataxin-3 modulates OGT protein levels in a proteasome-dependent manner, and we present OGT as a substrate for ataxin-3. Targeting OGT levels and activity reduced ataxin-3 aggregates, improved protein clearance and cell viability, and alleviated motor impairment reminiscent of ataxia of MJD patients in zebrafish model of the disease. Taken together, our results point to a direct interaction between OGT and ataxin-3 in health and disease and propose the O-GlcNAc cycle as a promising target for the development of therapeutics in the yet incurable MJD.


Assuntos
Ataxina-3/metabolismo , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , N-Acetilglucosaminiltransferases/metabolismo , Animais , Ataxina-3/genética , Modelos Animais de Doenças , Células HEK293 , Humanos , Peptídeos , Complexo de Endopeptidases do Proteassoma , Peixe-Zebra/metabolismo
11.
Br J Cancer ; 128(11): 2097-2103, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36973448

RESUMO

BACKGROUND: HPV-related cervical cancer (CC) is the fourth most frequent cancer in women worldwide. Cell-free tumour DNA is a potent biomarker to detect treatment response, residual disease, and relapse. We investigated the potential use of cell-free circulating HPV-DNA (cfHPV-DNA) in plasma of patients with CC. METHODS: cfHPV-DNA levels were measured using a highly sensitive next-generation sequencing-based approach targeting a panel of 13 high-risk HPV types. RESULTS: Sequencing was performed in 69 blood samples collected from 35 patients, of which 26 were treatment-naive when the first liquid biopsy sample was retrieved. cfHPV-DNA was successfully detected in 22/26 (85%) cases. A significant correlation between tumour burden and cfHPV-DNA levels was observed: cfHPV-DNA was detectable in all treatment-naive patients with advanced-stage disease (17/17, FIGO IB3-IVB) and in 5/9 patients with early-stage disease (FIGO IA-IB2). Sequential samples revealed a decrease of cfHPV-DNA levels in 7 patients corresponding treatment response and an increase in a patient with relapse. CONCLUSIONS: In this proof-of-concept study we demonstrated the potential of cfHPV-DNA as a biomarker for therapy monitoring in patients with primary and recurrent CC. Our findings facilitate the development of a sensitive and precise, non-invasive, inexpensive, and easily accessible tool in CC diagnosis, therapy monitoring and follow-up.


Assuntos
Ácidos Nucleicos Livres , DNA Tumoral Circulante , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Humanos , Feminino , Recidiva Local de Neoplasia , Biomarcadores , Doença Crônica
12.
Am J Hum Genet ; 107(2): 364-373, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32707086

RESUMO

We report bi-allelic pathogenic HPDL variants as a cause of a progressive, pediatric-onset spastic movement disorder with variable clinical presentation. The single-exon gene HPDL encodes a protein of unknown function with sequence similarity to 4-hydroxyphenylpyruvate dioxygenase. Exome sequencing studies in 13 families revealed bi-allelic HPDL variants in each of the 17 individuals affected with this clinically heterogeneous autosomal-recessive neurological disorder. HPDL levels were significantly reduced in fibroblast cell lines derived from more severely affected individuals, indicating the identified HPDL variants resulted in the loss of HPDL protein. Clinical presentation ranged from severe, neonatal-onset neurodevelopmental delay with neuroimaging findings resembling mitochondrial encephalopathy to milder manifestation of adolescent-onset, isolated hereditary spastic paraplegia. All affected individuals developed spasticity predominantly of the lower limbs over the course of the disease. We demonstrated through bioinformatic and cellular studies that HPDL has a mitochondrial localization signal and consequently localizes to mitochondria suggesting a putative role in mitochondrial metabolism. Taken together, these genetic, bioinformatic, and functional studies demonstrate HPDL is a mitochondrial protein, the loss of which causes a clinically variable form of pediatric-onset spastic movement disorder.


Assuntos
Encefalopatias/genética , Proteínas Mitocondriais/genética , Doenças Neurodegenerativas/genética , Paraplegia Espástica Hereditária/genética , Adolescente , Adulto , Alelos , Sequência de Aminoácidos , Criança , Feminino , Humanos , Masculino , Mitocôndrias/genética , Linhagem , Fenótipo , Adulto Jovem
13.
Neuropathol Appl Neurobiol ; 49(2): e12892, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36798010

RESUMO

The European Spinocerebellar Ataxia Type 3/Machado-Joseph Disease Initiative (ESMI) is a consortium established with the ambition to set up the largest European longitudinal trial-ready cohort of Spinocerebellar Ataxia Type 3/Machado-Joseph Disease (SCA3/MJD), the most common autosomal dominantly inherited ataxia worldwide. A major focus of ESMI has been the identification of SCA3/MJD biomarkers to enable future interventional studies. As biosample collection and processing variables significantly impact the outcomes of biomarkers studies, biosampling procedures standardisation was done previously to study visit initiation. Here, we describe the ESMI consensus biosampling protocol, developed within the scope of ESMI, that ultimately might be translated to other neurodegenerative disorders, particularly ataxias, being the first step to protocol harmonisation in the field.


Assuntos
Ataxia Cerebelar , Doença de Machado-Joseph , Ataxias Espinocerebelares , Degenerações Espinocerebelares , Humanos , Biomarcadores
14.
Brain ; 145(11): 3968-3984, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35015830

RESUMO

DYT6 dystonia is caused by mutations in the transcription factor THAP1. THAP1 knock-out or knock-in mouse models revealed complex gene expression changes, which are potentially responsible for the pathogenesis of DYT6 dystonia. However, how THAP1 mutations lead to these gene expression alterations and whether the gene expression changes are also reflected in the brain of THAP1 patients are still unclear. In this study we used epigenetic and transcriptomic approaches combined with multiple model systems [THAP1 patients' frontal cortex, THAP1 patients' induced pluripotent stem cell (iPSC)-derived midbrain dopaminergic neurons, THAP1 heterozygous knock-out rat model, and THAP1 heterozygous knock-out SH-SY5Y cell lines] to uncover a novel function of THAP1 and the potential pathogenesis of DYT6 dystonia. We observed that THAP1 targeted only a minority of differentially expressed genes caused by its mutation. THAP1 mutations lead to dysregulation of genes mainly through regulation of SP1 family members, SP1 and SP4, in a cell type dependent manner. Comparing global differentially expressed genes detected in THAP1 patients' iPSC-derived midbrain dopaminergic neurons and THAP1 heterozygous knock-out rat striatum, we observed many common dysregulated genes and 61 of them were involved in dystonic syndrome-related pathways, like synaptic transmission, nervous system development, and locomotor behaviour. Further behavioural and electrophysiological studies confirmed the involvement of these pathways in THAP1 knock-out rats. Taken together, our study characterized the function of THAP1 and contributes to the understanding of the pathogenesis of primary dystonia in humans and rats. As SP1 family members were dysregulated in some neurodegenerative diseases, our data may link THAP1 dystonia to multiple neurological diseases and may thus provide common treatment targets.


Assuntos
Distonia , Distúrbios Distônicos , Neuroblastoma , Humanos , Camundongos , Animais , Ratos , Distonia/genética , Proteínas Nucleares/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Reguladoras de Apoptose/genética , Distúrbios Distônicos/genética , Mutação/genética , Fator de Transcrição Sp1/genética
15.
Cell Mol Life Sci ; 79(5): 262, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35482253

RESUMO

Spinocerebellar ataxia type 17 (SCA17) is a neurodegenerative disease caused by a polyglutamine-encoding trinucleotide repeat expansion in the gene of transcription factor TATA box-binding protein (TBP). While its underlying pathomechanism is elusive, polyglutamine-expanded TBP fragments of unknown origin mediate the mutant protein's toxicity. Calcium-dependent calpain proteases are protagonists in neurodegenerative disorders. Here, we demonstrate that calpains cleave TBP, and emerging C-terminal fragments mislocalize to the cytoplasm. SCA17 cell and rat models exhibited calpain overactivation, leading to excessive fragmentation and depletion of neuronal proteins in vivo. Transcriptome analysis of SCA17 cells revealed synaptogenesis and calcium signaling perturbations, indicating the potential cause of elevated calpain activity. Pharmacological or genetic calpain inhibition reduced TBP cleavage and aggregation, consequently improving cell viability. Our work underlines the general significance of calpains and their activating pathways in neurodegenerative disorders and presents these proteases as novel players in the molecular pathogenesis of SCA17.


Assuntos
Calpaína , Ataxias Espinocerebelares , Animais , Calpaína/genética , Calpaína/metabolismo , Neurônios/metabolismo , Ratos , Ataxias Espinocerebelares/metabolismo , Expansão das Repetições de Trinucleotídeos
16.
Cell Mol Life Sci ; 79(8): 401, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794401

RESUMO

Machado-Joseph disease (MJD) is characterized by a pathological expansion of the polyglutamine (polyQ) tract within the ataxin-3 protein. Despite its primarily cytoplasmic localization, polyQ-expanded ataxin-3 accumulates in the nucleus and forms intranuclear aggregates in the affected neurons. Due to these histopathological hallmarks, the nucleocytoplasmic transport machinery has garnered attention as an important disease relevant mechanism. Here, we report on MJD cell model-based analysis of the nuclear transport receptor karyopherin subunit beta-1 (KPNB1) and its implications in the molecular pathogenesis of MJD. Although directly interacting with both wild-type and polyQ-expanded ataxin-3, modulating KPNB1 did not alter the intracellular localization of ataxin-3. Instead, overexpression of KPNB1 reduced ataxin-3 protein levels and the aggregate load, thereby improving cell viability. On the other hand, its knockdown and inhibition resulted in the accumulation of soluble and insoluble ataxin-3. Interestingly, the reduction of ataxin-3 was apparently based on protein fragmentation independent of the classical MJD-associated proteolytic pathways. Label-free quantitative proteomics and knockdown experiments identified mitochondrial protease CLPP as a potential mediator of the ataxin-3-degrading effect induced by KPNB1. We confirmed reduction of KPNB1 protein levels in MJD by analyzing two MJD transgenic mouse models and induced pluripotent stem cells (iPSCs) derived from MJD patients. Our results reveal a yet undescribed regulatory function of KPNB1 in controlling the turnover of ataxin-3, thereby highlighting a new potential target of therapeutic value for MJD.


Assuntos
Ataxina-3 , Endopeptidase Clp , Doença de Machado-Joseph , Mitocôndrias , beta Carioferinas , Animais , Ataxina-3/genética , Ataxina-3/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Camundongos , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , beta Carioferinas/genética , beta Carioferinas/metabolismo
17.
Proc Natl Acad Sci U S A ; 117(31): 18661-18669, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32675242

RESUMO

Huntington's disease (HD) is a progressive incurable neurodegenerative disorder characterized by motor and neuropsychiatric symptoms. It is caused by expansion of a cytosine-adenine-guanine triplet in the N-terminal domain of exon 1 in the huntingtin (HTT) gene that codes for an expanded polyglutamine stretch in the protein product which becomes aggregation prone. The mutant Htt (mHtt) aggregates are associated with components of the ubiquitin-proteasome system, suggesting that mHtt is marked for proteasomal degradation and that, for reasons still debated, are not properly degraded. We used a novel HD rat model, proteomic analysis, and long-term live neuronal imaging to characterize the effects of ubiquitination on aggregation of mHtt and subsequent cellular responses. We identified two lysine residues, 6 and 9, in the first exon of mHtt that are specifically ubiquitinated in striatal and cortical brain tissues of mHtt-transgenic animals. Expression of mHtt exon 1 lacking these ubiquitination sites in cortical neurons and cultured cells was found to slow aggregate appearance rates and reduce their size but at the same time increase the number of much smaller and less visible ones. Importantly, expression of this form of mHtt was associated with elevated death rates. Proteomic analysis indicated that cellular reactions to mHtt expression were weaker in cells expressing the lysineless protein, possibly implying a reduced capacity to cope with the proteotoxic stress. Taken together, the findings suggest a novel role for ubiquitination-attenuation of the pathogenic effect of mHtt.


Assuntos
Proteína Huntingtina , Doença de Huntington , Ubiquitinação/fisiologia , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Morte Celular/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Lisina/química , Lisina/metabolismo , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma , Agregação Patológica de Proteínas/metabolismo , Ratos , Ratos Transgênicos
18.
Hum Mutat ; 43(6): 717-733, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35178824

RESUMO

Rare disease patients are more likely to receive a rapid molecular diagnosis nowadays thanks to the wide adoption of next-generation sequencing. However, many cases remain undiagnosed even after exome or genome analysis, because the methods used missed the molecular cause in a known gene, or a novel causative gene could not be identified and/or confirmed. To address these challenges, the RD-Connect Genome-Phenome Analysis Platform (GPAP) facilitates the collation, discovery, sharing, and analysis of standardized genome-phenome data within a collaborative environment. Authorized clinicians and researchers submit pseudonymised phenotypic profiles encoded using the Human Phenotype Ontology, and raw genomic data which is processed through a standardized pipeline. After an optional embargo period, the data are shared with other platform users, with the objective that similar cases in the system and queries from peers may help diagnose the case. Additionally, the platform enables bidirectional discovery of similar cases in other databases from the Matchmaker Exchange network. To facilitate genome-phenome analysis and interpretation by clinical researchers, the RD-Connect GPAP provides a powerful user-friendly interface and leverages tens of information sources. As a result, the resource has already helped diagnose hundreds of rare disease patients and discover new disease causing genes.


Assuntos
Genômica , Doenças Raras , Exoma , Estudos de Associação Genética , Genômica/métodos , Humanos , Fenótipo , Doenças Raras/diagnóstico , Doenças Raras/genética
19.
Hum Mol Genet ; 29(6): 892-906, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31960910

RESUMO

Proteolytic fragmentation of polyglutamine-expanded ataxin-3 is a concomitant and modifier of the molecular pathogenesis of Machado-Joseph disease (MJD), the most common autosomal dominant cerebellar ataxia. Calpains, a group of calcium-dependent cysteine proteases, are important mediators of ataxin-3 cleavage and implicated in multiple neurodegenerative conditions. Pharmacologic and genetic approaches lowering calpain activity showed beneficial effects on molecular and behavioural disease characteristics in MJD model organisms. However, specifically targeting one of the calpain isoforms by genetic means has not yet been evaluated as a potential therapeutic strategy. In our study, we tested whether calpains are overactivated in the MJD context and if reduction or ablation of calpain-1 expression ameliorates the disease-associated phenotype in MJD cells and mice. In all analysed MJD models, we detected an elevated calpain activity at baseline. Lowering or removal of calpain-1 in cells or mice counteracted calpain system overactivation and led to reduced cleavage of ataxin-3 without affecting its aggregation. Moreover, calpain-1 knockout in YAC84Q mice alleviated excessive fragmentation of important synaptic proteins. Despite worsening some motor characteristics, YAC84Q mice showed a rescue of body weight loss and extended survival upon calpain-1 knockout. Together, our findings emphasize the general potential of calpains as a therapeutic target in MJD and other neurodegenerative diseases.


Assuntos
Ataxina-3/metabolismo , Cálcio/metabolismo , Calpaína/fisiologia , Modelos Animais de Doenças , Doença de Machado-Joseph/patologia , Animais , Ataxina-3/genética , Feminino , Doença de Machado-Joseph/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptídeos/metabolismo , Fenótipo , Proteólise
20.
Genet Med ; 24(10): 2079-2090, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35986737

RESUMO

PURPOSE: Biallelic variants in UCHL1 have been associated with a progressive early-onset neurodegenerative disorder, autosomal recessive spastic paraplegia type 79. In this study, we investigated heterozygous UCHL1 variants on the basis of results from cohort-based burden analyses. METHODS: Gene-burden analyses were performed on exome and genome data of independent cohorts of patients with hereditary ataxia and spastic paraplegia from Germany and the United Kingdom in a total of 3169 patients and 33,141 controls. Clinical data of affected individuals and additional independent families were collected and evaluated. Patients' fibroblasts were used to perform mass spectrometry-based proteomics. RESULTS: UCHL1 was prioritized in both independent cohorts as a candidate gene for an autosomal dominant disorder. We identified a total of 34 cases from 18 unrelated families, carrying 13 heterozygous loss-of-function variants (15 families) and an inframe insertion (3 families). Affected individuals mainly presented with spasticity (24/31), ataxia (28/31), neuropathy (11/21), and optic atrophy (9/17). The mass spectrometry-based proteomics showed approximately 50% reduction of UCHL1 expression in patients' fibroblasts. CONCLUSION: Our bioinformatic analysis, in-depth clinical and genetic workup, and functional studies established haploinsufficiency of UCHL1 as a novel disease mechanism in spastic ataxia.


Assuntos
Ataxia Cerebelar , Atrofia Óptica , Paraplegia Espástica Hereditária , Ataxias Espinocerebelares , Ubiquitina Tiolesterase , Ataxia/genética , Ataxia Cerebelar/genética , Humanos , Mutação com Perda de Função , Espasticidade Muscular/genética , Mutação , Atrofia Óptica/genética , Linhagem , Paraplegia Espástica Hereditária/genética , Ataxias Espinocerebelares/genética , Ubiquitina Tiolesterase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA