Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Phys Chem Chem Phys ; 22(6): 3217-3233, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31993597

RESUMO

The absorption and emission characteristics of (ppz)2(dipy)IrIII, (ppz)(dipy)PtII and (ppz)(dipy)PdII, where ppz stands for phenylpyrazole and dipy for a phenyl meso-substituted dipyrrin ligand, have been investigated by means of combined density functional theory and multireference configuration interaction including scalar relativistic and spin-orbit coupling effects. These results were compared with experimental spectra. The complexes exhibit a high density of low-lying electronically excited states originating from ligand-centered (LC) and metal-to-ligand charge transfer (MLCT) states involving the dipyrrin ligand. In addition, metal-centered (MC) states are found to be low-lying in the Pd complex. In all three cases, the first strong absorption band and the phosphorescence emission band stem from LC excitations on the dipyrrin ligand with small MLCT contributions. The MLCT states show more pronounced relaxation effects than the LC states, with the consequence that the first excited state with predominant singlet multiplicity is of SMLCT/LC type in the heavier Ir and Pt complexes. Substantial spin-orbit coupling between SMLCT/LC and TLC enables fast and efficient intersystem crossing (ISC) and a high triplet quantum yield. Phosphorescence rate constants are rather small in accord with the dominant LC character of the transitions. Out-of-plane distortion promotes nonradiative decay of the excited state population via the MC states thus explaining the lower phosphorescence quantum yield of the Pt complex. The spectral properties of the Pd complex are different in many aspects. Optimization of the S1 state yields a dipyrrin intraligand charge transfer (ILCT) state with highly distorted nuclear arrangement in the butterfly conformers leading to nonradiative deactivation. In contrast, the primarily excited SLC state and the SMLCT/LC state of the twist conformer have nearly equal adiabatic excitation energies. The lack of a driving force toward the SMLCT/LC minimum, the high fluorescence rate constant of the bright SLC state and its moderately efficient ISC to the triplet manifold explain the experimentally observed dual emission of the Pd complex at room temperature.

2.
J Chem Phys ; 153(5): 054306, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770922

RESUMO

A series of triads consisting of a triarylamine donor, a naphthalenediimide acceptor, and a palladium photosensitizer bridge was investigated for the photoinduced electron transfer processes and the spin chemistry involved. In this series, the ligand in the palladium photosensitizer was varied from bis-dipyrrinato to porphodimethenato and to a porphyrin. With the porphyrin photosensitizer, no charge separated state could be reached. This is caused by the direct relaxation of the excited photosensitizer to the ground state by intersystem crossing. The bis-dipyrrinato-palladium photosensitizer gave only a little yield (7%) of the charge separated state, which is due to the population of a metal centered triplet state and a concomitant geometrical rearrangement to a disphenoidal coordination sphere. This state relaxes rapidly to the ground state. In contrast, in the porphodimethenato-palladium triads, a long lived (µs to ms) charge separated state could be generated in high quantum yields (66%-74%) because, here, the population of a triplet metal centered state is inhibited by geometrical constraints. The magnetic field dependent transient absorption measurement of one of the porphodimethenato triads revealed a giant magnetic field effect by a factor of 26 on the signal amplitude of the charge separated state. This is the consequence of a magnetic field dependent triplet-singlet interconversion that inhibits the fast decay of the charge separated triplet state through the singlet recombination channel. A systematic comparative analysis of the spin-dependent kinetics in terms of three classical and one fully quantum theoretical methods is provided, shedding light on the pros and cons of each of them.

3.
Inorg Chem ; 57(20): 12480-12488, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29900733

RESUMO

Although superficially similar, the bis-dipyrrinato-palladium(II) complex 1 and the bridged porphodimethenato-palladium(II) complex 2 possess dramatically different structures in the ground state (proved by X-ray structure analysis) and in the singlet and triplet excited states (calculated by density functional theory methods). While complex 2 is rather rigid, complex 1 undergoes a major structural reorganization in the excited state to yield a disphenoidal (seesaw) triplet state. The dynamics of the excited states were probed by transient absorption spectroscopy with femtosecond and nanosecond time resolution and with fluorescence upconversion and yield intersystem crossing rate constants of ca. (13-16 ps)-1. The observation of significant near infrared phosphorescence in complex 2 but the absence of any emission in complex 1 in fluid solution could be rationalized by the structural reorganization of 1 which results in a nonemissive triplet metal centered state.

4.
Molecules ; 18(7): 7930-56, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23884128

RESUMO

Application of microfluidics to Positron Emission Tomography (PET) tracer synthesis has attracted increasing interest within the last decade. The technical advantages of microfluidics, in particular the high surface to volume ratio and resulting fast thermal heating and cooling rates of reagents can lead to reduced reaction times, increased synthesis yields and reduced by-products. In addition automated reaction optimization, reduced consumption of expensive reagents and a path towards a reduced system footprint have been successfully demonstrated. The processing of radioactivity levels required for routine production, use of microfluidic-produced PET tracer doses in preclinical and clinical imaging as well as feasibility studies on autoradiolytic decomposition have all given promising results. However, the number of microfluidic synthesizers utilized for commercial routine production of PET tracers is very limited. This study reviews the state of the art in microfluidic PET tracer synthesis, highlighting critical design aspects, strengths, weaknesses and presenting several characteristics of the diverse PET market space which are thought to have a significant impact on research, development and engineering of microfluidic devices in this field. Furthermore, the topics of batch- and single-dose production, cyclotron to quality control integration as well as centralized versus de-centralized market distribution models are addressed.


Assuntos
Microfluídica/métodos , Tomografia por Emissão de Pósitrons , Traçadores Radioativos , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/instrumentação , Controle de Qualidade , Radioisótopos , Compostos Radiofarmacêuticos/síntese química
5.
Chem Sci ; 13(18): 5205-5219, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35655553

RESUMO

Reversible conversion between excited-states plays an important role in many photophysical phenomena. Using 1-(pyren-2'-yl)-o-carborane as a model, we studied the photoinduced reversible charge-transfer (CT) process and the thermodynamic equilibrium between the locally-excited (LE) state and CT state, by combining steady state, time-resolved, and temperature-dependent fluorescence spectroscopy, fs- and ns-transient absorption, and DFT and LR-TDDFT calculations. Our results show that the energy gaps and energy barriers between the LE, CT, and a non-emissive 'mixed' state of 1-(pyren-2'-yl)-o-carborane are very small, and all three excited states are accessible at room temperature. The internal-conversion and reverse internal-conversion between LE and CT states are significantly faster than the radiative decay, and the two states have the same lifetimes and are in thermodynamic equilibrium.

6.
Lab Chip ; 14(14): 2556-64, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24879121

RESUMO

The application of microfluidics to the synthesis of Positron Emission Tomography (PET) tracers has been explored for more than a decade. Microfluidic benefits such as superior temperature control have been successfully applied to PET tracer synthesis. However, the design of a compact microfluidic platform capable of executing a complete PET tracer synthesis workflow while maintaining prospects for commercialization remains a significant challenge. This study uses an integral system design approach to tackle commercialization challenges such as the material to process compatibility with a path towards cost effective lab-on-chip mass manufacturing from the start. It integrates all functional elements required for a simple PET tracer synthesis into one compact radiochemistry platform. For the lab-on-chip this includes the integration of on-chip valves, on-chip solid phase extraction (SPE), on-chip reactors and a reversible fluid interface while maintaining compatibility with all process chemicals, temperatures and chip mass manufacturing techniques. For the radiochemistry device it includes an automated chip-machine interface enabling one-move connection of all valve actuators and fluid connectors. A vial-based reagent supply as well as methods to transfer reagents efficiently from the vials to the chip has been integrated. After validation of all those functional elements, the microfluidic platform was exemplarily employed for the automated synthesis of a Gastrin-releasing peptide receptor (GRP-R) binding the PEGylated Bombesin BN(7-14)-derivative ([(18)F]PESIN) based PET tracer.


Assuntos
Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Radioquímica , Compostos Radiofarmacêuticos , Bombesina/química , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Tomografia por Emissão de Pósitrons/instrumentação , Tomografia por Emissão de Pósitrons/métodos , Traçadores Radioativos , Radioquímica/instrumentação , Radioquímica/métodos , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Receptores da Bombesina/química
7.
Appl Radiat Isot ; 70(8): 1691-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22750198

RESUMO

Autoradiolysis describes the degradation of radioactively labeled compounds due to the activity of the labeled compounds themselves. It scales with activity concentration and is of importance for high activity and microfluidic PET tracer synthesis. This study shows that microfluidic devices can be shaped to reduce autoradiolysis by geometric exclusion of positron interaction. A model is developed and confirmed by demonstrating in-capillary storage of non-stabilized [(18)F]FDG (2-[(18)F]Fluoro-2-deoxy-d-glucose) at max. 23 GBq/ml while maintaining >90% radiochemical purity over 14 h.


Assuntos
Microfluídica/instrumentação , Compostos Radiofarmacêuticos/química , Modelos Teóricos , Método de Monte Carlo , Tomografia por Emissão de Pósitrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA