RESUMO
BACKGROUND: Several new generation CDK4/6 inhibitors have been developed and approved for breast cancer therapy in combination with endocrine therapeutics. Application of these inhibitors either alone or in combination in other solid tumors has been proposed, but no imaging biomarkers of response have been reported in non-breast cancer animal models. The purpose of this study was to evaluate 3'-[18F]fluoro-3'-deoxythymidine ([18F]FLT) Positron Emission Tomography (PET) as in vivo biomarker of response to palbociclib in a non-breast cancer model. METHODS: Twenty-four NSG mice bearing patient derived xenografts (PDX) of a well-characterized bladder tumor were randomized into 4 treatment groups: vehicle (n = 6); palbociclib (n = 6); temozolomide (n = 6); and palbociclib plus temozolomide (n = 6) and treated with two cycles of therapy or vehicle. Tumor uptake of [18F]FLT was determined by micro-PET/CT at baseline, 3 days, and 9 days post initiation of therapy. Following the second cycle of therapy, the mice were maintained until their tumors reached a size requiring humane termination. RESULTS: [18F]FLT uptake decreased significantly in the palbociclib and combination arms (p = 0.0423 and 0.0106 respectively at day 3 and 0.0012 and 0.0031 at day 9) with stable tumor volume. In the temozolomide arm [18F]FLT uptake increased with day 9 uptake significantly different than baseline (p = 0.0418) and progressive tumor growth was observed during the treatment phase. All groups exhibited progressive disease after day 22, 10 days following cessation of therapy. CONCLUSION: Significant decreases in [18F]FLT uptake as early as three days post initiation of therapy with palbociclib, alone or in combination with temozolomide, in this bladder cancer model correlates with an absence of tumor growth during therapy that persists until day 18 for the palbociclib group and day 22 for the combination group (6 days and 10 days) following cessation of therapy. These results support early modulation of [18F]FLT as an in vivo biomarker predictive of palbociclib therapy response in a non-breast cancer model.
Assuntos
Didesoxinucleosídeos , Neoplasias da Bexiga Urinária , Animais , Biomarcadores , Linhagem Celular Tumoral , Didesoxinucleosídeos/metabolismo , Humanos , Camundongos , Piperazinas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons/métodos , Piridinas , Temozolomida/uso terapêutico , Timidina , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Neoplasias da Bexiga Urinária/tratamento farmacológicoRESUMO
BACKGROUND: Spontaneously metastatic xenograft models of cancer are infrequent and the few that exist are resource intensive. In xenografts, caliper measurements can be used to determine primary tumor burden and response to therapy but in metastatic disease models determination of the presence of metastatic disease, metastatic burden, and response to therapy are difficult, often requiring serial necropsy. In this study we characterized the development of visceral metastases in a patient derived xenograft model (PDXM) using in vivo imaging. RESULTS: We identified and characterized the previously unreported development of spontaneous liver and bone metastasis in a known patient derived xenograft, bladder xenograft BL0293F, developed by Jackson Laboratories and the University of California at Davis and available from the National Cancer Institute Patient-Derived Models Repository [1]. Among FDG-PET/CT, contrast-enhanced MRI and non-contrast MRI, non-contrast T2w MRI was the most effective and efficient imaging technique. On non-contrast T2 weighted MRI, hepatic metastases were observed in over 70% of animals at 52 days post tumor implantation without resection of the xenograft and in 100% of animals at day 52 following resection of the xenograft. In a group of animals receiving one cycle of effective chemotherapy, no animals demonstrated metastasis by imaging, confirming the utility of this model for therapy evaluation. There was good agreement between pathologic grade and extent of involvement observed on MRI T2w imaging. CONCLUSION: PDX BL0293F is a reliable visceral organ (liver) metastatic model with high penetrance in both non-aggravated and post excisional situations, providing a reliable window for therapy intervention prior to required excision of the xenograft. The imaging characteristics of this model are highly favorable for non-clinical research studies of metastatic disease when used in conjunction with non-contrast T2 weighted MRI.
Assuntos
Imageamento Tridimensional , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Neoplasias da Bexiga Urinária/patologia , Animais , Feminino , Humanos , Neoplasias Hepáticas/secundário , Imageamento por Ressonância Magnética , Camundongos Endogâmicos NOD , Metástase Neoplásica , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Alfaxalone is a commonly used injectable anesthetic in dogs and cats due to its minimal cardiovascular side effects. Data for its use in mice are limited and demonstrate strain- and sex-associated differences in dose-response relationships. We performed a dose-comparison study of alfaxalone-xylazine-buprenorphine (AXB) in Crl: CFW (SW) mice. Subcutaneous injection of 50 mg/kg alfaxalone-10 mg/kg xylazine-0.1 mg/kg buprenorphine HCl consistently achieved a surgical plane of anesthesia (loss of toe pinch) for 48.6 ± 4.7 and 60.8 ± 9.6 min in females and males, respectively. The same dose and route of AXB induced a surgical plane of anesthesia in C57Bl/6NCrl (females: 42.3 ± 11.2 min; males: 51.6 ± 12.3 min), NCr-Foxn1nu (females: 76.8 ± 32.5 min; males: 80.0 ± 1.2 min), and NOD. Cg-Prkdc SCID Il2rg tm1Wjl /SzJCr (females: 56.0 ± 37.2 min and males: 61.2 ± 10.2 min) mice. We found no significant difference in the duration of the surgical plane of anesthesia between males and females within the mouse strains Crl: CFW (SW), C57Bl/6NCrl, NCr-Foxn1nu, and NOD. Cg-PrkdcSCID Il2rgtm1Wjl /SzJCr. We next performed an echocardiography study (n = 5 per group) of Crl: CFW (SW) mice ( n = 5 per group) to compare subcutaneous AXB anesthesia with that produced by intraperitoneal injection of 100 mg/kg ketamine and 10 mg/kg xylazine (KX). AXB induced significantly less bradycardia (295.4 ± 29 bpm) than KX (185.8 ± 38.9 bpm) did, with no significant differences in cardiac output, ejection fraction, end-diastolic volume, end-systolic volume, or fractional shortening. These results suggest that subcutaneous administration of AXB is a viable alternative to KX for inducing a surgical plane of anesthesia in Crl: CFW (SW), C57Bl/6NCrl, NCr-Foxn1nu, and NOD. Cg-PrkdcSCID Il2rgtm1Wjl /SzJCr mice, regardless of sex. AXB may also be a better injectable anesthetic option as compared with KX for avoiding adverse cardiac effects in mice.
Assuntos
Anestesia , Anestésicos , Buprenorfina , Doenças do Gato , Doenças do Cão , Pregnanodionas , Doenças dos Roedores , Masculino , Feminino , Camundongos , Animais , Gatos , Cães , Xilazina/farmacologia , Doenças do Gato/tratamento farmacológico , Camundongos Endogâmicos NOD , Camundongos SCID , Doenças do Cão/tratamento farmacológico , Anestésicos/farmacologia , Anestesia/veterinária , Ecocardiografia/veterinária , Doenças dos Roedores/tratamento farmacológicoRESUMO
Activating mutations in the RAS/MAPK pathway are observed in relapsed neuroblastoma. Preclinical studies indicate that these tumors have an increased sensitivity to inhibitors of the RAS/MAPK pathway, such as MEK inhibitors. MEK inhibitors do not induce durable responses as single agents, indicating a need to identify synergistic combinations of targeted agents to provide therapeutic benefit. We previously showed preclinical therapeutic synergy between a MEK inhibitor, trametinib, and a monoclonal antibody specific for IGF1R, ganitumab in RAS-mutated rhabdomyosarcoma. Neuroblastoma cells, like rhabdomyosarcoma cells, are sensitive to the inhibition of the RAS/MAPK and IGF1R/AKT/mTOR pathways. We hypothesized that the combination of trametinib and ganitumab would be effective in RAS-mutated neuroblastoma. In this study, trametinib and ganitumab synergistically suppressed neuroblastoma cell proliferation and induced apoptosis in cell culture. We also observed a delay in tumor initiation and prolongation of survival in heterotopic and orthotopic xenograft models treated with trametinib and ganitumab. However, the growth of both primary and metastatic tumors was observed in animals receiving the combination of trametinib and ganitumab. Therefore, more preclinical work is necessary before testing this combination in patients with relapsed or refractory RAS-mutated neuroblastoma.
RESUMO
To investigate panitumumab-IRDye800 as an intraoperative optical imaging agent for epidermal growth factor receptor (EGFR)-expressing cancers, we developed clinical-quality panitumumab-IRDye800 and evaluated its specificity and sensitivity to visualize tumors by fluorescence imaging in a variety of mouse xenograft models with different levels of EGFR-expression. Panitumumab was chemically conjugated to NIR-dye (Li-COR 800CW) at well-defined and limited substitution ratio (1:1-2) for the characterization of fluorescence signals. Yield and purity of the conjugate was 80±5% and 95±2% respectively (n= 6). Quality control (QC) tests showed that product was suitable for clinical development. Female athymic nude xenograft tumor bearing mice (n=5 per tumor model) with very low (BT-474), moderate (MDA-MB-231), and high (MDA-MB-468) EGFR-expression levels were administered panitumumab-IRDye800 formulations (100 µg of mAb in 100 µL of 0.9% saline) via tail-vein injection. Animal imaging and biodistribution experiments were conducted on the FMT 2500 (Perkin Elmer) fluorescence scanner at 24, 48, 72, 96, and 144 hours post injection. Immuno-fluorescence images of panitumumab-IRDye conjugate recorded in mouse xenograft models showed a good correlation (R2 = 0.91) between EGFR-expression level and tumor uptake. Uptake of panitumumab labeled with IR-Dye or [89Zr] in different tumor xenografts with high, medium, and low EGFR expression, as measured by fluorescence or radioactive counts are highly correlated (r2= 0.99). This preclinical in-vivo study proved that panitumumab-IRDye800 is specific and optical imaging in conjunction with this probe is sensitive enough to detect EGFR-expressing tumors.
RESUMO
We have developed a reliable noninvasive method for monitoring colonic tumors and mucosal inflammation in a mouse model of colon cancer using magnetic resonance colonography (MRC). After a mild cleansing enema, the colon is filled with Fluorinert, a perfluorinated liquid that does not produce a proton MR signal. The mouse is placed in a dedicated volume MR receiver coil, and high-resolution images are acquired in three planes. The Fluorinert enema distends the mouse colon, creating an artifact-free black homogeneous background, allowing clear delineation of the inflamed colonic wall and visualization of luminal tumors in various stages of development. A gadolinium-based contrast agent can be administered i.v. to the animal to detect mural inflammation or tumor vascularity. This technique is useful for serial monitoring of the effects of preventive or therapeutic strategies on tumor development without killing the animal or requiring invasive endoscopies. The animal preparation and imaging can be completed in â¼1.5 h.
Assuntos
Neoplasias do Colo/diagnóstico , Colonografia Tomográfica Computadorizada/métodos , Imageamento por Ressonância Magnética/métodos , Animais , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Enema , Desenho de Equipamento , Feminino , Fluorocarbonos , Imageamento por Ressonância Magnética/instrumentação , Masculino , Camundongos Endogâmicos , Fatores de TempoRESUMO
Early detection of precancerous tissue has significantly improved survival of most cancers including colorectal cancer (CRC). Animal models designed to study the early stages of cancer are valuable for identifying molecular events and response indicators that correlate with the onset of disease. The goal of this work was to investigate magnetic resonance (MR) colonography in a mouse model of CRC on a clinical MR imager. Mice treated with azoxymethane and dextran sulfate sodium were imaged by serial MR colonography (MRC) from initiation to euthanasia. Magnetic resonance colonography was obtained with both T1- and T2-weighted images after administration of a Fluorinert enema to remove residual luminal signal and intravenous contrast to enhance the colon wall. Individual tumor volumes were calculated and validated ex vivo. The Fluorinert enema provided a clear differentiation of the lumen of the colon from the mucosal lining. Inflammation was detected 3 days after dextran sulfate sodium exposure and subsided during the next week. Tumors as small as 1.2 mm(3) were detected and as early as 29 days after initiation. Individual tumor growths were followed over time, and tumor volumes were measured by MR imaging correlated with volumes measured ex vivo. The use of a Fluorinert enema during MRC in mice is critical for differentiating mural processes from intraluminal debris. Magnetic resonance colonography with Fluorinert enema and intravenous contrast enhancement will be useful in the study of the initial stages of colon cancer and will reduce the number of animals needed for preclinical trials of prevention or intervention.