Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Big Data ; 7: 1390467, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38831953

RESUMO

Undisturbed home cage recording of mouse activity and behavior has received increasing attention in recent years. In parallel, several technologies have been developed in a bid to automate data collection and interpretation. Thanks to these expanding technologies, massive datasets can be recorded and saved in the long term, providing a wealth of information concerning animal wellbeing, clinical status, baseline activity, and subsequent deviations in case of experimental interventions. Such large datasets can also serve as a long-term reservoir of scientific data that can be reanalyzed and repurposed upon need. In this review, we present how the impact of Big Data deriving from home cage monitoring (HCM) data acquisition, particularly through Digital Ventilated Cages (DVCs), can support the application of the 3Rs by enhancing Refinement, Reduction, and even Replacement of research in animals.

2.
Front Vet Sci ; 10: 1281040, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38179329

RESUMO

Introduction: Tendon disorders present significant challenges in the realm of musculoskeletal diseases, affecting locomotor activity and causing pain. Current treatments often fall short of achieving complete functional recovery of the tendon. It is crucial to explore, in preclinical research, the pathways governing the loss of tissue homeostasis and its regeneration. In this context, this study aimed to establish a correlation between the unbiased locomotor activity pattern of CRL:CD1 (ICR) mice exposed to uni- or bilateral Achilles tendon (AT) experimental injuries and the key histomorphometric parameters that influence tissue microarchitecture recovery. Methods: The study involved the phenotyping of spontaneous and voluntary locomotor activity patterns in male mice using digital ventilated cages (DVC®) with access to running wheels either granted or blocked. The mice underwent non-intrusive 24/7 long-term activity monitoring for the entire study period. This period included 7 days of pre-injury habituation followed by 28 days post-injury. Results and discussion: The results revealed significant variations in activity levels based on the type of tendon injury and access to running wheels. Notably, mice with bilateral lesions and unrestricted wheel access exhibited significantly higher activity after surgery. Extracellular matrix (ECM) remodeling, including COL1 deposition and organization, blood vessel remodeling, and metaplasia, as well as cytological tendon parameters, such as cell alignment and angle deviation were enhanced in surgical (bilateral lesion) and husbandry (free access to wheels) groups. Interestingly, correlation matrix analysis uncovered a strong relationship between locomotion and microarchitecture recovery (cell alignment and angle deviation) during tendon healing. Overall, this study highlights the potential of using mice activity metrics obtained from a home-cage monitoring system to predict tendon microarchitecture recovery at both cellular and ECM levels. This provides a scalable experimental setup to address the challenging topic of tendon regeneration using innovative and animal welfare-compliant strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA