Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 27(Pt 2): 503-506, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32153291

RESUMO

The vertical intensity distribution of synchrotron-based X-ray beams usually has a Gaussian profile encompassing large intensity variations. For biomedical imaging applications this may entail sub-optimal dose distributions and large fluctuations in terms of image noise. Commonly, planar metallic filters coupled with absorbing slits systems are applied to adjust the delivered flux and to limit intensity variations, respectively. The latter results in a reduction of the effective beam size. A flattening filter that counterbalances the transverse inhomogeneity, while retaining a sufficient flux, has been developed in the context of a monochromatic phase-contrast breast computed tomography application, ongoing at the Elettra synchrotron facility. The implementation of the new filtration system results in homogeneous intensity (hence dose) distribution and signal-to-noise ratio across the imaged volume. Finally, and most importantly, it allows a wider portion of the beam to be used, directly translating into a major (∼40%) reduction of the overall scan time for samples requiring a field of view larger than the beam size (i.e. multiple translation steps).


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Tomografia Computadorizada por Raios X/instrumentação , Simulação por Computador , Desenho de Equipamento , Feminino , Humanos , Mamografia/instrumentação , Doses de Radiação , Razão Sinal-Ruído , Síncrotrons
2.
J Synchrotron Radiat ; 27(Pt 3): 762-771, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32381779

RESUMO

This study relates to the INFN project SYRMA-3D for in vivo phase-contrast breast computed tomography using the SYRMEP synchrotron radiation beamline at the ELETTRA facility in Trieste, Italy. This peculiar imaging technique uses a novel dosimetric approach with respect to the standard clinical procedure. In this study, optimization of the acquisition procedure was evaluated in terms of dose delivered to the breast. An offline dose monitoring method was also investigated using radiochromic film dosimetry. Various irradiation geometries have been investigated for scanning the prone patient's pendant breast, simulated by a 14 cm-diameter polymethylmethacrylate cylindrical phantom containing pieces of calibrated radiochromic film type XR-QA2. Films were inserted mid-plane in the phantom, as well as wrapped around its external surface, and irradiated at 38 keV, with an air kerma value that would produce an estimated mean glandular dose of 5 mGy for a 14 cm-diameter 50% glandular breast. Axial scans were performed over a full rotation or over 180°. The results point out that a scheme adopting a stepped rotation irradiation represents the best geometry to optimize the dose distribution to the breast. The feasibility of using a piece of calibrated radiochromic film wrapped around a suitable holder around the breast to monitor the scan dose offline is demonstrated.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Dosimetria Fotográfica , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Feminino , Humanos , Itália , Doses de Radiação , Síncrotrons
3.
J Synchrotron Radiat ; 26(Pt 2): 510-516, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30855262

RESUMO

In the case of single-distance propagation-based phase-contrast X-ray computed tomography with synchrotron radiation, the conventional reconstruction pipeline includes an independent 2D phase retrieval filtering of each acquired projection prior to the actual reconstruction. In order to compensate for the limited height of the X-ray beam or the small sensitive area of most modern X-ray photon-counting detectors, it is quite common to image large objects with a multi-stage approach, i.e. several acquisitions at different vertical positions of the sample. In this context, the conventional reconstruction pipeline may introduce artifacts at the margins of each vertical stage. This article presents a modified computational protocol where a post-reconstruction 3D volume phase retrieval is applied. By comparing the conventional 2D and the proposed 3D reconstructions of a large mastectomy specimen (9 cm in diameter and 3 cm in height), it is here shown that the 3D approach compensates for the multi-stage artifacts, it avoids refined projection stitching, and the image quality in terms of spatial resolution, contrast and contrast-to-noise ratio is preserved.

4.
J Synchrotron Radiat ; 26(Pt 4): 1343-1353, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31274463

RESUMO

Breast computed tomography (BCT) is an emerging application of X-ray tomography in radiological practice. A few clinical prototypes are under evaluation in hospitals and new systems are under development aiming at improving spatial and contrast resolution and reducing delivered dose. At the same time, synchrotron-radiation phase-contrast mammography has been demonstrated to offer substantial advantages when compared with conventional mammography. At Elettra, the Italian synchrotron radiation facility, a clinical program of phase-contrast BCT based on the free-space propagation approach is under development. In this paper, full-volume breast samples imaged with a beam energy of 32 keV delivering a mean glandular dose of 5 mGy are presented. The whole acquisition setup mimics a clinical study in order to evaluate its feasibility in terms of acquisition time and image quality. Acquisitions are performed using a high-resolution CdTe photon-counting detector and the projection data are processed via a phase-retrieval algorithm. Tomographic reconstructions are compared with conventional mammographic images acquired prior to surgery and with histologic examinations. Results indicate that BCT with monochromatic beam and free-space propagation phase-contrast imaging provide relevant three-dimensional insights of breast morphology at clinically acceptable doses and scan times.


Assuntos
Mamografia/métodos , Microscopia de Contraste de Fase/métodos , Microtomografia por Raio-X/métodos , Compostos de Cádmio/química , Feminino , Humanos , Síncrotrons , Telúrio/química
5.
J Synchrotron Radiat ; 25(Pt 4): 1068-1077, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29979168

RESUMO

Large-area CdTe single-photon-counting detectors are becoming more and more attractive in view of low-dose imaging applications due to their high efficiency, low intrinsic noise and absence of a scintillating screen which affects spatial resolution. At present, however, since the dimensions of a single sensor are small (typically a few cm2), multi-module architectures are needed to obtain a large field of view. This requires coping with inter-module gaps and with close-to-edge pixels, which generally show a non-optimal behavior. Moreover, high-Z detectors often show gain variations in time due to charge trapping: this effect is detrimental especially in computed tomography (CT) applications where a single tomographic image requires hundreds of projections continuously acquired in several seconds. This work has been carried out at the SYRMEP beamline of the Elettra synchrotron radiation facility (Trieste, Italy), in the framework of the SYRMA-3D project, which aims to perform the world's first breast-CT clinical study with synchrotron radiation. An ad hoc data pre-processing procedure has been developed for the PIXIRAD-8 CdTe single-photon-counting detector, comprising an array of eight 30.7 mm × 24.8 mm modules tiling a 246 mm × 25 mm sensitive area, which covers the full synchrotron radiation beam. The procedure consists of five building blocks, namely dynamic flat-fielding, gap seaming, dynamic ring removal, projection despeckling and around-gap equalization. Each block is discussed and compared, when existing, with conventional approaches. The effectiveness of the pre-processing is demonstrated for phase-contrast CT images of a human breast specimen. The dynamic nature of the proposed procedure, which provides corrections dependent upon the projection index, allows the effective removal of time-dependent artifacts, preserving the main image features including phase effects.

6.
Nanomedicine ; 10(8): 1821-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24954384

RESUMO

The use of alginate based microcapsules to deliver drugs and cells with a minimal host interaction is increasingly being proposed. A proficient method to track the position of the microcapsules during such therapies, particularly if they are amenable to commonly used instrumentation, would greatly help the development of such treatments. Here we propose to label the microcapsules with gold nanoparticles to provide a bright contrast on small animal x-ray micro-CT systems enabling single microcapsule detection. The microcapsules preparation is based on a simple protocol using inexpensive compounds. This, combined with the widespread availability of micro-CT apparatus, renders our method more accessible compared with other methods. Our labeled microcapsules showed good mechanical stability and low cytotoxicity in-vitro. Our post-mortem rodent model data strongly suggest that the high signal intensity generated by the labeled microcapsules permits the use of a reduced radiation dose yielding a method fully compatible with longitudinal in-vivo studies. FROM THE CLINICAL EDITOR: The authors of this study report the development of a micro-CT based tracking method of alginate-based microcapsules by incorporating gold nanoparticles in the microcapsules. They demonstrate the feasibility of this system in rodent models, where due to the high signal intensity, even reduced radiation dose is sufficient to track these particles, providing a simple and effective method to track these commonly used microcapsules and allowing longitudinal studies.


Assuntos
Alginatos/química , Cápsulas/química , Ouro/química , Nanopartículas Metálicas/química , Animais , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Tomografia Computadorizada por Raios X
7.
Phys Med Biol ; 69(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38471186

RESUMO

Following the rapid, but independent, diffusion of x-ray spectral and phase-contrast systems, this work demonstrates the first combination of spectral and phase-contrast computed tomography (CT) obtained by using the edge-illumination technique and a CdTe small-pixel (62µm) spectral detector. A theoretical model is introduced, starting from a standard attenuation-based spectral decomposition and leading to spectral phase-contrast material decomposition. Each step of the model is followed by quantification of accuracy and sensitivity on experimental data of a test phantom containing different solutions with known concentrations. An example of a micro CT application (20µm voxel size) on an iodine-perfusedex vivomurine model is reported. The work demonstrates that spectral-phase contrast combines the advantages of spectral imaging, i.e. high-Zmaterial discrimination capability, and phase-contrast imaging, i.e. soft tissue sensitivity, yielding simultaneously mass density maps of water, calcium, and iodine with an accuracy of 1.1%, 3.5%, and 1.9% (root mean square errors), respectively. Results also show a 9-fold increase in the signal-to-noise ratio of the water channel when compared to standard spectral decomposition. The application to the murine model revealed the potential of the technique in the simultaneous 3D visualization of soft tissue, bone, and vasculature. While being implemented by using a broad spectrum (pink beam) at a synchrotron radiation facility (Elettra, Trieste, Italy), the proposed experimental setup can be readily translated to compact laboratory systems including conventional x-ray tubes.


Assuntos
Compostos de Cádmio , Iodo , Pontos Quânticos , Camundongos , Animais , Iluminação , Fótons , Telúrio , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas
8.
Opt Express ; 21(16): 19401-11, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23938856

RESUMO

A three-image method to extract absorption, refraction and scattering information for hard x-ray grating interferometry is presented. The method comprises a post-processing approach alternative to the conventional phase stepping procedure and is inspired by a similar three-image technique developed for analyzer-based x-ray imaging. Results obtained with this algorithm are quantitatively comparable with phase-stepping. This method can be further extended to samples with negligible scattering, where only two images are needed to separate absorption and refraction signal. Thanks to the limited number of images required, this technique is a viable route to bio-compatible imaging with x-ray grating interferometer. In addition our method elucidates and strengthens the formal and practical analogies between grating interferometry and the (non-interferometric) diffraction enhanced imaging technique.


Assuntos
Algoritmos , Interferometria , Fenômenos Ópticos , Absorção , Animais , Osso e Ossos/anatomia & histologia , Bovinos , Raios X
9.
Opt Express ; 21(1): 647-61, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23388958

RESUMO

We present a quantitative, non-interferometric, X-ray differential phase contrast imaging technique based on the edge illumination principle. We derive a novel phase retrieval algorithm which requires only two images to be acquired and verify the technique experimentally using synchrotron radiation. The technique is useful for planar imaging but is expected to be important for quantitative phase tomography also. The properties and limitations of the technique are studied in detail.

10.
Appl Opt ; 52(28): 6940-7, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24085208

RESUMO

We derive a Fourier formulation of coded-aperture x-ray phase-contrast imaging, based on the wave theory of optics in the Fresnel approximation. We use this model to develop a flexible, efficient, and general simulation algorithm that can be easily adapted to other implementations of x-ray phase contrast imaging. Likewise, the algorithm enables a simple extension to 2D aperture designs, different acquisition schemes, etc. Problems related to numerical implementation of the algorithm are analyzed in detail, and simple rules are derived that enable us to avoid or at least mitigate them. Finally, comparisons with experimental data and data obtained with a different simulation algorithm are presented to validate the model and demonstrate its advantages in practical implementations. This also enabled us to demonstrate an increase in computational speed of more than one order of magnitude over a previous algorithm.


Assuntos
Algoritmos , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Difração de Raios X/métodos , Difração de Raios X/instrumentação
11.
Sci Rep ; 13(1): 4206, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918574

RESUMO

This paper presents a new flexible compact multi-modal imaging setup referred to as PEPI (Photon-counting Edge-illumination Phase-contrast imaging) Lab, which is based on the edge-illumination (EI) technique and a chromatic detector. The system enables both X-ray phase-contrast (XPCI) and spectral (XSI) imaging of samples on the centimeter scale. This work conceptually follows all the stages in its realization, from the design to the first imaging results. The setup can be operated in four different modes, i.e. photon-counting/conventional, spectral, double-mask EI, and single-mask EI, whereby the switch to any modality is fast, software controlled, and does not require any hardware modification or lengthy re-alignment procedures. The system specifications, ranging from the X-ray tube features to the mask material and aspect ratio, have been quantitatively studied and optimized through a dedicated Geant4 simulation platform, guiding the choice of the instrumentation. The realization of the imaging setup, both in terms of hardware and control software, is detailed and discussed with a focus on practical/experimental aspects. Flexibility and compactness (66 cm source-to-detector distance in EI) are ensured by dedicated motion stages, whereas spectral capabilities are enabled by the Pixirad-1/Pixie-III detector in combination with a tungsten anode X-ray source operating in the range 40-100 kVp. The stability of the system, when operated in EI, has been verified, and drifts leading to mask misalignment of less than 1 [Formula: see text]m have been measured over a period of 54 h. The first imaging results, one for each modality, demonstrate that the system fulfills its design requirements. Specifically, XSI tomographic images of an iodine-based phantom demonstrate the system's quantitativeness and sensibility to concentrations in the order of a few mg/ml. Planar XPCI images of a carpenter bee specimen, both in single and double-mask modes, demonstrate that refraction sensitivity (below 0.6 [Formula: see text]rad in double-mask mode) is comparable with other XPCI systems based on microfocus sources. Phase CT capabilities have also been tested on a dedicated plastic phantom, where the phase channel yielded a 15-fold higher signal-to-noise ratio with respect to attenuation.

12.
J Synchrotron Radiat ; 19(Pt 5): 836-45, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22898966

RESUMO

Synchrotron-radiation computed tomography has been applied in many research fields. Here, PITRE (Phase-sensitive X-ray Image processing and Tomography REconstruction) and PITRE_BM (PITRE Batch Manager) are presented. PITRE supports phase retrieval for propagation-based phase-contrast imaging/tomography (PPCI/PPCT), extracts apparent absorption, refractive and scattering information of diffraction enhanced imaging (DEI), and allows parallel-beam tomography reconstruction for conventional absorption CT data and for PPCT phase retrieved and DEI-CT extracted information. PITRE_BM is a batch processing manager for PITRE: it executes a series of tasks, created via PITRE, without manual intervention. Both PITRE and PITRE_BM are coded in Interactive Data Language (IDL), and have a user-friendly graphical user interface. They are freeware and can run on Microsoft Windows systems via IDL Virtual Machine, which can be downloaded for free and does not require a license. The data-processing principle and some examples of application will be presented.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Software , Tomografia Computadorizada por Raios X/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
13.
Radiology ; 259(3): 684-94, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21436089

RESUMO

PURPOSE: To prospectively evaluate the diagnostic contribution of mammography with synchrotron radiation in patients with questionable or suspicious breast abnormalities identified at combined digital mammography (DM) and ultrasonography (US). MATERIALS AND METHODS: The ethics committee approved this prospective study, and written informed consent was obtained from all patients. Mammography with synchrotron radiation was performed with a phase-detection technique at a synchrotron radiation laboratory. Forty-nine women who met at least one of the inclusion criteria (palpable mass, focal asymmetry, architectural distortion, or equivocal or suspicious mass at DM; none clarified at US) were enrolled. Forty-seven women (mean age, 57.8 years ± 8.8 [standard deviation]; age range, 43-78 years) completed the study protocol, which involved biopsy or follow-up for 1 year as the reference standard. Breast Imaging Reporting and Data System (BI-RADS) scores of 1-3 were considered to indicate a negative result, while scores 4-5 were considered to indicate a positive result. The visibility of breast abnormalities and the glandular parenchymal structure at DM and at mammography with synchrotron radiation was compared by using the Wilcoxon signed rank test. RESULTS: In 29 of the 31 patients with a final diagnosis of benign entity, mammography with synchrotron radiation yielded BI-RADS scores of 1-3. In 13 of the remaining 16 patients with a final diagnosis of malignancy, mammography with synchrotron radiation yielded BI-RADS scores of 4-5. Therefore, a sensitivity of 81% (13 of 16 patients) and a specificity of 94% (29 of 31 patients) were achieved with use of the described BI-RADS dichotomization system. CONCLUSION: These study results suggest that mammography with synchrotron radiation can be used to clarify cases of questionable or suspicious breast abnormalities identified at DM. SUPPLEMENTAL MATERIAL: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11100745/-/DC1.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mamografia/métodos , Síncrotrons , Adulto , Idoso , Biópsia , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Doses de Radiação , Sensibilidade e Especificidade , Estatísticas não Paramétricas
14.
Nanomedicine ; 7(5): 647-54, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21333753

RESUMO

The ability to track cells in small-animal models of human disease is important because it gives the potential to improve our understanding of the processes of disease progression as well as our understanding of the therapeutic effects of interventions. In this study gold nanoparticles have been used as a permanent marker of implanted normal and malignant cell grafts in combination with a suitable x-ray apparatus. Using x-ray computed tomography the micrometric three-dimensional distribution of these marked cells could be displayed with penetration depth, high cell sensitivity and high spatial resolution in rodent models of human diseases. In principle the method allows quantification of cell numbers at any anatomical location over time in small animals.


Assuntos
Rastreamento de Células/métodos , Ouro/química , Nanopartículas Metálicas/química , Coloração e Rotulagem/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular , Células Cultivadas , Modelos Animais de Doenças , Cabeça/diagnóstico por imagem , Humanos , Células-Tronco Mesenquimais/diagnóstico por imagem , Ratos , Ratos Wistar
15.
Med Phys ; 48(9): 5343-5355, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34252212

RESUMO

PURPOSE: The SYRMA-3D collaboration is setting up a breast computed tomography (bCT) clinical program at the Elettra synchrotron radiation facility in Trieste, Italy. Unlike the few dedicated scanners available at hospitals, synchrotron radiation bCT requires the patient's rotation, which in turn implies a long scan duration (from tens of seconds to few minutes). At the same time, it allows the achievement of high spatial resolution. These features make synchrotron radiation bCT prone to motion artifacts. This article aims at assessing and compensating for motion artifacts through an optical tracking approach. METHODS: In this study, patients' movements due to breathing have been first assessed on seven volunteers and then simulated during the CT scans of a breast phantom and a surgical specimen, by adding a periodic oscillatory motion (constant speed, 1 mm amplitude, 12 cycles/minute). CT scans were carried out at 28 keV with a mean glandular dose of 5 mGy. Motion artifacts were evaluated and a correction algorithm based on the optical tracking of fiducial marks was introduced. A quantitative analysis based on the structural similarity (SSIM) index and the normalized mean square error (nMSE) was performed on the reconstructed CT images. RESULTS: CT images reconstructed through the optical tracking procedure were found to be as good as the motionless reference image. Moreover, the analysis of SSIM and nMSE demonstrated that an uncorrected motion of the order of the system's point spread function (around 0.1 mm in the present case) can be tolerated. CONCLUSIONS: Results suggest that a motion correction procedure based on an optical tracking system would be beneficial in synchrotron radiation bCT.


Assuntos
Artefatos , Síncrotrons , Algoritmos , Mama/diagnóstico por imagem , Mama/cirurgia , Humanos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X
16.
Med Phys ; 37(7): 3817-27, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20831090

RESUMO

PURPOSE: In the past decade, phase-contrast imaging (PCI) has been applied to study different kinds of tissues and human body parts, with an increased improvement of the image quality with respect to simple absorption radiography. A technique closely related to PCI is phase-retrieval imaging (PRI). Indeed, PCI is an imaging modality thought to enhance the total contrast of the images through the phase shift introduced by the object (human body part); PRI is a mathematical technique to extract the quantitative phase-shift map from PCI. A new phase-retrieval algorithm for the in-line phase-contrast x-ray imaging is here proposed. METHODS: The proposed algorithm is based on a mixed transfer-function and transport-of-intensity approach (MA) and it requires, at most, an initial approximate estimate of the average phase shift introduced by the object as prior knowledge. The accuracy in the initial estimate determines the convergence speed of the algorithm. The proposed algorithm retrieves both the object phase and its complex conjugate in a combined MA (CMA). RESULTS: Although slightly less computationally effective with respect to other mixed-approach algorithms, as two phases have to be retrieved, the results obtained by the CMA on simulated data have shown that the obtained reconstructed phase maps are characterized by particularly low normalized mean square errors. The authors have also tested the CMA on noisy experimental phase-contrast data obtained by a suitable weakly absorbing sample consisting of a grid of submillimetric nylon fibers as well as on a strongly absorbing object made of a 0.03 mm thick lead x-ray resolution star pattern. The CMA has shown a good efficiency in recovering phase information, also in presence of noisy data, characterized by peak-to-peak signal-to-noise ratios down to a few dBs, showing the possibility to enhance with phase radiography the signal-to-noise ratio for features in the submillimetric scale with respect to the attenuation-based imaging. CONCLUSIONS: It has been shown that phase-retrieved radiographies can be used both to have quantitative phase information about soft tissues, complementary to the attenuation information, and to enhance the visibility of details inside soft tissues, with higher efficiency with respect to phase radiography.


Assuntos
Algoritmos , Absorção , Humanos , Processamento de Imagem Assistida por Computador , Raios X
17.
Sci Rep ; 10(1): 17430, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060795

RESUMO

Breast Computed Tomography (bCT) is a three-dimensional imaging technique that is raising interest among radiologists as a viable alternative to mammographic planar imaging. In X-rays imaging it would be desirable to maximize the capability of discriminating different tissues, described by the Contrast to Noise Ratio (CNR), while minimizing the dose (i.e. the radiological risk). Both dose and CNR are functions of the X-ray energy. This work aims at experimentally investigating the optimal energy that, at fixed dose, maximizes the CNR between glandular and adipose tissues. Acquisitions of both tissue-equivalent phantoms and actual breast specimens have been performed with the bCT system implemented within the Syrma-3D collaboration at the Syrmep beamline of the Elettra synchrotron (Trieste). The experimental data have been also compared with analytical simulations and the results are in agreement. The CNR is maximized at energies around 26-28 keV. These results are in line with the outcomes of a previously presented simulation study which determined an optimal energy of 28 keV for a large set of breast phantoms with different diameters and glandular fractions. Finally, a study on photon starvation has been carried out to investigate how far the dose can be reduced still having suitable images for diagnostics.


Assuntos
Mamografia/métodos , Síncrotrons , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Simulação por Computador , Feminino , Humanos , Imagens de Fantasmas
18.
Phys Med Biol ; 65(5): 055016, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-31995530

RESUMO

K-edge subtraction (KES) imaging is a technique able to map a specific element such as e.g. a contrast agent within the tissues, by exploiting the sharp rise of its absorption coefficient at the K-edge energy. Whereas mainly explored at synchrotron radiation sources, the energy discrimination properties of modern x-ray photon counting detectors (XPCDs) pave the way for an implementation of single-shot KES imaging with conventional polychromatic sources. In this work we present an x-ray CT imaging system based on the innovative Pixie-III detector and discrete reconstruction. The results reported here show that a reliable automatic localization of Barium (above a certain concentration) is possible with a few dozens of tomographic projections for a volume having an axial slice of 512 [Formula: see text] 512 pixels. The final application is a routine high-fidelity 3D mapping of a specific element ready for further morphological quantification by means of x-ray CT with potential promising applications in vivo.


Assuntos
Neoplasias da Mama/patologia , Processamento de Imagem Assistida por Computador/métodos , Fótons , Síncrotrons/instrumentação , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos , Animais , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Camundongos , Células Tumorais Cultivadas , Raios X , Ensaios Antitumorais Modelo de Xenoenxerto
19.
J Med Imaging (Bellingham) ; 6(3): 031402, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30525064

RESUMO

A program devoted to performing the first in vivo synchrotron radiation (SR) breast computed tomography (BCT) is ongoing at the Elettra facility. Using the high spatial coherence of SR, phase-contrast (PhC) imaging techniques can be used. The latest high-resolution BCT acquisitions of breast specimens, obtained with the propagation-based PhC approach, are herein presented as part of the SYRMA-3D collaboration effort toward the clinical exam. Images are acquired with a 60 - µ m pixel dead-time-free single-photon-counting CdTe detector. The samples are imaged at 32 and 38 keV in a continuous rotating mode, delivering 5 to 20 mGy of mean glandular dose. Contrast-to-noise ratio (CNR) and spatial resolution performances are evaluated for both PhC and phase-retrieved images, showing that by applying the phase-retrieval algorithm a five-time CNR increase can be obtained with a minor loss in spatial resolution across soft tissue interfaces. It is shown that, despite having a poorer CNR, PhC images can provide a sharper visualization of microcalcifications, thus being complementary to phase-retrieved images. Furthermore, the first full-volume scan of a mastectomy sample ( 9 × 9 × 3 cm 3 ) is reported. This investigation into surgical specimens indicates that SR BCT in terms of CNR, spatial resolution, scan duration, and scan volume is feasible.

20.
Phys Med Biol ; 64(15): 155011, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31234148

RESUMO

A quantitative characterization of the soft tissues composing the human breast is achieved by means of a monochromatic CT phase-contrast imaging system, through accurate measurements of their attenuation coefficients within the energy range of interest for breast CT clinical examinations. Quantitative measurements of linear attenuation coefficients are performed on tomographic reconstructions of surgical samples, using monochromatic x-ray beams from a synchrotron source and a free space propagation setup. An online calibration is performed on the obtained reconstructions, in order to reassess the validity of the standard calibration procedure of the CT scanner. Three types of healthy tissues (adipose, glandular, and skin) and malignant tumors, when present, are considered from each sample. The measured attenuation coefficients are in very good agreement with the outcomes of similar studies available in the literature, although they span an energy range that was mostly neglected in the previous studies. No globally significant differences are observed between healthy and malignant dense tissues, although the number of considered samples does not appear sufficient to address the issue of a quantitative differentiation of tumors. The study assesses the viability of the proposed methodology for the measurement of linear attenuation coefficients, and provides a denser sampling of attenuation data in the energy range useful to breast CT.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Mama/patologia , Feminino , Humanos , Síncrotrons , Tomógrafos Computadorizados , Tomografia Computadorizada por Raios X/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA