Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 145(6)2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29490985

RESUMO

The molecular clock plays key roles in daily physiological functions, development and cancer. Period 2 (PER2) is a repressive element, which inhibits transcription activated by positive clock elements, resulting in diurnal cycling of genes. However, there are gaps in our understanding of the role of the clock in normal development outside of its time-keeping function. Here, we show that PER2 has a noncircadian function that is crucial to mammalian mammary gland development. Virgin Per2-deficient mice, Per2-/- , have underdeveloped glands, containing fewer bifurcations and terminal ducts than glands of wild-type mice. Using a transplantation model, we show that these changes are intrinsic to the gland and further identify changes in cell fate commitment. Per2-/- mouse mammary glands have a dual luminal/basal phenotypic character in cells of the ductal epithelium. We identified colocalization of E-cadherin and keratin 14 in luminal cells. Similar results were demonstrated using MCF10A and shPER2 MCF10A human cell lines. Collectively this study reveals a crucial noncircadian function of PER2 in mammalian mammary gland development, validates the Per2-/- model, and describes a potential role for PER2 in breast cancer.


Assuntos
Glândulas Mamárias Animais/crescimento & desenvolvimento , Proteínas Circadianas Period/metabolismo , Animais , Ritmo Circadiano/genética , Células Epiteliais/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Glândulas Mamárias Animais/metabolismo , Camundongos , Organogênese , Reação em Cadeia da Polimerase em Tempo Real
2.
Biol Reprod ; 103(6): 1186-1198, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32902612

RESUMO

Transforming growth factor beta (TGFß) signaling regulates multifaceted reproductive processes. It has been shown that the type 1 receptor of TGFß (TGFBR1) is indispensable for female reproductive tract development, implantation, placental development, and fertility. However, the role of TGFß signaling in decidual development and function remains poorly defined. Our objective is to determine the impact of uterine-specific deletion of Tgfbr1 on decidual integrity, with a focus on the cellular and molecular properties of the decidua during development. Our results show that the developmental dynamics of the decidua is altered in TGFBR1 conditionally depleted uteri from embryonic day (E) 5.5 to E8.5, substantiated by downregulation of genes associated with inflammatory responses and uterine natural killer cell abundance, reduced presence of nondecidualized fibroblasts in the antimesometrial region, and altered decidual cell development. Notably, conditional ablation of TGFBR1 results in the formation of decidua containing more abundant alpha smooth muscle actin (ACTA2)-positive cells at the peripheral region of the antimesometrial side versus controls at E6.5-E8.5. This finding is corroborated by upregulation of a subset of smooth muscle marker genes in Tgfbr1 conditionally deleted decidua at E6.5 and E8.5. Moreover, increased cell proliferation and enhanced decidual ERK1/2 signaling were found in Tgfbr1 conditional knockout mice upon decidual regression. In summary, conditional ablation of TGFBR1 in the uterus profoundly impacts the cellular and molecular properties of the decidua. Our results suggest that TGFBR1 in uterine epithelial and stromal compartments is important for the integrity of the decidua, a transient but crucial structure that supports embryo development.


Assuntos
Regulação da Expressão Gênica/fisiologia , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proliferação de Células , Endométrio/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Knockout , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Regulação para Cima , Útero
3.
Am J Pathol ; 189(6): 1212-1225, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30954472

RESUMO

Normal proliferation and differentiation of uterine epithelial cells are critical for uterine development and function. Enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2), a core component of polycomb repressive complexes 2, possesses histone methyltransferase activity that catalyzes the trimethylation of lysine 27 of histone H3. EZH2 has been involved in epithelial-mesenchymal transition, a key event in development and carcinogenesis. However, its role in uterine epithelial cell function remains unknown. To determine the role of uterine EZH2, Ezh2 was conditionally deleted using progesterone receptor Cre recombinase, which is expressed in both epithelial and mesenchymal compartments of the uterus. Loss of EZH2 promoted stratification of uterine epithelium, an uncommon and detrimental event in the uterus. The abnormal epithelium expressed basal cell markers, including tumor protein 63, cytokeratin 5 (KRT5), KRT6A, and KRT14. These results suggest that EZH2 serves as a guardian of uterine epithelial integrity, partially via inhibiting the differentiation of basal-like cells and preventing epithelial stratification. The observed epithelial abnormality was accompanied by fertility defects, altered uterine growth and function, and the development of endometrial hyperplasia. Thus, the Ezh2 conditional knockout mouse model may be useful to explore mechanisms that regulate endometrial homeostasis and uterine function.


Assuntos
Hiperplasia Endometrial/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epitélio/metabolismo , Útero/metabolismo , Animais , Hiperplasia Endometrial/genética , Hiperplasia Endometrial/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Epitélio/patologia , Feminino , Queratinas/genética , Queratinas/metabolismo , Camundongos , Camundongos Transgênicos , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Transativadores/genética , Transativadores/metabolismo , Útero/patologia
4.
Breast Cancer Res ; 21(1): 125, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31775907

RESUMO

BACKGROUND: Mutations in genes associated with homologous recombination (HR) increase an individual's risk of developing triple-negative breast cancer (TNBC). Although known for their role in repairing dsDNA breaks, HR repair elements also stabilize and restart stalled replication forks. Essential to these functions are RAD51 and its paralogs, each of which has a unique role in preventing replication fork collapse and restart. However, progress toward understanding the regulation of these factors has been slow. With such a pivotal role in the maintenance of genomic integrity, furthering our understanding of this pathway through the discovery of new factors involved in HR is important. Recently, we showed that singleminded-2s (SIM2s) is stabilized in response to dsDNA breaks and is required for effective HR. METHODS: Initial analysis of the effect loss of SIM2s has on replication stress resolution was conducted using DNA combing assays in established breast cancer cell lines. Further analysis was conducted via immunostaining to determine the effect loss of SIM2s has on factor recruitment. In vivo confirmation was achieved through the use of a mammary epithelial cell conditional knockout mouse model before SIM2s' role in RAD51 recruitment was determined by immunoblotting. RESULTS: Here, we show loss of SIM2s decreases replication fork stability, leading to fork collapse in response to genotoxic stress. Furthermore, loss of SIM2s results in aberrant separation of sister chromatids during mitosis, which has been previously shown to result in chromosomal fragmentation and aneuploidy. Interestingly, loss of SIM2s was shown to result in failure of RAD51 to localize to sites of replication stress in both breast cancer cell lines and primary mammary epithelial cells. Finally, we observed SIM2 is stabilized in response to genotoxic stress and interacts with RAD51, which is necessary for RAD51-DNA binding. CONCLUSIONS: Together, these results show a role for SIM2s in the resolution of replication stress and further characterize the necessity of SIM2s for effective RAD51 loading in response to DNA damage or stress, ultimately promoting genomic integrity and thus preventing the accumulation of cancer-promoting mutations.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Replicação do DNA , Rad51 Recombinase/metabolismo , Estresse Fisiológico , Animais , Linhagem Celular Tumoral , Cromossomos/genética , Cromossomos/metabolismo , Dano ao DNA , Reparo do DNA , Células Epiteliais/metabolismo , Instabilidade Genômica , Histonas/metabolismo , Humanos , Camundongos , Ligação Proteica , Origem de Replicação
5.
Mamm Genome ; 29(9-10): 632-655, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30073618

RESUMO

The breast-feeding neonate depends on mother's milk for both macronutrients and micronutrients including minerals. The goals of the present study were to document the effects of genetic background in mice on milk concentrations of select minerals and to use genome-wide association study (GWAS) to identify quantitative trait loci (QTL) regulating milk mineral concentrations. Milk samples from lactating mice in each of 31 different inbred strains of the mouse diversity panel (MDP) were analyzed by inductively coupled plasma-optical emission spectroscopy to determine the concentrations of calcium (Ca), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), sodium (Na), phosphorus (P), sulfur (S), and zinc (Zn). GWAS identified a single pleiotropic milk mineral concentration QTL (Mmcq) on chromosome 3 for Ca, Mg, and P. For the remaining minerals, six QTL were detected for Fe, four for K, three for Zn, and one for S. Intersecting the Mmcq with published chromatin immunoprecipitation sequence data identified 15 out of 4633 high-linkage disequilibrium single-nucleotide polymorphisms that resided in signal transducer and activation of transcription 5 (STAT5) binding regions. A milk Fe-associated locus (Mmcq9) on chromosome 1 contained an SNP that localized to a STAT5 binding region and intersected with a HOMER motif predicted to bind the transcriptional regulator E74-Like ETS transcription factor 5. This locus also contained the genes for solute carrier family (Slc) members Slc9a2, Slc9a4, Slc39a10, and Slc40a1. Expression analysis of these transporters supports the conclusion that Slc9a2 and Slc40a1 within the mammary gland could mediate the effect of Mmcq9 on milk Fe concentration.


Assuntos
Proteínas de Transporte de Cátions/genética , Mapeamento Cromossômico , Ferro/metabolismo , Lactação/genética , Leite/química , Locos de Características Quantitativas/genética , Trocadores de Sódio-Hidrogênio/genética , Animais , Sítios de Ligação/genética , Simulação por Computador , Feminino , Expressão Gênica , Estudo de Associação Genômica Ampla , Ferro/análise , Desequilíbrio de Ligação , Camundongos , Leite/metabolismo , Minerais/análise , Minerais/metabolismo , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/metabolismo
6.
Mamm Genome ; 29(1-2): 24-37, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29487996

RESUMO

Breast cancer risk is intimately intertwined with exposure to estrogens. While more than 160 breast cancer risk loci have been identified in humans, genetic interactions with estrogen exposure remain to be established. Strains of rodents exhibit striking differences in their responses to endogenous ovarian estrogens (primarily 17ß-estradiol). Similar genetic variation has been observed for synthetic estrogen agonists (ethinyl estradiol) and environmental chemicals that mimic the actions of estrogens (xenoestrogens). This review of literature highlights the extent of variation in responses to estrogens among strains of rodents and compiles the genetic loci underlying pathogenic effects of excessive estrogen signaling. Genetic linkage studies have identified a total of the 35 quantitative trait loci (QTL) affecting responses to 17ß-estradiol or diethylstilbestrol in five different tissues. However, the QTL appear to act in a tissue-specific manner with 9 QTL affecting the incidence or latency of mammary tumors induced by 17ß-estradiol or diethylstilbestrol. Mammary gland development during puberty is also exquisitely sensitive to the actions of endogenous estrogens. Analysis of mammary ductal growth and branching in 43 strains of inbred mice identified 20 QTL. Regions in the human genome orthologous to the mammary development QTL harbor loci associated with breast cancer risk or mammographic density. The data demonstrate extensive genetic variation in regulation of estrogen signaling in rodent mammary tissues that alters susceptibility to tumors. Genetic variants in these pathways may identify a subset of women who are especially sensitive to either endogenous estrogens or environmental xenoestrogens and render them at increased risk of breast cancer.


Assuntos
Neoplasias da Mama/genética , Estrogênios/genética , Neoplasias Mamárias Animais/genética , Locos de Características Quantitativas/genética , Animais , Neoplasias da Mama/patologia , Estradiol/genética , Estradiol/metabolismo , Feminino , Predisposição Genética para Doença , Variação Genética , Humanos , Glândulas Mamárias Humanas/metabolismo , Neoplasias Mamárias Animais/patologia , Camundongos , Fatores de Risco
7.
Mamm Genome ; 26(1-2): 57-79, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25552398

RESUMO

Genetic background plays a dominant role in mammary gland development and breast cancer (BrCa). Despite this, the role of genetics is only partially understood. This study used strain-dependent variation in an inbred mouse mapping panel, to identify quantitative trait loci (QTL) underlying structural variation in mammary ductal development, and determined if these QTL correlated with genomic intervals conferring BrCa susceptibility in humans. For about half of the traits, developmental variation among the complete set of strains in this study was greater (P < 0.05) than that of previously studied strains, or strains in current common use for mammary gland biology. Correlations were also detected with previously reported variation in mammary tumor latency and metastasis. In-silico genome-wide association identified 20 mammary development QTL (Mdq). Of these, five were syntenic with previously reported human BrCa loci. The most significant (P = 1 × 10(-11)) association of the study was on MMU6 and contained the genes Plxna4, Plxna4os1, and Chchd3. On MMU5, a QTL was detected (P = 8 × 10(-7)) that was syntenic to a human BrCa locus on h12q24.5 containing the genes Tbx3 and Tbx5. Intersection of linked SNP (r(2) > 0.8) with genomic and epigenomic features, and intersection of candidate genes with gene expression and survival data from human BrCa highlighted several for further study. These results support the conclusion that mammary tumorigenesis and normal ductal development are influenced by common genetic factors and that further studies of genetically diverse mice can improve our understanding of BrCa in humans.


Assuntos
Neoplasias da Mama/genética , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos Endogâmicos/genética , Locos de Características Quantitativas/genética , Animais , Neoplasias da Mama/fisiopatologia , Mapeamento Cromossômico , Simulação por Computador , Feminino , Estudo de Associação Genômica Ampla , Técnicas Histológicas , Humanos , Camundongos , Polimorfismo de Nucleotídeo Único/genética , Especificidade da Espécie , Sintenia/genética , Tomografia Óptica
8.
Gigascience ; 132024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38626724

RESUMO

BACKGROUND: The accurate identification of the functional elements in the bovine genome is a fundamental requirement for high-quality analysis of data informing both genome biology and genomic selection. Functional annotation of the bovine genome was performed to identify a more complete catalog of transcript isoforms across bovine tissues. RESULTS: A total of 160,820 unique transcripts (50% protein coding) representing 34,882 unique genes (60% protein coding) were identified across tissues. Among them, 118,563 transcripts (73% of the total) were structurally validated by independent datasets (PacBio isoform sequencing data, Oxford Nanopore Technologies sequencing data, de novo assembled transcripts from RNA sequencing data) and comparison with Ensembl and NCBI gene sets. In addition, all transcripts were supported by extensive data from different technologies such as whole transcriptome termini site sequencing, RNA Annotation and Mapping of Promoters for the Analysis of Gene Expression, chromatin immunoprecipitation sequencing, and assay for transposase-accessible chromatin using sequencing. A large proportion of identified transcripts (69%) were unannotated, of which 86% were produced by annotated genes and 14% by unannotated genes. A median of two 5' untranslated regions were expressed per gene. Around 50% of protein-coding genes in each tissue were bifunctional and transcribed both coding and noncoding isoforms. Furthermore, we identified 3,744 genes that functioned as noncoding genes in fetal tissues but as protein-coding genes in adult tissues. Our new bovine genome annotation extended more than 11,000 annotated gene borders compared to Ensembl or NCBI annotations. The resulting bovine transcriptome was integrated with publicly available quantitative trait loci data to study tissue-tissue interconnection involved in different traits and construct the first bovine trait similarity network. CONCLUSIONS: These validated results show significant improvement over current bovine genome annotations.


Assuntos
Perfilação da Expressão Gênica , Genômica , Bovinos/genética , Animais , Análise de Sequência de RNA , Transcriptoma , Locos de Características Quantitativas , RNA , Isoformas de Proteínas , Anotação de Sequência Molecular
9.
J Mammary Gland Biol Neoplasia ; 17(2): 167-88, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22752723

RESUMO

This paper resulted from a conference entitled "Lactation and Milk: Defining and refining the critical questions" held at the University of Colorado School of Medicine from January 18-20, 2012. The mission of the conference was to identify unresolved questions and set future goals for research into human milk composition, mammary development and lactation. We first outline the unanswered questions regarding the composition of human milk (Section I) and the mechanisms by which milk components affect neonatal development, growth and health and recommend models for future research. Emerging questions about how milk components affect cognitive development and behavioral phenotype of the offspring are presented in Section II. In Section III we outline the important unanswered questions about regulation of mammary gland development, the heritability of defects, the effects of maternal nutrition, disease, metabolic status, and therapeutic drugs upon the subsequent lactation. Questions surrounding breastfeeding practice are also highlighted. In Section IV we describe the specific nutritional challenges faced by three different populations, namely preterm infants, infants born to obese mothers who may or may not have gestational diabetes, and infants born to undernourished mothers. The recognition that multidisciplinary training is critical to advancing the field led us to formulate specific training recommendations in Section V. Our recommendations for research emphasis are summarized in Section VI. In sum, we present a roadmap for multidisciplinary research into all aspects of human lactation, milk and its role in infant nutrition for the next decade and beyond.


Assuntos
Aleitamento Materno , Desenvolvimento Infantil , Lactação , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Glândulas Mamárias Humanas/metabolismo , Leite Humano/metabolismo , Morfogênese , Adulto , Animais , Animais Recém-Nascidos , Pesquisa Biomédica/tendências , Suscetibilidade a Doenças , Feminino , Humanos , Lactente , Recém-Nascido , Intestinos/crescimento & desenvolvimento , Intestinos/microbiologia , Glândulas Mamárias Animais , Doenças Metabólicas/etiologia , Doenças Metabólicas/prevenção & controle , Leite/metabolismo
10.
Cell Death Differ ; 30(6): 1472-1487, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36966227

RESUMO

The functionally differentiated mammary gland adapts to extreme levels of stress from increased demand for energy by activating specific protective mechanisms to support neonatal health. Here, we identify the breast tumor suppressor gene, single-minded 2 s (SIM2s) as a novel regulator of mitophagy, a key component of this stress response. Using tissue-specific mouse models, we found that loss of Sim2 reduced lactation performance, whereas gain (overexpression) of Sim2s enhanced and extended lactation performance and survival of mammary epithelial cells (MECs). Using an in vitro model of MEC differentiation, we observed SIM2s is required for Parkin-mediated mitophagy, which we have previously shown as necessary for functional differentiation. Mechanistically, SIM2s localizes to mitochondria to directly mediate Parkin mitochondrial loading. Together, our data suggest that SIM2s regulates the rapid recycling of mitochondria via mitophagy, enhancing the function and survival of differentiated MECs.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Mitofagia , Camundongos , Feminino , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Células Epiteliais , Modelos Animais de Doenças , Ubiquitina-Proteína Ligases/genética
11.
Exp Mol Med ; 55(5): 1046-1063, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37121978

RESUMO

Dysregulation of cellular metabolism is a hallmark of breast cancer progression and is associated with metastasis and therapeutic resistance. Here, we show that the breast tumor suppressor gene SIM2 promotes mitochondrial oxidative phosphorylation (OXPHOS) using breast cancer cell line models. Mechanistically, we found that SIM2s functions not as a transcription factor but localizes to mitochondria and directly interacts with the mitochondrial respiratory chain (MRC) to facilitate functional supercomplex (SC) formation. Loss of SIM2s expression disrupts SC formation through destabilization of MRC Complex III, leading to inhibition of electron transport, although Complex I (CI) activity is retained. A metabolomic analysis showed that knockout of SIM2s leads to a compensatory increase in ATP production through glycolysis and accelerated glutamine-driven TCA cycle production of NADH, creating a favorable environment for high cell proliferation. Our findings indicate that SIM2s is a novel stabilizing factor required for SC assembly, providing insight into the impact of the MRC on metabolic adaptation and breast cancer progression.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Transporte de Elétrons , Linhagem Celular Tumoral , Fatores de Transcrição/metabolismo
12.
BMC Bioinformatics ; 13: 253, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23020263

RESUMO

BACKGROUND: In previous studies, gene neighborhoods-spatial clusters of co-expressed genes in the genome-have been defined using arbitrary rules such as requiring adjacency, a minimum number of genes, a fixed window size, or a minimum expression level. In the current study, we developed a Gene Neighborhood Scoring Tool (G-NEST) which combines genomic location, gene expression, and evolutionary sequence conservation data to score putative gene neighborhoods across all possible window sizes simultaneously. RESULTS: Using G-NEST on atlases of mouse and human tissue expression data, we found that large neighborhoods of ten or more genes are extremely rare in mammalian genomes. When they do occur, neighborhoods are typically composed of families of related genes. Both the highest scoring and the largest neighborhoods in mammalian genomes are formed by tandem gene duplication. Mammalian gene neighborhoods contain highly and variably expressed genes. Co-localized noisy gene pairs exhibit lower evolutionary conservation of their adjacent genome locations, suggesting that their shared transcriptional background may be disadvantageous. Genes that are essential to mammalian survival and reproduction are less likely to occur in neighborhoods, although neighborhoods are enriched with genes that function in mitosis. We also found that gene orientation and protein-protein interactions are partially responsible for maintenance of gene neighborhoods. CONCLUSIONS: Our experiments using G-NEST confirm that tandem gene duplication is the primary driver of non-random gene order in mammalian genomes. Non-essentiality, co-functionality, gene orientation, and protein-protein interactions are additional forces that maintain gene neighborhoods, especially those formed by tandem duplicates. We expect G-NEST to be useful for other applications such as the identification of core regulatory modules, common transcriptional backgrounds, and chromatin domains. The software is available at http://docpollard.org/software.html.


Assuntos
Mapeamento Cromossômico/métodos , Sequência Conservada/genética , Expressão Gênica/genética , Genoma/genética , Família Multigênica/genética , Animais , Evolução Molecular , Duplicação Gênica/genética , Ordem dos Genes , Genômica/métodos , Humanos , Camundongos , Software
13.
Cells ; 11(5)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35269532

RESUMO

Enhancer of zeste homolog 2 (EZH2), a core component of polycomb repressive complex 2, plays an important role in cancer development. As both oncogenic and tumor suppressive functions of EZH2 have been documented in the literature, the objective of this study is to determine the impact of Ezh2 deletion on the development and progression of endometrial cancer induced by inactivation of phosphatase and tensin homolog (PTEN), a tumor suppressor gene frequently dysregulated in endometrial cancer patients. To this end, we created mice harboring uterine deletion of both Ezh2 and Pten using Cre recombinase driven by the progesterone receptor (Pgr) promoter. Our results showed reduced tumor burden in Ptend/d; Ezh2d/d mice compared with that of Ptend/d mice during early carcinogenesis. The decreased Ki67 index in EZH2 and PTEN-depleted uteri versus that in PTEN-depleted uteri indicated an oncogenic role of EZH2 during early tumor development. However, mice harboring uterine deletion of both Ezh2 and Pten developed unfavorable disease outcome, accompanied by exacerbated epithelial stratification and heightened inflammatory response. The observed effect was non-cell autonomous and mediated by altered immune response evidenced by massive accumulation of intraluminal neutrophils, a hallmark of endometrial carcinoma in Ptend/d; Ezh2d/d mice during disease progression. Hence, these results reveal dual roles of EZH2 in endometrial cancer development.


Assuntos
Neoplasias do Endométrio , Proteína Potenciadora do Homólogo 2 de Zeste , Animais , Carcinogênese/patologia , Modelos Animais de Doenças , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Feminino , Humanos , Camundongos , Complexo Repressor Polycomb 2/genética , Útero/patologia
14.
Physiol Genomics ; 43(8): 381-91, 2011 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-21205870

RESUMO

Growth hormone is one of few pharmacologic agents known to augment milk production in humans. We hypothesized that recombinant human GH (rhGH) increases the expression of cell proliferation and milk protein synthesis genes. Sequential milk and blood samples collected over four days were obtained from five normal lactating women. Following 24 h of baseline milk and blood sampling, rhGH (0.1 mg/kg/day) was administered subcutaneously once daily for 3 days. Gene expression changes were determined by microarray studies utilizing milk fat globule RNA isolated from each milk sample. Following rhGH administration, DNA synthesis and cell cycle genes were induced, while no significant changes were observed in the expression of milk synthesis genes. Expression of glycolysis and citric acid cycle genes were increased by day 4 compared with day 1, while lipid synthesis genes displayed a circadian-like pattern. Cell cycle gene upregulation occurred after a lag of ∼2 days, likely explaining the failure to increase milk production after only 3 days of rhGH treatment. We conclude that rhGH induces expression of cellular proliferation and metabolism genes but does not induce milk protein gene expression, as potential mechanisms for increasing milk production and could account for the known effect of rhGH to increase milk production following 7-10 days.


Assuntos
Glicolipídeos/análise , Glicoproteínas/análise , Hormônio do Crescimento Humano/administração & dosagem , Lactação/efeitos dos fármacos , Lactação/genética , Proteínas do Leite/efeitos dos fármacos , Proteínas do Leite/genética , Adulto , Proteínas de Ciclo Celular/sangue , Proteínas de Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Fator de Crescimento Insulin-Like I/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/metabolismo , Gotículas Lipídicas , Análise em Microsséries/métodos , Proteínas Recombinantes/administração & dosagem
15.
J Mammary Gland Biol Neoplasia ; 15(1): 73-83, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20143138

RESUMO

During the development of tissues, complex programs take place to reach terminally differentiated states with specific gene expression profiles. Epigenetic regulations such as histone modifications and chromatin condensation have been implicated in the short and long-term control of transcription. It has recently been shown that the 3D spatial organization of chromosomes in the nucleus also plays a role in genome function. Indeed, the eukaryotic interphase nucleus contains sub-domains that are characterized by their enrichment in specific factors such as RNA Polymerase II, splicing machineries or heterochromatin proteins which render portions of the genome differentially permissive to gene expression. The positioning of individual genes relative to these sub-domains is thought to participate in the control of gene expression as an epigenetic mechanism acting in the nuclear space. Here, we review what is known about the sub-nuclear organization of mammary epithelial cells in connection with gene expression and epigenetics. Throughout differentiation, global changes in nuclear architecture occur, notably with respect to heterochromatin distribution. The positions of mammary-specific genes relative to nuclear sub-compartments varies in response to hormonal stimulation. The contribution of tissue architecture to cell differentiation in the mammary gland is also seen at the level of nuclear organization, which is sensitive to microenvironmental stimuli such as extracellular matrix signaling. In addition, alterations in nuclear organization are concomitant with immortalization and carcinogenesis. Thus, the fate of cells appears to be controlled by complex pathways connecting external signal integration, gene expression, epigenetic modifications and chromatin organization in the nucleus.


Assuntos
Diferenciação Celular/fisiologia , Núcleo Celular/metabolismo , Epigênese Genética , Glândulas Mamárias Animais/fisiologia , Glândulas Mamárias Humanas/fisiologia , Matriz Nuclear/fisiologia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Matriz Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica , Heterocromatina/metabolismo , Humanos , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Humanas/citologia , Matriz Nuclear/metabolismo
16.
J Mammary Gland Biol Neoplasia ; 15(1): 85-100, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20157770

RESUMO

Most of the development and functional differentiation in the mammary gland occur after birth. Epigenetics is defined as the stable alterations in gene expression potential that arise during development and proliferation. Epigenetic changes are mediated at the biochemical level by the chromatin conformation initiated by DNA methylation, histone variants, post-translational modifications of histones, non-histone chromatin proteins, and non-coding RNAs. Epigenetics plays a key role in development. However, very little is known about its role in the developing mammary gland or how it might integrate the many signalling pathways involved in mammary gland development and function that have been discovered during the past few decades. An inverse relationship between marks of closed (DNA methylation) or open chromatin (DnaseI hypersensitivity, certain histone modifications) and milk protein gene expression has been documented. Recent studies have shown that during development and functional differentiation, both global and local chromatin changes occur. Locally, chromatin at distal regulatory elements and promoters of milk protein genes gains a more open conformation. Furthermore, changes occur both in looping between regulatory elements and attachment to nuclear matrix. These changes are induced by developmental signals and environmental conditions. Additionally, distinct epigenetic patterns have been identified in mammary gland stem and progenitor cell sub-populations. Together, these findings suggest that epigenetics plays a role in mammary development and function. With the new tools for epigenomics developed in recent years, we now can begin to establish a framework for the role of epigenetics in mammary gland development and disease.


Assuntos
Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/fisiologia , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Glândulas Mamárias Humanas/fisiologia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/fisiopatologia , Diferenciação Celular/fisiologia , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Feminino , Histonas/metabolismo , Humanos , RNA não Traduzido/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
17.
Autophagy ; 17(2): 420-438, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-31983267

RESUMO

Mitochondria operate as a central hub for many metabolic processes by sensing and responding to the cellular environment. Developmental cues from the environment have been implicated in selective autophagy, or mitophagy, of mitochondria during cell differentiation and tissue development. Mitophagy occurring in this context, termed programmed mitophagy, responds to cell state rather than mitochondrial damage and is often accompanied by a metabolic transition. However, little is known about the mechanisms that engage and execute mitophagy under physiological or developmental conditions. As the mammary gland undergoes post-natal development and lactation challenges mitochondrial homeostasis, we investigated the contribution of mitochondria to differentiation of mammary epithelial cells (MECs). Using lactogenic differentiation of the HC11 mouse MEC line, we demonstrated that HC11 cells transition to a highly energetic state during differentiation by engaging both oxidative phosphorylation and glycolysis. Interestingly, this transition was lost when autophagy was inhibited with bafilomycin A1 or knockdown of Atg7 (autophagy related 7). To evaluate the specific targeting of mitochondria, we traced mitochondrial oxidation and turnover in vitro with the fluorescent probe, pMitoTimer. Indeed, we found that differentiation engaged mitophagy. To further evaluate the requirement of mitophagy during differentiation, we knocked down the expression of Prkn/parkin in HC11 cells. We found that MEC differentiation was impaired in shPrkn cells, implying that PRKN is required for MEC differentiation. These studies suggest a novel regulation of MEC differentiation through programmed mitophagy and provide a foundation for future studies of development and disease associated with mitochondrial function in the mammary gland.Abbreviations: AA: antimycin A; ATG5: autophagy related 5; BAF: bafilomycin A1; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2 interacting protein 3 like; COX8A: cytochrome c oxidase subunit 8A; CQ: chloroquine; CSN2: casein beta; ECAR: extracellular acidification rate; FCCP: trifluoromethoxy carbonylcyanide phenylhydrazone; FUNDC1: FUN14 domain containing 1; HIF1A: hypoxia inducible factor 1 subunit alpha; L1: lactation day 1; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MEC: mammary epithelial cell; mitoQ: mitoquinol; mROS: mitochondrial reactive oxygen species; OCR: oxygen consumption rate; P: priming; P16: pregnancy day 16; PARP1: poly(ADP-ribose) polymerase 1; PINK1: PTEN induced kinase 1; PPARGC1A: PPARG coactivator 1 alpha; PRKN: parkin RBR E3 ubiquitin protein ligase; shNT: short hairpin non-targeting control; SQSTM1: sequestosome 1; STAT3: signal transducer and activator of transcription 3; TEM: transmission electron microscopy; TFAM: transcription factor A, mitochondrial; U: undifferentiated.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/fisiologia , Diferenciação Celular/fisiologia , Células Epiteliais/metabolismo , Animais , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia/fisiologia , Espécies Reativas de Oxigênio/metabolismo
18.
J Biol Chem ; 284(34): 22815-24, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19542223

RESUMO

Lactogenic hormone regulation of beta-casein gene expression in mammary epithelial cells provides an excellent model in which to study the mechanisms by which steroid and peptide hormone signaling control gene expression. Prolactin- and glucocorticoid-mediated induction of beta-casein gene expression involves two principal regulatory regions, a proximal promoter and a distal enhancer located in the mouse approximately -6 kb upstream of the transcription start site. Using a chromosome conformation capture assay and quantitative real time PCR, we demonstrate that a chromatin loop is created in conjunction with the recruitment of specific transcription factors and p300 in HC11 mammary epithelial cells. Stimulation with both prolactin and hydrocortisone is required for the induction of these long range interactions between the promoter and enhancer, and no DNA looping was observed in nontreated cells or cells treated with each of the hormones separately. The lactogenic hormone-induced interaction between the proximal promoter and distal enhancer was confirmed in hormone-treated primary three-dimensional mammary acini cultures. In addition, the developmental regulation of DNA looping between the beta-casein regulatory regions was observed in lactating but not in virgin mouse mammary glands. Furthermore, beta-casein mRNA induction and long range interactions between these regulatory regions were inhibited in a progestin-dependent manner following stimulation with prolactin and hydrocortisone in HC11 cells expressing human PR-B. Collectively, these data suggest that the communication between these regulatory regions with intervening DNA looping is a crucial step required to both create and maintain active chromatin domains and regulate transcription.


Assuntos
Caseínas/genética , Glucocorticoides/farmacologia , Histona Desacetilases/metabolismo , Prolactina/farmacologia , Fator de Transcrição STAT5/metabolismo , Fator de Transcrição YY1/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem Celular , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Camundongos , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos
19.
Physiol Genomics ; 37(1): 12-22, 2009 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-19018045

RESUMO

The molecular physiology underlying human milk production is largely unknown because of limitations in obtaining tissue samples. Determining gene expression in normal lactating women would be a potential step toward understanding why some women struggle with or fail at breastfeeding their infants. Recently, we demonstrated the utility of RNA obtained from breast milk fat globule (MFG) to detect mammary epithelial cell (MEC)-specific gene expression. We used MFG RNA to determine the gene expression profile of human MEC during lactation. Microarray studies were performed using Human Ref-8 BeadChip arrays (Illumina). MFG RNA was collected every 3 h for 24 h from five healthy, exclusively breastfeeding women. We determined that 14,070 transcripts were expressed and represented the MFG transcriptome. According to GeneSpring GX 9, 156 ontology terms were enriched (corrected P < 0.05), which include cellular (n = 3,379 genes) and metabolic (n = 2,656) processes as the most significantly enriched biological process terms. The top networks and pathways were associated primarily with cellular activities most likely involved with milk synthesis. Multiple sampling over 24 h enabled us to demonstrate core circadian clock gene expression and the periodicity of 1,029 genes (7%) enriched for molecular functions involved in cell development, growth, proliferation, and cell morphology. In addition, we found that the MFG transcriptome was comparable to the metabolic gene expression profile described for the lactating mouse mammary gland. This paper is the first to describe the MFG transcriptome in sequential human samples over a 24 h period, providing valuable insights into gene expression in the human MEC.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glicolipídeos/genética , Glicoproteínas/genética , Lactação/genética , Glândulas Mamárias Humanas/metabolismo , Adolescente , Adulto , Animais , Aleitamento Materno , Análise por Conglomerados , Feminino , Redes Reguladoras de Genes , Humanos , Gotículas Lipídicas , Camundongos , Prolactina/sangue , Software , Fatores de Tempo
20.
Oncogene ; 38(14): 2611-2626, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30531838

RESUMO

There is increasing evidence that genomic instability is a prerequisite for cancer progression. Here we show that SIM2s, a member of the bHLH/PAS family of transcription factors, regulates DNA damage repair through enhancement of homologous recombination (HR), and prevents epithelial-mesenchymal transitions (EMT) in an Ataxia-telangiectasia mutated (ATM)-dependent manner. Mechanistically, we found that SIM2s interacts with ATM and is stabilized through ATM-dependent phosphorylation in response to IR. Once stabilized, SIM2s interacts with BRCA1 and supports RAD51 recruitment to the site of DNA damage. Loss of SIM2s through the introduction of shSIM2 or the mutation of SIM2s at one of the predicted ATM phosphorylation sites (S115) reduces HR efficiency through disruption of RAD51 recruitment, resulting in genomic instability and induction of EMT. The EMT induced by the mutation of S115 is characterized by a decrease in E-cadherin and an induction of the basal marker, K14, resulting in increased invasion and metastasis. Together, these results identify a novel player in the DNA damage repair pathway and provides a link in ductal carcinoma in situ progression to invasive ductal carcinoma through loss of SIM2s, increased genomic instability, EMT, and metastasis.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Transição Epitelial-Mesenquimal/genética , Recombinação Homóloga/genética , Animais , Proteína BRCA1/genética , Caderinas/genética , Carcinoma Intraductal não Infiltrante/genética , Linhagem Celular Tumoral , Dano ao DNA/genética , Reparo do DNA/genética , Feminino , Instabilidade Genômica/genética , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Fosforilação/genética , Rad51 Recombinase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA