Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry ; 52(25): 4413-21, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23763479

RESUMO

Lipid solvation provides the primary driving force for the insertion and folding of integral membrane proteins. Although the structure of the lipid bilayer is often simplified as a central hydrophobic core sandwiched between two hydrophilic interfacial regions, the complexity of the liquid-crystalline bilayer structure and the gradient of water molecules across the bilayer fine-tune the energetic contributions of individual amino acid residues to the stability of membrane proteins at different depths of the bilayer. The tryptophan side chain is particularly interesting because despite its widely recognized role in anchoring membrane proteins in lipid bilayers, there is little consensus about its hydrophobicity among various experimentally determined hydrophobicity scales. Here we investigated how lipid-facing tryptophan residues located at different depths in the bilayer contribute to the stability of integral membrane proteins using outer membrane protein A (OmpA) as a model. We replaced all lipid-contacting residues of the first transmembrane ß-strand of OmpA with alanines and individually incorporated tryptophans in these positions along the strand. By measuring the thermodynamic stability of these proteins, we found that OmpA is slightly more stable when tryptophans are placed in the center of the bilayer and that it is somewhat destabilized as tryptophans approach the interfacial region. However, this trend may be partially reversed when a moderate concentration of urea rather than water is taken as the reference state. The measured stability profiles are driven by similar profiles of the m-value, a parameter that reflects the shielding of hydrophobic surface area from water. Our results indicate that knowledge of the free energy level of the protein's unfolded reference state is important for quantitatively assessing the stability of membrane proteins, which may explain differences in observed profiles between in vivo and in vitro scales.


Assuntos
Proteínas de Membrana/química , Triptofano/química , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Metabolismo Energético/genética , Bicamadas Lipídicas/química , Proteínas de Membrana/genética , Mutagênese Sítio-Dirigida , Dobramento de Proteína , Estabilidade Proteica , Estrutura Secundária de Proteína/genética , Desdobramento de Proteína , Termodinâmica , Triptofano/genética
2.
Structure ; 22(5): 781-90, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24746938

RESUMO

The transmembrane domain of the outer membrane protein A (OmpA) from Escherichia coli is an excellent model for structural and folding studies of ß-barrel membrane proteins. However, full-length OmpA resists crystallographic efforts, and the link between its function and tertiary structure remains controversial. Here we use site-directed mutagenesis and mass spectrometry of different constructs of OmpA, released in the gas phase from detergent micelles, to define the minimal region encompassing the C-terminal dimer interface. Combining knowledge of the location of the dimeric interface with molecular modeling and ion mobility data allows us to propose a low-resolution model for the full-length OmpA dimer. Our model of the dimer is in remarkable agreement with experimental ion mobility data, with none of the unfolding or collapse observed for full-length monomeric OmpA, implying that dimer formation stabilizes the overall structure and prevents collapse of the flexible linker that connects the two domains.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Espectrometria de Massas , Micelas , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína
3.
J Am Chem Soc ; 129(26): 8320-7, 2007 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-17564441

RESUMO

Aromatic residues are frequently found in helical and beta-barrel integral membrane proteins enriched at the membrane-water interface. Although the importance of these residues in membrane protein folding has been rationalized by thermodynamic partition measurements using peptide model systems, their contribution to the stability of bona fide membrane proteins has never been demonstrated. Here, we have investigated the contribution of interfacial aromatic residues to the thermodynamic stability of the beta-barrel outer membrane protein OmpA from Escherichia coli in lipid bilayers by performing extensive mutagenesis and equilibrium folding experiments. Isolated interfacial tryptophanes contribute -2.0 kcal/mol, isolated interfacial tyrosines contribute -2.6 kcal/mol, and isolated interfacial phenylalanines contribute -1.0 kcal/mol to the stability of this protein. These values agree well with the prediction from the Wimley-White interfacial hydrophobicity scale, except for tyrosine residues, which contribute more than has been expected from the peptide models. Double mutant cycle analysis reveals that interactions between aromatic side chains become significant when their centroids are separated by less than 6 A but are nearly insignificant above 7 A. Aromatic-aromatic side chain interactions are on the order of -1.0 to -1.4 kcal/mol and do not appear to depend on the type of aromatic residue. These results suggest that the clustering of aromatic side chains at membrane interfaces provides an additional heretofore not yet recognized driving force for the folding and stability of integral membrane proteins.


Assuntos
Aminoácidos Aromáticos/química , Proteínas da Membrana Bacteriana Externa/química , Dobramento de Proteína , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli/metabolismo , Bicamadas Lipídicas/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Termodinâmica , Ureia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA