Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 288(23): 16800-16814, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23603902

RESUMO

Phytochromes act as photoswitches between the red- and far-red absorbing parent states of phytochromes (Pr and Pfr). Plant phytochromes display an additional thermal conversion route from the physiologically active Pfr to Pr. The same reaction pattern is found in prototypical biliverdin-binding bacteriophytochromes in contrast to the reverse thermal transformation in bathy bacteriophytochromes. However, the molecular origin of the different thermal stabilities of the Pfr states in prototypical and bathy bacteriophytochromes is not known. We analyzed the structures of the chromophore binding pockets in the Pfr states of various bathy and prototypical biliverdin-binding phytochromes using a combined spectroscopic-theoretical approach. For the Pfr state of the bathy phytochrome from Pseudomonas aeruginosa, the very good agreement between calculated and experimental Raman spectra of the biliverdin cofactor is in line with important conclusions of previous crystallographic analyses, particularly the ZZEssa configuration of the chromophore and its mode of covalent attachment to the protein. The highly homogeneous chromophore conformation seems to be a unique property of the Pfr states of bathy phytochromes. This is in sharp contrast to the Pfr states of prototypical phytochromes that display conformational equilibria between two sub-states exhibiting small structural differences at the terminal methine bridges A-B and C-D. These differences may mainly root in the interactions of the cofactor with the highly conserved Asp-194 that occur via its carboxylate function in bathy phytochromes. The weaker interactions via the carbonyl function in prototypical phytochromes may lead to a higher structural flexibility of the chromophore pocket opening a reaction channel for the thermal (ZZE → ZZZ) Pfr to Pr back-conversion.


Assuntos
Proteínas de Bactérias/química , Fitocromo/química , Pseudomonas aeruginosa/química , Sítios de Ligação
2.
J Phys Chem B ; 115(5): 1220-31, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21192668

RESUMO

A homology structural model was generated for plant phytochrome phyA utilizing the crystal structure of the sensory module of cyanobacterial phytochrome Cph1 (Cph1Δ2). As chromophores, either the native phytochromobilin cofactor (PΦB) or phycocyanobilin (PCB), the natural cofactor in Cph1, was incorporated. These homology models were further optimized by molecular dynamics (MD) simulations revealing a satisfying overall agreement with the crystal structure of Cph1Δ2. Notable differences in the PΦB adduct of phyA result from a restructuring of the small helical segment α(7) that leads to displacements of a few amino acids away from the cofactor. This repositioning of residues also include aspartate 218 such that, instead of its carbonyl function as in Cph1Δ2, an additional water molecule forms hydrogen bonds with the ring B and C NH groups. To validate the phyA structural model in the chromophore binding pocket, Raman spectra of the cofactor were calculated by means of the quantum mechanics/molecular mechanics (QM/MM) hybrid methodology and compared with the experimental resonance Raman (RR) spectra. The satisfactory overall agreement between calculated and experimental spectra is taken as an indication for the good quality of the structural model. Moreover, the methine bridge stretching modes and the effects of isotopic labeling at selected positions of the chromophore are very well reproduced to allow confirming even details of the methine bridge geometry as predicted by the homology model. Specifically, it is demonstrated that the experimental RR spectra are consistent with a torsional angle of ring D with respect to ring C that is distinctly higher for phyA-PCB (45°) and phyA-PΦB (42°) than for Cph1Δ2 (30°). Raman spectra calculated from different points of the MD trajectory display variations of the mode frequencies and intensities reflecting the structural fluctuations from snapshot to snapshot. The snapshot spectrum of the lowest energy structure and the sum of all snapshot spectra afford an equally good description of the experimental data. Particularly large variations between the snapshots are noted for the N-H in-plane bending mode of the pyrrole rings B and C, which reflect alterations of the hydrogen bond interactions brought about by fluctuations of water molecules in the cofactor cavity. This overestimation of the water molecule mobility is a consequence of the deficiency of the current QM/MM methodology that, due to the lack of appropriate protein force fields, cannot adequately account for the electrostatics in the cofactor pocket.


Assuntos
Fitocromo A/química , Proteínas de Bactérias/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Fotorreceptores Microbianos , Ficobilinas/química , Ficocianina/química , Fitocromo/química , Ligação Proteica , Proteínas Quinases/química , Estrutura Terciária de Proteína , Teoria Quântica , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA