Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
OMICS ; 6(4): 305-30, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12626091

RESUMO

The U.S. Department of Energy recently announced the first five grants for the Genomes to Life (GTL) Program. The goal of this program is to "achieve the most far-reaching of all biological goals: a fundamental, comprehensive, and systematic understanding of life." While more information about the program can be found at the GTL website (www.doegenomestolife.org), this paper provides an overview of one of the five GTL projects funded, "Carbon Sequestration in Synechococcus Sp.: From Molecular Machines to Hierarchical Modeling." This project is a combined experimental and computational effort emphasizing developing, prototyping, and applying new computational tools and methods to elucidate the biochemical mechanisms of the carbon sequestration of Synechococcus Sp., an abundant marine cyanobacteria known to play an important role in the global carbon cycle. Understanding, predicting, and perhaps manipulating carbon fixation in the oceans has long been a major focus of biological oceanography and has more recently been of interest to a broader audience of scientists and policy makers. It is clear that the oceanic sinks and sources of CO(2) are important terms in the global environmental response to anthropogenic atmospheric inputs of CO(2) and that oceanic microorganisms play a key role in this response. However, the relationship between this global phenomenon and the biochemical mechanisms of carbon fixation in these microorganisms is poorly understood. The project includes five subprojects: an experimental investigation, three computational biology efforts, and a fifth which deals with addressing computational infrastructure challenges of relevance to this project and the Genomes to Life program as a whole. Our experimental effort is designed to provide biology and data to drive the computational efforts and includes significant investment in developing new experimental methods for uncovering protein partners, characterizing protein complexes, identifying new binding domains. We will also develop and apply new data measurement and statistical methods for analyzing microarray experiments. Our computational efforts include coupling molecular simulation methods with knowledge discovery from diverse biological data sets for high-throughput discovery and characterization of protein-protein complexes and developing a set of novel capabilities for inference of regulatory pathways in microbial genomes across multiple sources of information through the integration of computational and experimental technologies. These capabilities will be applied to Synechococcus regulatory pathways to characterize their interaction map and identify component proteins in these pathways. We will also investigate methods for combining experimental and computational results with visualization and natural language tools to accelerate discovery of regulatory pathways. Furthermore, given that the ultimate goal of this effort is to develop a systems-level of understanding of how the Synechococcus genome affects carbon fixation at the global scale, we will develop and apply a set of tools for capturing the carbon fixation behavior of complex of Synechococcus at different levels of resolution. Finally, because the explosion of data being produced by high-throughput experiments requires data analysis and models which are more computationally complex, more heterogeneous, and require coupling to ever increasing amounts of experimentally obtained data in varying formats, we have also established a companion computational infrastructure to support this effort as well as the Genomes to Life program as a whole.


Assuntos
Carbono/metabolismo , Cianobactérias/fisiologia , Genoma , Algoritmos , Carbono/fisiologia , Cianobactérias/metabolismo , Espectrometria de Massas , Modelos Biológicos , Modelos Estatísticos , Pesquisa/tendências , Software
2.
J Mol Graph Model ; 20(6): 429-38, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12071277

RESUMO

The concept of signature as a molecular descriptor is introduced and various topological indices used in quantitative structure-activity relationships (QSARs) are expressed as functions of the new descriptor. The effectiveness of signature versus commonly used descriptors in QSAR analysis is demonstrated by correlating the activities of 121 HIV-1 protease inhibitors. Our approach to the inverse-QSAR problem consists of first finding the optimum sets of descriptor values best matching a target activity and then generating a focused library of candidate structures from the solution set of descriptor values. Both steps are facilitated by the use of signature.


Assuntos
Bases de Dados Factuais , Relação Quantitativa Estrutura-Atividade , Algoritmos , Desenho de Fármacos , Protease de HIV/metabolismo , Inibidores da Protease de HIV/química , Estrutura Molecular
3.
J Mol Graph Model ; 22(4): 263-73, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15177078

RESUMO

We present a methodology for solving the inverse-quantitative structure-activity relationship (QSAR) problem using the molecular descriptor called signature. This methodology is detailed in four parts. First, we create a QSAR equation that correlates the occurrence of a signature to the activity values using a stepwise multilinear regression technique. Second, we construct constraint equations, specifically the graphicality and consistency equations, which facilitate the reconstruction of the solution compounds directly from the signatures. Third, we solve the set of constraint equations, which are both linear and Diophantine in nature. Last, we reconstruct and enumerate the solution molecules and calculate their activity values from the QSAR equation. We apply this inverse-QSAR method to a small set of LFA-1/ICAM-1 peptide inhibitors to assist in the search and design of more-potent inhibitory compounds. Many novel inhibitors were predicted, a number of which are predicted to be more potent than the strongest inhibitor in the training set. Two of the more potent inhibitors were synthesized and tested in-vivo, confirming them to be the strongest inhibiting peptides to date. Some of these compounds can be recycled to train a new QSAR and develop a more focused library of lead compounds.


Assuntos
Desenho de Fármacos , Molécula 1 de Adesão Intercelular/química , Molécula 1 de Adesão Intercelular/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Concentração Inibidora 50 , Molécula 1 de Adesão Intercelular/genética , Antígeno-1 Associado à Função Linfocitária/química , Antígeno-1 Associado à Função Linfocitária/genética , Antígeno-1 Associado à Função Linfocitária/metabolismo , Modelos Químicos , Biblioteca de Peptídeos , Relação Quantitativa Estrutura-Atividade
4.
Nat Chem Biol ; 3(8): 447-50, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17637771

RESUMO

The increasing availability of data related to genes, proteins and their modulation by small molecules has provided a vast amount of biological information leading to the emergence of systems biology and the broad use of simulation tools for data analysis. However, there is a critical need to develop cheminformatics tools that can integrate chemical knowledge with these biological databases and simulation approaches, with the goal of creating systems chemical biology.


Assuntos
Biologia Computacional/métodos , Biologia de Sistemas/métodos , Animais , Bioensaio/métodos , Fenômenos Fisiológicos Celulares , Bases de Dados Factuais , Desenho de Fármacos , Genômica , Humanos , Modelos Químicos , Modelos Moleculares , Biologia Molecular , Biblioteca de Peptídeos , Proteômica/métodos , Pesquisa/tendências , Biologia de Sistemas/instrumentação
5.
J Chem Inf Model ; 46(2): 826-35, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16563014

RESUMO

A method for solving the inverse quantitative structure-property relationship (QSPR) problem is presented which facilitates the design of novel polymers with targeted properties. Here, we demonstrate the efficacy of the approach using the targeted design of polymers exhibiting a desired glass transition temperature, heat capacity, and density. We present novel QSPRs based on the signature molecular descriptor capable of predicting glass transition temperature, heat capacity, density, molar volume, and cohesive energies of linear homopolymers with cross-validation squared correlation coefficients ranging between 0.81 and 0.95. Using these QSPRs, we show how the inverse problem can be solved to design poly(N-methyl hexamethylene sebacamide) despite the fact that the polymer was used not used in the training of this model.


Assuntos
Algoritmos , Desenho de Fármacos , Polímeros/química , Relação Quantitativa Estrutura-Atividade , Metacrilatos/química , Estrutura Molecular , Transição de Fase , Polímeros/farmacologia , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA