Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(15)2019 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-31357652

RESUMO

CRISPR/Cas technology holds promise for the development of therapies to treat inherited diseases. Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disorder with a variable multisystemic character for which no cure is yet available. Here, we review CRISPR/Cas-mediated approaches that target the unstable (CTG•CAG)n repeat in the DMPK/DM1-AS gene pair, the autosomal dominant mutation that causes DM1. Expansion of the repeat results in a complex constellation of toxicity at the DNA level, an altered transcriptome and a disturbed proteome. To restore cellular homeostasis and ameliorate DM1 disease symptoms, CRISPR/Cas approaches were directed at the causative mutation in the DNA and the RNA. Specifically, the triplet repeat has been excised from the genome by several laboratories via dual CRISPR/Cas9 cleavage, while one group prevented transcription of the (CTG)n repeat through homology-directed insertion of a polyadenylation signal in DMPK. Independently, catalytically deficient Cas9 (dCas9) was recruited to the (CTG)n repeat to block progression of RNA polymerase II and a dCas9-RNase fusion was shown to degrade expanded (CUG)n RNA. We compare these promising developments in DM1 with those in other microsatellite instability diseases. Finally, we look at hurdles that must be taken to make CRISPR/Cas-mediated editing a therapeutic reality in patients.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Terapia Genética , Distrofia Miotônica/genética , Distrofia Miotônica/terapia , Animais , Terapia Baseada em Transplante de Células e Tecidos , Marcação de Genes , Estudos de Associação Genética , Loci Gênicos , Predisposição Genética para Doença , Humanos , Expansão das Repetições de Trinucleotídeos , Repetições de Trinucleotídeos
2.
Transl Oncol ; 12(2): 361-367, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30504085

RESUMO

Carriers of a pathogenic germline mutations in the PTEN gene, a well-known tumor suppressor gene, are at increased risk of multiple benign and malignant tumors, e.g. breast, thyroid, endometrial and colon cancer. This is called PTEN Hamartomous Tumor Syndrome (PHTS). PHTS patients may also have an increased risk of immunological dysregulation, such as autoimmunity and immune deficiencies. The effects of PTEN on the immune system have been studied in murine knockout models demonstrating that loss of PTEN function leads to dysregulation of the immune response. This results in susceptibility to autoimmunity, impaired B cell class switching with subsequent hypogammaglobulinemia. Additionally, a decreased ability of dendritic cells to prime CD8+ T cells was observed, leading to impaired tumor eradication. Immune dysfunction in PHTS patients has not yet been extensively studied but might be a manageable contributing factor to the increased cancer risk in PHTS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA