Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Curr Osteoporos Rep ; 19(1): 66-74, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33403446

RESUMO

PURPOSE OF REVIEW: The goal of this review is to provide an overview of the impact and underlying mechanism of oxidative stress on connexin channel function, and their roles in skeletal aging, estrogen deficiency, and glucocorticoid excess associated bone loss. RECENT FINDINGS: Connexin hemichannel opening is increased under oxidative stress conditions, which confers a cell protective role against oxidative stress-induced cell death. Oxidative stress acts as a key contributor to aging, estrogen deficiency, and glucocorticoid excess-induced osteoporosis and impairs osteocytic network and connexin gap junction communication. This paper reviews the current knowledge for the role of oxidative stress and connexin channels in the pathogenesis of osteoporosis and physiological and pathological responses of connexin channels to oxidative stress. Oxidative stress decreases osteocyte viability and impairs the balance of anabolic and catabolic responses. Connexin 43 (Cx43) channels play a critical role in bone remodeling, mechanotransduction, and survival of osteocytes. Under oxidative stress conditions, there is a consistent reduction of Cx43 expression, while the opening of Cx43 hemichannels protects osteocytes against cell injury caused by oxidative stress.


Assuntos
Envelhecimento/patologia , Envelhecimento/fisiologia , Conexinas/fisiologia , Junções Comunicantes/fisiologia , Osteoporose/patologia , Estresse Oxidativo , Remodelação Óssea/fisiologia , Estrogênios/deficiência , Glucocorticoides/efeitos adversos , Humanos , Mecanotransdução Celular/fisiologia , Osteoporose/induzido quimicamente , Osteoporose/prevenção & controle
2.
J Cell Sci ; 131(6)2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29487175

RESUMO

Elevated oxidized stress contributes to lens cataracts, and gap junctions play important roles in maintaining lens transparency. As well as forming gap junctions, connexin (Cx) proteins also form hemichannels. Here, we report a new mechanism whereby hemichannels mediate transport of reductant glutathione into lens fiber cells and protect cells against oxidative stress. We found that Cx50 (also known as GJA8) hemichannels opened in response to H2O2 in lens fiber cells but that transport through the channels was inhibited by two dominant-negative mutants in Cx50, Cx50P88S, which inhibits transport through both gap junctions and hemichannels, and Cx50H156N, which only inhibits transport through hemichannels and not gap junctions. Treatment with H2O2 increased the number of fiber cells undergoing apoptosis, and this increase was augmented with dominant-negative mutants that disrupted both hemichannels formed from Cx46 (also known as GJA3) and Cx50, while Cx50E48K, which only impairs gap junctions, did not have such an effect. Moreover, hemichannels mediate uptake of glutathione, and this uptake protected lens fiber cells against oxidative stress, while hemichannels with impaired transport had less protective benefit from glutathione. Taken together, these results show that oxidative stress activates connexin hemichannels in the lens fiber cells and that hemichannels likely protect lens cell against oxidative damage through transporting extracellular reductants.


Assuntos
Catarata/metabolismo , Conexinas/metabolismo , Glutationa/metabolismo , Cristalino/metabolismo , Estresse Oxidativo , Animais , Transporte Biológico/efeitos dos fármacos , Catarata/genética , Galinhas , Conexinas/genética , Humanos , Peróxido de Hidrogênio/farmacologia , Cristalino/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
3.
Int J Mol Sci ; 21(21)2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147690

RESUMO

Connexins are the structural components of gap junctions and hemichannels that mediate the communication and exchange of small molecules between cells, and between the intracellular and extracellular environment, respectively. Connexin (Cx) 46 is predominately expressed in lens fiber cells, where they function in maintaining the homeostasis and transparency of the lens. Cx46 mutations are associated with impairment of channel function, which results in the development of congenital cataracts. Cx46 gap junctions and hemichannels are closely regulated by multiple mechanisms. Key regulators of Cx46 channel function include Ca2+ and calmodulin (CaM). Ca2+ plays an essential role in lens homeostasis, and its dysregulation causes cataracts. Ca2+ associated CaM is a well-established inhibitor of gap junction coupling. Recent studies suggest that elevated intracellular Ca2+ activates Cx hemichannels in lens fiber cells and Cx46 directly interacts with CaM. A Cx46 site mutation (Cx46-G143R), which is associated with congenital Coppock cataracts, shows an increased Cx46-CaM interaction and this interaction is insensitive to Ca2+, given that depletion of Ca2+ reduces the interaction between CaM and wild-type Cx46. Moreover, inhibition of CaM function greatly reduces the hemichannel activity in the Cx46 G143R mutant. These research findings suggest a new regulatory mechanism by which enhanced association of Cx46 with CaM leads to the increase in hemichannel activity and dysregulation may lead to cataract development. In this review, we will first discuss the involvement of Ca2+/CaM in lens homeostasis and pathology, and follow by providing a general overview of Ca2+/CaM in the regulation of Cx46 gap junctions. We discuss the most recent studies concerning the molecular mechanism of Ca2+/CaM in regulating Cx46 hemichannels. Finally, we will offer perspectives of the impacts of Ca2+/CaM and dysregulation on Cx46 channels and vice versa.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Cristalino/metabolismo , Animais , Regulação da Expressão Gênica , Homeostase , Humanos , Mutação , Estrutura Secundária de Proteína
4.
Int J Mol Sci ; 21(3)2020 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-32050469

RESUMO

The skeleton adapts to mechanical loading to promote bone formation and remodeling. While most bone cells are involved in mechanosensing, it is well accepted that osteocytes are the principal mechanosensory cells. The osteocyte cell body and processes are surrounded by a fluid-filled space, forming an extensive lacuno-canalicular network. The flow of interstitial fluid is a major stress-related factor that transmits mechanical stimulation to bone cells. The long dendritic processes of osteocytes form a gap junction channel network connecting not only neighboring osteocytes, but also cells on the bone surface, such as osteoblasts and osteoclasts. Mechanosensitive osteocytes also form hemichannels that mediate the communication between the cytoplasmic and extracellular microenvironment. This paper will discuss recent research progress regarding connexin (Cx)-forming gap junctions and hemichannels in osteocytes, osteoblasts, and other bone cells, including those richly expressing Cx43. We will then cover the recent progress regarding the regulation of these channels by mechanical loading and the role of integrins and signals in mediating Cx43 channels, and bone cell function and viability. Finally, we will summarize the recent studies regarding bone responses to mechanical unloading in Cx43 transgenic mouse models. The osteocyte has been perceived as the center of bone remodeling, and connexin channels enriched in osteocytes are a likely major player in meditating the function of bone. Based on numerous studies, connexin channels may present as a potential new therapeutic target in the treatment of bone loss and osteoporosis. This review will primarily focus on Cx43, with some discussion in other connexins expressed in bone cells.


Assuntos
Remodelação Óssea , Osso e Ossos/fisiologia , Conexinas/metabolismo , Animais , Fenômenos Biomecânicos , Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Homeostase , Humanos , Mecanotransdução Celular , Osteócitos/metabolismo , Estresse Mecânico , Suporte de Carga
5.
J Biol Chem ; 293(7): 2573-2585, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29298900

RESUMO

Connexin channels help maintain eye lens homeostasis and transparency. The G143R missense substitution in connexin (Cx) 46 is associated with congenital Coppock cataracts; however, the underlying molecular mechanism is largely unknown. Here, we report that compared with WT Cx46, the G143R substitution abolishes hemichannel conductance in Xenopus oocytes and in HeLa cells. Moreover, this substitution is dominant-negative and inhibits conductance of WT Cx46. CD analysis indicated that the substitution greatly reduces the α-helical structure of the intracellular Cx46 loop domain. Protein pulldown assays and isothermal titration calorimetry revealed that this Cx46 domain directly interacts with calmodulin (CaM) in a Ca2+-dependent fashion, an observation confirmed by immunofluorescent co-localization of Cx46 with CaM. Interestingly, the G143R substitution enhanced the Cx46-CaM interaction and attenuated its abolishment by Ca2+ depletion. Moreover, Cx46 increased dye influx, and the G143R substitution augmented this effect. Inhibition of Ca2+-mediated CaM activation blocked hemichannel permeability. The membrane potential plays a crucial role in Cx46 membrane permeability. We found that the activity of hemichannels is detectable under rest and hyperpolarization conditions but is eliminated with depolarization. These results suggested that the G143R substitution impairs voltage-dependent electrical conductance and alters membrane permeability mediated by Cx46 hemichannels. The latter likely is caused by the substitution-induced structural changes of the intracellular loop domain associated with the increased interaction with CaM and reduced Ca2+ sensitivity. The data suggest that the G143R-induced enhancement of the CaM-Cx46 interaction results in altered hemichannel activities and might be related to cataract formation.


Assuntos
Calmodulina/metabolismo , Catarata/genética , Conexinas/genética , Mutação de Sentido Incorreto , Animais , Cálcio/metabolismo , Calmodulina/química , Calmodulina/genética , Catarata/congênito , Catarata/metabolismo , Conexinas/química , Conexinas/metabolismo , Feminino , Junções Comunicantes/metabolismo , Células HeLa , Humanos , Cristalino/metabolismo , Potenciais da Membrana , Oócitos/química , Oócitos/metabolismo , Ligação Proteica , Domínios Proteicos , Xenopus
6.
J Biol Chem ; 290(47): 28321-28328, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26442583

RESUMO

Cx43 hemichannels serve as a portal for the release of prostaglandins, a critical process in mediating biological responses of mechanical loading on bone formation and remodeling. We have previously observed that fluid flow shear stress (FFSS) opens hemichannels; however, sustained FFSS results in hemichannel closure, as continuous opening of hemichannels is detrimental to cell viability and bone remodeling. However, the mechanism that regulates the closure of the hemichannels is unknown. Here, we show that activation of p44/42 ERK upon continuous FFSS leads to Cx43 phosphorylation at Ser(279)-Ser(282), sites known to be phosphorylated sites by p44/42 MAPK. Incubation of osteocytic MLO-Y4 cells with conditioned media (CM) collected after continuous FFSS increased MAPK-dependent phosphorylation of Cx43. CM treatment inhibited hemichannel opening and this inhibition was reversed when cells were pretreated with the MAPK pathway inhibitor. We found that prostaglandin E2 (PGE2) accumulates in the CM in a time-dependent manner. Treatment with PGE2 increased phospho-p44/42 ERK levels and also Cx43 phosphorylation at Ser(279)-Ser(282) sites. Depletion of PGE2 from CM, and pre-treatment with a p44/42 ERK pathway-specific inhibitor, resulted in a complete inhibition of ERK-dependent Cx43 phosphorylation and attenuated the inhibition of hemichannels by CM and PGE2. Consistently, the opening of hemichannels by FFSS was blocked by PGE2 and CM and this blockage was reversed by U0126 and the CM depleted of PGE2. A similar observation was also obtained in isolated primary osteocytes. Together, results from this study suggest that extracellular PGE2 accumulated after continuous FFSS is responsible for activation of p44/42 ERK signaling and subsequently, direct Cx43 phosphorylation by activated ERK leads to hemichannel closure.


Assuntos
Conexina 43/metabolismo , Dinoprostona/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Osteócitos/metabolismo , Estresse Mecânico , Animais , Células Cultivadas , Ativação Enzimática , Camundongos , Fosforilação , Transdução de Sinais
7.
J Cell Sci ; 127(Pt 1): 137-46, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24163432

RESUMO

Intracellular signaling in osteocytes activated by mechanical loading is important for bone formation and remodeling. These signaling events are mediated by small modulators released from Cx43 hemichannels (HC). We have recently shown that integrin α5 senses the mechanical stimulation and induces the opening of Cx43 HC; however, the underlying mechanism is unknown. Here, we show that both Cx43 and integrin α5 interact with 14-3-3θ, and this interaction is required for the opening of Cx43 HC upon mechanical stress. The absence of 14-3-3θ prevented the interaction between Cx43 and integrin α5, and blocked HC opening. Furthermore, it decreased the transport of Cx43 and integrin α5 from the Golgi apparatus to the plasma membrane. Mechanical loading promoted the movement of Cx43 to the surface which was associated not only with an increase in 14-3-3θ levels but also its interaction with Cx43 and integrin α5. This stimulatory effect on forward transport by mechanical loading was attenuated in the absence of 14-3-3θ and the majority of the Cx43 accumulated in the Golgi. Disruption of the Golgi by brefeldin A reduced the association of Cx43 and integrin α5 with 14-3-3θ, further suggesting that the interaction is likely to occur in the Golgi. Together, these results define a previously unidentified, scaffolding role of 14-3-3θ in assisting the delivery of Cx43 and integrin α5 to the plasma membrane for the formation of mechanosensitive HC in osteocytes.


Assuntos
Proteínas 14-3-3/metabolismo , Conexina 43/metabolismo , Complexo de Golgi/metabolismo , Integrina alfa5/metabolismo , Mecanotransdução Celular , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Animais , Brefeldina A/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Conexina 43/genética , Fêmur , Regulação da Expressão Gênica , Complexo de Golgi/efeitos dos fármacos , Integrina alfa5/genética , Camundongos , Osteócitos/citologia , Osteócitos/efeitos dos fármacos , Osteócitos/metabolismo , Cultura Primária de Células , Inibidores da Síntese de Proteínas/farmacologia , Transporte Proteico
8.
J Biol Chem ; 289(15): 10582-10591, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24563481

RESUMO

Connexin (Cx) 43 hemichannels in osteocytes are thought to play a critical role in releasing bone modulators in response to mechanical loading, a process important for bone formation and remodeling. However, the underlying mechanism that regulates the opening of mechanosensitive hemichannels is largely unknown. We have recently shown that Cx43 and integrin α5 interact directly with each other, and activation of PI3K appears to be required for Cx43 hemichannel opening by mechanical stimulation. Here, we show that mechanical loading through fluid flow shear stress (FFSS) increased the level of active AKT, a downstream effector of PI3K, which is correlated with the opening of hemichannels. Both Cx43 and integrin α5 are directly phosphorylated by AKT. Inhibition of AKT activation significantly reduced FFSS-induced opening of hemichannels and disrupted the interaction between Cx43 and integrin α5. Moreover, AKT phosphorylation on Cx43 and integrin α5 enhanced their interaction. In contrast to the C terminus of wild-type Cx43, overexpression of the C-terminal mutant containing S373A, a consensus site previously shown to be phosphorylated by AKT, failed to bind with α5 and hence could not inhibit hemichannel opening. Together, our results suggest that AKT activated by FFSS directly phosphorylates Cx43 and integrin α5, and Ser-373 of Cx43 plays a predominant role in mediating the interaction between these two proteins and Cx43 hemichannel opening, a crucial step to mediate the anabolic function of mechanical loading in the bone.


Assuntos
Conexina 43/metabolismo , Regulação da Expressão Gênica , Integrina alfa5/metabolismo , Osteócitos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular , Colágeno/metabolismo , Conexinas/metabolismo , Junções Comunicantes , Camundongos , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Serina/metabolismo , Resistência ao Cisalhamento , Estresse Mecânico
9.
Methods Mol Biol ; 2801: 111-124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578417

RESUMO

Connexin hemichannels (Cx HCs) are hexameric structures at the cell plasma membrane, whose function as membrane transport proteins allows for the passive flow of small hydrophilic molecules and ions (≤1 kDa) between the cytosol and the extracellular environment. Activation of Cx HCs is highly dependent on pathological conditions. HC activity provokes changes in the microenvironment, inducing the dissemination of signaling molecules in both an autocrine and paracrine manner. Given the elicitation of a variety of signaling pathways, and assortment of Cx species and dispersion throughout the body, Cx HCs have been implicated in a range of processes such as cell proliferation, differentiation, cell death, and tissue modeling and remodeling. While studying the expression and localization of Cx HCs can be done using traditional laboratory techniques, such as immunoblot analysis, measuring the functionality/activity of the HCs requires a more explicit methodology and is essential for determining Cx-mediated physiological changes. The study of Cx HC function/activity has focused mainly on in vitro measurements through electrophysiological characterization or, more commonly, using HC-permeable dye uptake studies. Here, we describe the use of dye uptake to measure Cx HC activity in vivo using mechanically stimulated osteocytic Cx43 HCs with Evans blue dye as our model.


Assuntos
Conexinas , Transdução de Sinais , Conexinas/metabolismo , Membrana Celular/metabolismo , Fenômenos Eletrofisiológicos
10.
Redox Biol ; 73: 103216, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38820983

RESUMO

Long-lived lens fiber cells require a robust cellular protective function against oxidative insults to maintain their hemostasis and viability; however, the underlying mechanism is largely obscure. In this study, we unveiled a new mechanism that protects lens fiber cells against oxidative stress-induced cell death. We found that mechano-activated connexin (Cx) hemichannels (HCs) mediate the transport of glutathione (GSH) into chick embryonic fibroblasts (CEF) and primary lens fiber cells, resulting in a decrease in the accumulation of intracellular reactive oxygen species induced by both H2O2 and ultraviolet B, providing protection to lens fiber cells against cell apoptosis and necrosis. Furthermore, HCs formed by both homomeric Cx50 or Cx46 and heteromeric Cx50/Cx46 were mechanosensitive and could transport GSH into CEF cells. Notably, mechano-activated Cx50 HCs exhibited a greater capacity to transport GSH than Cx46 HCs. Consistently, the deficiency of Cx50 in single lens fiber cells led to a higher level of oxidative stress. Additionally, outer cortical short lens fiber cells expressing full length Cxs demonstrated greater resistance to oxidative injury compared to central core long lens fibers. Taken together, our results suggest that the activation of Cx HCs by interstitial fluid flow in cultured epithelial cells and isolated fiber cells shows that HCs can serve as a pathway for moving GSH across the cell membrane to offer protection against oxidative stress.


Assuntos
Conexinas , Glutationa , Cristalino , Estresse Oxidativo , Conexinas/metabolismo , Conexinas/genética , Glutationa/metabolismo , Animais , Cristalino/metabolismo , Cristalino/citologia , Espécies Reativas de Oxigênio/metabolismo , Embrião de Galinha , Transporte Biológico , Apoptose , Fibroblastos/metabolismo , Peróxido de Hidrogênio/metabolismo , Células Cultivadas
11.
Cell Rep ; 43(7): 114377, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38889005

RESUMO

Bone tissue represents the most frequent site of cancer metastasis. We developed a hemichannel-activating antibody, Cx43-M2. Cx43-M2, directly targeting osteocytes in situ, activates osteocytic hemichannels and elevates extracellular ATP, thereby inhibiting the growth and migration of cultured breast and osteosarcoma cancer cells. Cx43-M2 significantly decreases breast cancer metastasis, osteosarcoma growth, and osteolytic activity, while improving survival rates in mice. The antibody's inhibition of breast cancer and osteosarcoma is dose dependent in both mouse and human cancer metastatic models. Furthermore, Cx43-M2 enhances anti-tumor immunity by increasing the population and activation of tumor-infiltrating immune-promoting effector T lymphocytes, while reducing immune-suppressive regulatory T cells. Our results suggest that the Cx43-M2 antibody, by activating Cx43 hemichannels and facilitating ATP release and purinergic signaling, transforms the cancer microenvironment from a supportive to a suppressive state. Collectively, our study underscores the potential of Cx43-M2 as a therapeutic for treating breast cancer bone metastasis and osteosarcoma.


Assuntos
Trifosfato de Adenosina , Neoplasias Ósseas , Neoplasias da Mama , Conexina 43 , Osteócitos , Osteossarcoma , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Animais , Osteócitos/metabolismo , Trifosfato de Adenosina/metabolismo , Humanos , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Conexina 43/metabolismo , Camundongos , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Microambiente Tumoral , Anticorpos/farmacologia
12.
J Membr Biol ; 245(8): 423-36, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22850938

RESUMO

Precursor cells of skeletal muscles express connexins 39, 43 and 45 and pannexin1. In these cells, most connexins form two types of membrane channels, gap junction channels and hemichannels, whereas pannexin1 forms only hemichannels. All these channels are low-resistance pathways permeable to ions and small molecules that coordinate developmental events. During late stages of skeletal muscle differentiation, myofibers become innervated and stop expressing connexins but still express pannexin1 hemichannels that are potential pathways for the ATP release required for potentiation of the contraction response. Adult injured muscles undergo regeneration, and connexins are reexpressed and form membrane channels. In vivo, connexin reexpression occurs in undifferentiated cells that form new myofibers, favoring the healing process of injured muscle. However, differentiated myofibers maintained in culture for 48 h or treated with proinflammatory cytokines for less than 3 h also reexpress connexins and only form functional hemichannels at the cell surface. We propose that opening of these hemichannels contributes to drastic changes in electrochemical gradients, including reduction of membrane potential, increases in intracellular free Ca(2+) concentration and release of diverse metabolites (e.g., NAD(+) and ATP) to the extracellular milieu, contributing to multiple metabolic and physiologic alterations that characterize muscles undergoing atrophy in several acquired and genetic human diseases. Consequently, inhibition of connexin hemichannels expressed by injured or denervated skeletal muscles might reduce or prevent deleterious changes triggered by conditions that promote muscle atrophy.


Assuntos
Conexinas/metabolismo , Ativação do Canal Iônico , Modelos Biológicos , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Humanos , Valores de Referência
13.
Arch Biochem Biophys ; 524(1): 2-15, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22430362

RESUMO

Gap junctions (GJ) and hemichannels (HC) formed from the protein subunits called connexins are transmembrane conduits for the exchange of small molecules and ions. Connexins and another group of HC-forming proteins, pannexins comprise the two families of transmembrane proteins ubiquitously distributed in vertebrates. Most cell types express more than one connexin or pannexin. While connexin expression and channel activity may vary as a function of physiological and pathological states of the cell and tissue, only a few studies suggest the involvement of pannexin HC in acquired pathological conditions. Importantly, genetic mutations in connexin appear to interfere with GJ and HC function which results in several diseases. Thus connexins could serve as potential drug target for therapeutic intervention. Growing evidence suggests that diseases resulting from HC dysfunction might open a new direction for development of specific HC reagents. This review provides a comprehensive overview of the current studies of GJ and HC formed by connexins and pannexins in various tissue and organ systems including heart, central nervous system, kidney, mammary glands, ovary, testis, lens, retina, inner ear, bone, cartilage, lung and liver. In addition, present knowledge of the role of GJ and HC in cell cycle progression, carcinogenesis and stem cell development is also discussed.


Assuntos
Conexinas/metabolismo , Junções Comunicantes/metabolismo , Neoplasias/metabolismo , Animais , Apoptose , Comunicação Celular , Ciclo Celular , Conexinas/análise , Junções Comunicantes/patologia , Humanos , Neoplasias/patologia , Células-Tronco/citologia , Células-Tronco/metabolismo
14.
Elife ; 112022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35132953

RESUMO

Mechanical stimulation, such as physical exercise, is essential for bone formation and health. Here, we demonstrate the critical role of osteocytic Cx43 hemichannels in anabolic function of bone in response to mechanical loading. Two transgenic mouse models, R76W and Δ130-136, expressing dominant-negative Cx43 mutants in osteocytes were adopted. Mechanical loading of tibial bone increased cortical bone mass and mechanical properties in wild-type and gap junction-impaired R76W mice through increased PGE2, endosteal osteoblast activity, and decreased sclerostin. These anabolic responses were impeded in gap junction/hemichannel-impaired Δ130-136 mice and accompanied by increased endosteal osteoclast activity. Specific inhibition of Cx43 hemichannels by Cx43(M1) antibody suppressed PGE2 secretion and impeded loading-induced endosteal osteoblast activity, bone formation and anabolic gene expression. PGE2 administration rescued the osteogenic response to mechanical loading impeded by impaired hemichannels. Together, osteocytic Cx43 hemichannels could be a potential new therapeutic target for treating bone loss and osteoporosis.


Assuntos
Remodelação Óssea , Osso e Ossos/fisiologia , Conexina 43/metabolismo , Prostaglandinas/metabolismo , Animais , Fenômenos Biomecânicos , Conexina 43/genética , Dinoprostona/metabolismo , Junções Comunicantes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Osteócitos/metabolismo , Estresse Mecânico , Suporte de Carga
15.
Elife ; 112022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36346745

RESUMO

Oxidative stress is a major risk factor that causes osteocyte cell death and bone loss. Prior studies primarily focus on the function of cell surface expressed Cx43 channels. Here, we reported a new role of mitochondrial Cx43 (mtCx43) and hemichannels (HCs) in modulating mitochondria homeostasis and function in bone osteocytes under oxidative stress. In murine long bone osteocyte-Y4 cells, the translocation of Cx43 to mitochondria was increased under H2O2-induced oxidative stress. H2O2 increased the mtCx43 level accompanied by elevated mtCx43 HC activity, determined by dye uptake assay. Cx43 knockdown (KD) by the CRISPR-Cas9 lentivirus system resulted in impairment of mitochondrial function, primarily manifested as decreased ATP production. Cx43 KD had reduced intracellular reactive oxidative species levels and mitochondrial membrane potential. Additionally, live-cell imaging results demonstrated that the proton flux was dependent on mtCx43 HCs because its activity was specifically inhibited by an antibody targeting Cx43 C-terminus. The co-localization and interaction of mtCx43 and ATP synthase subunit F (ATP5J2) were confirmed by Förster resonance energy transfer and a protein pull-down assay. Together, our study suggests that mtCx43 HCs regulate mitochondrial ATP generation by mediating K+, H+, and ATP transfer across the mitochondrial inner membrane and the interaction with mitochondrial ATP synthase, contributing to the maintenance of mitochondrial redox levels in response to oxidative stress.


Assuntos
Conexina 43 , Peróxido de Hidrogênio , Camundongos , Animais , Conexina 43/genética , Conexina 43/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Homeostase , Trifosfato de Adenosina/metabolismo
16.
Cell Biosci ; 12(1): 191, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36457052

RESUMO

BACKGROUND: Mechanical loading promotes bone formation and osteocytes are a major mechanosensory cell in the bone. Both Piezo1 channels and connexin 43 hemichannels (Cx43 HCs) in osteocytes are important players in mechanotransduction and anabolic function by mechanical loading. However, the mechanism underlying mechanotransduction involving Piezo1 channels and Cx43 HCs in osteocytes and bone remains unknown. RESULTS: We showed that, like mechanical loading, Piezo1 specific agonist Yoda1 was able to increase intracellular Ca2+ signaling and activate Cx43 HCs, while Yoda1 antagonist Dooku1 inhibited Ca2+ and Cx43 HC activation induced by both mechanical loading and Yoda1. Moreover, the intracellular Ca2+ signal activated by Yoda1 was reduced by the inhibition of Cx43 HCs and pannexin1 (Panx1) channels, as well as ATP-P2X receptor signaling. Piezo1 and Cx43 HCs were co-localized on the osteocyte cell surface, and Yoda1-activated PI3K-Akt signaling regulated the opening of Cx43 HCs. Furthermore, Cx43 HCs opening by mechanical loading on tibias was ablated by inhibition of Piezo1 activation in vivo. CONCLUSION: We demonstrated that upon mechanical stress, increased intracellular Ca2+ activated by Piezo1 regulates the opening of HCs through PI3K-Akt and opened Cx43 HCs, along with Panx1 channels, and ATP-P2X signaling sustain the intracellular Ca2+ signal, leading to bone anabolic function.

17.
Bone Res ; 10(1): 49, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851577

RESUMO

Physical mechanical stimulation can maintain and even increase bone mass. Here, we report an important role of osteocytic integrin α5 in regulating the anabolic response of bone to mechanical loading using an Itga5 conditional gene knockout (cKO) mouse model. Integrin α5 gene deletion increased apoptotic osteocytes and reduced cortical anabolic responses to tibial compression including decreased endosteal osteoblasts and bone formation, and increased endosteal osteoclasts and bone resorption, contributing to the decreased bone area fraction and biomechanical properties, leading to an enlarged bone marrow area in cKO mice. Similar disruption of anabolic responses to mechanical loading was also detected in cKO trabecular bone. Moreover, integrin α5 deficiency impeded load-induced Cx43 hemichannel opening, and production and release of PGE2, an anabolic factor, resulting in attenuated effects of the loading on catabolic sclerostin (SOST) reduction and anabolic ß-catenin increase. Together, this study shows an indispensable role of integrin α5 in osteocytes in the anabolic action of mechanical loading on skeletal tissue through activation of hemichannels and PGE2-evoked gene expression. Integrin α5 could act as a potential new therapeutic target for bone loss, especially in the elderly population with impeded mechanical sensitivity.

18.
Biochem Biophys Res Commun ; 411(3): 490-5, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21726529

RESUMO

Cytochrome P450 oxidoreductase (CYPOR) is a microsomal electron-transferring enzyme containing both FAD and FMN as co-factors, which provides the reducing equivalents to various redox partners, such as cytochromes P450 (CYPs), heme oxygenase (HO), cytochrome b(5) and squalene monooxygenase. Human patients with severe forms of CYPOR mutation show bone defects such as cranio- and humeroradial synostoses and long bone fractures, known as Antley-Bixler-like Syndrome (ABS). To elucidate the role of CYPOR in bone, we knocked-down CYPOR in multiple osteoblast cell lines using RNAi technology. In this study, knock-down of CYPOR decreased the expression of Connexin 43 (Cx43), known to play a critical role in bone formation, modeling, and remodeling. Knock-down of CYPOR also decreased Gap Junction Intercellular Communication (GJIC) and hemichannel activity. Promoter luciferase assays revealed that the decrease in expression of Cx43 in CYPOR knock-down cells was due to transcriptional repression. Primary osteoblasts isolated from bone specific Por knock-down mice calvariae confirmed the findings in the cell lines. Taken together, our study provides novel insights into the regulation of gap junction function by CYPOR and suggests that Cx43 may play an important role(s) in CYPOR-mediated bone defects seen in patients.


Assuntos
Conexina 43/genética , Junções Comunicantes/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , NADPH-Ferri-Hemoproteína Redutase/fisiologia , Osteogênese/genética , Animais , Linhagem Celular Tumoral , Junções Comunicantes/genética , Junções Comunicantes/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Knockout , NADPH-Ferri-Hemoproteína Redutase/genética
19.
Bone Res ; 9(1): 8, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531460

RESUMO

Mechanical loading opens connexin 43 (Cx43) hemichannels (HCs), leading to the release of bone anabolic molecules, such as prostaglandins, from mechanosensitive osteocytes, which is essential for bone formation and remodeling. However, the mechanotransduction mechanism that activates HCs remains elusive. Here, we report a unique pathway by which mechanical signals are effectively transferred between integrin molecules located in different regions of the cell, resulting in HC activation. Both integrin α5 and αV were activated upon mechanical stimulation via either fluid dropping or flow shear stress (FSS). Inhibition of integrin αV activation or ablation of integrin α5 prevented HC opening on the cell body when dendrites were mechanically stimulated, suggesting mechanical transmission from the dendritic integrin αV to α5 in the cell body during HC activation. In addition, HC function was compromised in vivo, as determined by utilizing an antibody blocking αV activation and α5-deficient osteocyte-specific knockout mice. Furthermore, inhibition of integrin αV activation, but not that of α5, attenuated activation of the phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway upon mechanical loading, and the inhibition of PI3K/AKT activation blocked integrin α5 activation and HC opening. Moreover, HC opening was blocked only by an anti-integrin αV antibody at low but not high FSS levels, suggesting that dendritic αV is a more sensitive mechanosensor than α5 for activating HCs. Together, these results reveal a new molecular mechanism of mechanotransduction involving the coordinated actions of integrins and PI3K/AKT in osteocytic dendritic processes and cell bodies that leads to HC opening and the release of key bone anabolic factors.

20.
iScience ; 24(6): 102533, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34142044

RESUMO

Emerging evidence challenges the lens as an immune-privileged organ. Here, we provide a direct mechanism supporting a role of macrophages in lens capsule rupture repair. Posterior lens capsule rupture in a connexin 50 and aquaporin 0 double-knockout mouse model resulted in lens tissue extrusion into the vitreous cavity with formation of a "tail-like" tissue containing delayed regressed hyaloid vessels, fibrotic tissue and macrophages at postnatal (P) 15 days. The macrophages declined after P 30 days with M2 macrophages detected inside the lens. By P 90 days, the "tail-like" tissue completely disappeared and the posterior capsule rupture was sealed with thick fibrotic tissue. Colony-stimulating factor 1 (CSF-1) accelerated capsule repair, whereas inhibition of the CSF-1 receptor delayed the repair. Together, these results suggest that lens posterior rupture leads to the recruitment of macrophages delivered by the regression delayed hyaloid vessels. CSF-1-activated M2 macrophages mediate capsule rupture repair and development of fibrosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA