Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunology ; 152(1): 138-149, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28502093

RESUMO

The Toll-like receptor (TLR) adaptor proteins myeloid differentiating factor 88 (MyD88) and Toll, interleukin-1 receptor and resistance protein (TIR) domain-containing adaptor inducing interferon-ß (TRIF) comprise the two principal limbs of the TLR signalling network. We studied the role of these adaptors in the TLR4-dependent inhibition of allergic airway disease and induction of CD4+ ICOS+ T cells by nasal application of Protollin™, a mucosal adjuvant composed of TLR2 and TLR4 agonists. Wild-type (WT), Trif-/- or Myd88-/- mice were sensitized to birch pollen extract (BPEx), then received intranasal Protollin followed by consecutive BPEx challenges. Protollin's protection against allergic airway disease was TRIF-dependent and MyD88-independent. TRIF deficiency diminished the CD4+ ICOS+ T-cell subsets in the lymph nodes draining the nasal mucosa, as well as their recruitment to the lungs. Overall, TRIF deficiency reduced the proportion of cervical lymph node and lung CD4+ ICOS+ Foxp3- cells, in particular. Adoptive transfer of cervical lymph node cells supported a role for Protollin-induced CD4+ ICOS+ cells in the TRIF-dependent inhibition of airway hyper-responsiveness. Hence, our data demonstrate that stimulation of the TLR4-TRIF pathway can protect against the development of allergic airway disease and that a TRIF-dependent adjuvant effect on CD4+ ICOS+ T-cell responses may be a contributing mechanism.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Asma/prevenção & controle , Linfócitos T CD4-Positivos/metabolismo , Pulmão/metabolismo , Rinite Alérgica Sazonal/prevenção & controle , Receptor 4 Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/imunologia , Transferência Adotiva , Animais , Antígenos de Plantas/imunologia , Asma/imunologia , Asma/metabolismo , Asma/fisiopatologia , Betula/imunologia , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/metabolismo , Hiper-Reatividade Brônquica/fisiopatologia , Hiper-Reatividade Brônquica/prevenção & controle , Broncoconstrição , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/transplante , Proliferação de Células , Quimiotaxia de Leucócito , Cisteína Endopeptidases/imunologia , Modelos Animais de Doenças , Combinação de Medicamentos , Feminino , Predisposição Genética para Doença , Proteína Coestimuladora de Linfócitos T Induzíveis/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Lipopolissacarídeos/imunologia , Pulmão/imunologia , Pulmão/fisiopatologia , Ativação Linfocitária , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fenótipo , Pólen/imunologia , Rinite Alérgica Sazonal/imunologia , Rinite Alérgica Sazonal/metabolismo , Rinite Alérgica Sazonal/fisiopatologia , Transdução de Sinais , Fatores de Tempo , Receptor 4 Toll-Like/imunologia
2.
Physiol Plant ; 159(4): 468-482, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27859326

RESUMO

The main factors regulating grapevine response to decreasing water availability were assessed under statistical support using published data related to leaf water relations in an extensive range of scion and rootstock genotypes. Matching leaf water potential (Ψleaf ) and stomatal conductance (gs ) data were collected from peer-reviewed literature with associated information. The resulting database contained 718 data points from 26 different Vitis vinifera varieties investigated as scions, 15 non-V. vinifera rootstock genotypes and 11 own-rooted V. vinifera varieties. Linearised data were analysed using the univariate general linear model (GLM) with factorial design including biological (scion and rootstock genotypes), methodological and environmental (soil) fixed factors. The first GLM performed on the whole database explained 82.4% of the variability in data distribution having the rootstock genotype the greatest contribution to variability (19.1%) followed by the scion genotype (16.2%). A classification of scions and rootstocks according to their mean predicted gs in response to moderate water stress was generated. This model also revealed that gs data obtained using a porometer were in average 2.1 times higher than using an infra-red gas analyser. The effect of soil water-holding properties was evaluated in a second analysis on a restricted database and showed a scion-dependant effect, which was dominant over rootstock effect, in predicting gs values. Overall the results suggest that a continuum exists in the range of stomatal sensitivities to water stress in V. vinifera, rather than an isohydric-anisohydric dichotomy, that is further enriched by the diversity of scion-rootstock combinations and their interaction with different soils.


Assuntos
Estômatos de Plantas/fisiologia , Vitis/fisiologia , Água/fisiologia , Bases de Dados como Assunto , Desidratação , Modelos Lineares , Modelos Biológicos , Solo
3.
J Immunol ; 194(12): 5626-34, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25934863

RESUMO

Contact between airway smooth muscle (ASM) cells and activated CD4(+) T cells, a key interaction in diseases such as asthma, triggers ASM cell proliferation and enhances T cell survival. We hypothesized that direct contact between ASM and CD4(+) T cells facilitated the transfer of anti-apoptotic proteins via nanotubes, resulting in increased survival of activated CD4(+) T cells. CD4(+) T cells, isolated from PBMCs of healthy subjects, when activated and cocultured with ASM cells for 24 h, formed nanotubes that were visualized by immunofluorescence and atomic force microscopy. Cell-to-cell transfer of the fluorescent dye calcein-AM confirmed cytoplasmic communication via nanotubes. Immunoreactive B cell lymphoma 2 (Bcl-2) and induced myeloid leukemia cell differentiation protein (Mcl-1), two major anti-apoptotic proteins, were present within the nanotubes. Downregulation of Mcl-1 by small interfering RNA in ASM cells significantly increased T cell apoptosis, whereas downregulation of Bcl-2 had no effect. Transfer of GFP-tagged Mcl-1 from ASM cells to CD4(+) T cells via the nanotubes confirmed directionality of transfer. In conclusion, activated T cells communicate with ASM cells via nanotube formation. Direct transfer of Mcl-1 from ASM to CD(+) T cells via nanotubes is involved in T cell survival. This study provides a novel mechanism of survival of CD4(+) T cells that is dependent on interaction with a structural cell.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Miócitos de Músculo Liso/metabolismo , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Anticorpos Monoclonais/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Transporte Biológico , Linfócitos T CD4-Positivos/efeitos dos fármacos , Cálcio/metabolismo , Sinalização do Cálcio , Adesão Celular/imunologia , Comunicação Celular/imunologia , Sobrevivência Celular/imunologia , Células Cultivadas , Técnicas de Cocultura , Humanos , Receptores de Hialuronatos/imunologia , Ativação Linfocitária/imunologia
4.
Hum Mol Genet ; 21(10): 2277-87, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22343142

RESUMO

Nutrient-deprivation autophagy factor-1 (NAF-1) was identified as an endoplasmic reticulum (ER) BCL-2-interacting protein, which functions to mediate the ability of ER BCL-2 to antagonize Beclin 1-dependent autophagy and depress ER calcium stores. In humans, a point mutation in Naf-1 (synonyms: Cisd2, Eris, Miner1 and Noxp70) is responsible for the neurodegenerative disorder Wolfram Syndrome 2. Here, we describe the generation and characterization of the Naf-1 gene deletion in mice. Naf-1 null mice display discernable clinical signs of degeneration at 2-3 months of age, with early evidence of significant defects in the structure and performance of skeletal muscle. Skeletal muscles from Naf-1 knockout mice demonstrate a significant shift towards slow-twitch (type I) fibers and greater resistance to muscle fatigue. Force-generating capacity is dramatically reduced in Naf-1(-/-) muscle. Consistent with its role in ER BCL-2-mediated regulation of autophagy and calcium flux, these physiological deficiencies were accompanied by augmented autophagy and dysregulated calcium homeostasis. In contrast, this also included adaptive enlargement of mitochondria with extensive cristae structures. Thus, NAF-1, a BCL-2-associated autophagy regulator, is required for homeostatic maintenance of skeletal muscle. Our findings uncover a novel pathway that is required for normal muscle maintenance, which may ultimately provide a novel therapeutic target for treating certain muscle pathologies.


Assuntos
Autofagia , Proteínas de Transporte/genética , Músculo Esquelético/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas/metabolismo , Ribonucleoproteínas/genética , Animais , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-bcl-2 , Ribonucleoproteínas/metabolismo
5.
Am J Respir Cell Mol Biol ; 49(4): 563-70, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23656597

RESUMO

Allergic asthma is a heterogeneous disease with no curative therapies. T cells infiltrate the airway smooth muscle (ASM) layer and may be implicated in airway remodeling and the increase of ASM mass, a cardinal feature of asthma. The mechanism by which CD4(+) T cells drive airway remodeling remains unknown. This study sought to determine the T cell-mediated mechanism of ASM cell proliferation. We hypothesized that CD4(+) T cells adhere to ASM cells via CD44, and induce ASM cell proliferation through the activation of the epidermal growth factor receptor (EGFR). A coculture model showed that the contact of antigen-stimulated CD4(+) T cells with ASM cells induced high levels of EGFR ligand expression in CD4(+) T cells and the activation of matrix metalloproteinase (MMP)-9, required for the shedding of EGFR ligands. The inhibition of EGFR and MMP-9 prevented the increase of ASM cell proliferation after coculture. The hyaluronan receptor CD44 is the dominant mediator of the tight adherence of T cells to ASM and is colocalized with MMP-9 on the cell surface. Moreover, the neutralization of CD44 prevents ASM cell hyperplasia. These data provide a novel mechanism by which antigen-stimulated CD4(+) T cells induce the remodeling indicative of a direct trophic role for CD4(+) T cells.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Receptores ErbB/metabolismo , Músculo Liso/metabolismo , Miócitos de Músculo Liso/metabolismo , Sistema Respiratório/imunologia , Sistema Respiratório/metabolismo , Animais , Linfócitos T CD4-Positivos/metabolismo , Adesão Celular/imunologia , Células Cultivadas , Técnicas de Cocultura , Receptores ErbB/imunologia , Receptores de Hialuronatos/imunologia , Ativação Linfocitária , Metaloproteinase 9 da Matriz/imunologia , Metaloproteinase 9 da Matriz/metabolismo , Músculo Liso/imunologia , Miócitos de Músculo Liso/imunologia , Ratos
6.
Respir Res ; 14: 118, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24283210

RESUMO

BACKGROUND: Allergic asthma is characterized by airway inflammation in response to antigen exposure, leading to airway remodeling and lung dysfunction. Epithelial-mesenchymal transition (EMT) may play a role in airway remodeling through the acquisition of a mesenchymal phenotype in airway epithelial cells. TGF-ß1 is known to promote EMT; however, other cytokines expressed in severe asthma with extensive remodeling, such as IL-22, may also contribute to this process. In this study, we evaluated the contribution of IL-22 to EMT in primary bronchial epithelial cells from healthy and asthmatic subjects. METHODS: Primary bronchial epithelial cells were isolated from healthy subjects, mild asthmatics and severe asthmatics (n=5 patients per group). The mRNA and protein expression of epithelial and mesenchymal cell markers and EMT-associated transcription factors was evaluated following stimulation with TGF-ß1, IL-22 and TGF-ß1+IL-22. RESULTS: Primary bronchial epithelial cells stimulated with TGF-ß1 underwent EMT, demonstrated by decreased expression of epithelial markers (E-cadherin and MUC5AC) and increased expression of mesenchymal markers (N-cadherin and vimentin) and EMT-associated transcription factors. IL-22 alone had no effect on epithelial or mesenchymal gene expression. However, IL-22+TGF-ß1 promoted the expression of some EMT transcription factors (Snail1 and Zeb1) and led to a more profound cadherin shift, but only in cells obtained from severe asthmatics. CONCLUSION: The impact of IL-22 on airway epithelial cells depends on the cytokine milieu and the clinical phenotype of the patient. Further studies are required to determine the molecular mechanism of IL-22 and TGF-ß1 cooperativity in driving EMT in primary human bronchial epithelial cells.


Assuntos
Asma/fisiopatologia , Brônquios/fisiopatologia , Células Epiteliais/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Interleucinas/fisiologia , Fator de Crescimento Transformador beta1/fisiologia , Adolescente , Adulto , Idoso , Asma/metabolismo , Asma/patologia , Biópsia , Brônquios/efeitos dos fármacos , Brônquios/patologia , Caderinas/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Técnicas In Vitro , Interleucinas/farmacologia , Masculino , Pessoa de Meia-Idade , Mucina-5AC/metabolismo , Fenótipo , RNA Mensageiro/metabolismo , Índice de Gravidade de Doença , Fator de Crescimento Transformador beta1/farmacologia , Adulto Jovem , Interleucina 22
7.
FASEB J ; 26(12): 5152-60, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22898922

RESUMO

Increased airway smooth muscle (ASM) mass is a hallmark of airway remodeling in severe asthma. Th17-associated cytokines, particularly IL-17A, IL-17F, and IL-22, have been postulated to play a role in the pathogenesis of asthma. To investigate the in vitro effect of Th17 cytokines on the proliferation and survival of airway smooth muscle cells (ASMCs), human ASMCs from asthmatic and nonasthmatic subjects were incubated with IL-17A, IL-17F, or IL-22. The aforementioned cytokines demonstrated an ability to promote proliferation and survival of ASMCs from asthmatic and nonasthmatic subjects, which were mediated by selective activation of their corresponding receptors on ASMCs, including IL-17RA, IL-17RC, or IL-22R1, respectively. IL-17A and IL-17F-induced proliferation of ASMCs was dependent on ERK1/2 MAPK pathway, while IL-22-induced proliferation involved both ERK1/2 MAPK and NF-κB pathways. The involvement of signaling pathways was further confirmed by the inhibition of proliferation by knockdown of ERK1/2 MAPK or NF-κB p65 expression with pathway-specific siRNA. Together, our results show that Th17-associated cytokines promote proliferation and reduce the apoptotic rate of human ASMCs, raising the possibility that Th17 cytokines may contribute to increasing airway smooth muscle mass and airway remodeling in asthma.


Assuntos
Proliferação de Células/efeitos dos fármacos , Citocinas/farmacologia , Miócitos de Músculo Liso/efeitos dos fármacos , Células Th17/metabolismo , Apoptose/efeitos dos fármacos , Asma/metabolismo , Asma/patologia , Benzamidas/farmacologia , Brônquios/metabolismo , Brônquios/patologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Imuno-Histoquímica , Interleucina-17/farmacologia , Interleucinas/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Interferência de RNA , Receptores de Interleucina/metabolismo , Receptores de Interleucina-17/metabolismo , Sesquiterpenos/farmacologia , Sesquiterpenos de Guaiano , Transdução de Sinais/efeitos dos fármacos , Interleucina 22
8.
FASEB J ; 26(4): 1704-16, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22247333

RESUMO

Asthma is a chronic inflammatory disease that is associated with airway remodeling, including hyperplasia of airway epithelial cells and airway smooth muscle cells, and goblet cell differentiation. We wished to address the potential role of histamine, a key biogenic amine involved in allergic reactions, in airway remodeling through the epidermal growth factor receptor (EGFR) pathway. Here, we demonstrate that histamine releases 2 EGFR ligands, amphiregulin and heparin-binding epidermal growth factor-like growth factor (HB-EGF), from airway epithelial cells. Amphiregulin and HB-EGF were expressed in airway epithelium of patients with asthma. Histamine up-regulated their mRNA expression (amphiregulin 3.2-fold, P<0.001; HB-EGF 2.3-fold, P<0.05) and triggered their release (amphiregulin EC(50) 0.50 µM, 31.2 ± 2.7 pg/ml with 10 µM histamine, P<0.01; HB-EGF EC(50) 0.54 µM, 78.5 ± 1.8 pg/ml with 10 µM histamine, P<0.001) compared to vehicle control (amphiregulin 19.3 ± 0.9 pg/ml; HB-EGF 60.2 ± 1.0 pg/ml), in airway epithelial cells. Histamine increased EGFR phosphorylation (2.1-fold by Western blot analysis) and induced goblet cell differentiation (CLCA1 up-regulation by real-time qPCR) in normal human bronchial epithelial (NHBE) cells. Moreover, amphiregulin and HB-EGF caused proliferation and migration of both NHBE cells and human airway smooth muscle cells. These results suggest that histamine may induce airway remodeling via the epithelial-derived EGFR ligands amphiregulin and HB-EGF.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Brônquios/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , Histamina/farmacologia , Adulto , Anfirregulina , Asma/metabolismo , Asma/patologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular , Proliferação de Células , Família de Proteínas EGF , Células Epiteliais/citologia , Glicoproteínas/genética , Glicoproteínas/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Ligantes , Pessoa de Meia-Idade , Receptores Histamínicos H1/metabolismo , Adulto Jovem
9.
Pulm Pharmacol Ther ; 26(1): 13-23, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22561160

RESUMO

Smooth muscle comprises a key functional component of both the airways and their supporting vasculature. Dysfunction of smooth muscle contributes to and exacerbates a host of breathing-associated pathologies such as asthma, chronic obstructive pulmonary disease and pulmonary hypertension. These diseases may be marked by airway and/or vascular smooth muscle hypertrophy, proliferation and hyper-reactivity, and related conditions such as fibrosis and extracellular matrix remodeling. This review will focus on the contribution of airway or vascular smooth dysfunction to common airway diseases.


Assuntos
Asma/fisiopatologia , Hipertensão Pulmonar/fisiopatologia , Músculo Liso/patologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Remodelação das Vias Aéreas , Animais , Hiper-Reatividade Brônquica/fisiopatologia , Proliferação de Células , Humanos , Hipertrofia , Músculo Liso/citologia , Músculo Liso Vascular/citologia , Músculo Liso Vascular/patologia
10.
Pulm Pharmacol Ther ; 26(1): 24-36, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22967819

RESUMO

Asthma is a chronic obstructive airway disease characterised by airway hyperresponsiveness (AHR) and airway wall remodelling. The effector of airway narrowing is the contraction of airway smooth muscle (ASM), yet the question of whether an inherent or acquired dysfunction in ASM contractile function plays a significant role in the disease pathophysiology remains contentious. The difficulty in determining the role of ASM lies in limitations with the models used to assess contraction. In vivo models provide a fully integrated physiological response but ASM contraction cannot be directly measured. Ex vivo and in vitro models can provide more direct assessment of ASM contraction but the loss of factors that may modulate ASM responsiveness and AHR, including interaction between multiple cell types and disruption of the mechanical environment, precludes a complete understanding of the disease process. In this review we detail key advantages of common in vivo, ex vivo and in vitro models of ASM contraction, as well as emerging tissue engineered models of ASM and whole airways. We also highlight important findings from each model with respect to the pathophysiology of asthma.


Assuntos
Asma/fisiopatologia , Modelos Biológicos , Músculo Liso/metabolismo , Animais , Hiper-Reatividade Brônquica/fisiopatologia , Modelos Animais de Doenças , Humanos , Contração Muscular/fisiologia , Engenharia Tecidual
11.
J Allergy Clin Immunol ; 130(4): 977-85.e6, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22698519

RESUMO

BACKGROUND: Airway smooth muscle cell (ASMC) migration is one of the proposed mechanisms underlying the increased airway smooth muscle mass seen in airway remodeling of patients with severe asthma. IL-17-related cytokines are a new subgroup of inflammatory mediators that have been suggested to play a role in regulating smooth muscle function. We hypothesized that IL-17-induced chemokine production from smooth muscle cells can contribute to migration of additional smooth muscle cells in the airways of asthmatic patients. OBJECTIVE: We sought to investigate the effect of IL-17 on smooth muscle-derived chemokines and to examine the mechanisms involved in their production and contribution to the increase in airway smooth muscle migration. METHODS: The effect of IL-17-induced supernatants on human ASMC migration was investigated. IL-17-induced growth-related oncogene (GRO) production and mRNA expression was assessed by using ELISA and RT-PCR, respectively. The direct effect of GROs on ASMC migration and the involvement of the CXCR2 receptor were also examined. RESULTS: IL-17-induced supernatants promoted ASMC migration. After IL-17 stimulation, GROs were the most abundant chemokines produced from ASMCs, and blocking their effect by using neutralizing antibodies significantly inhibited ASMC migration. In addition, a combination of recombinant human GRO-α, GRO-ß, and GRO-γ was able to promote significant migration of ASMCs that was mediated through the CXCR2 receptor. CONCLUSION: These findings suggest that IL-17-induced GROs can be an important mediator of ASMC migration and therefore might contribute to the pathogenesis of airway remodeling in asthmatic patients.


Assuntos
Comunicação Autócrina , Brônquios/citologia , Movimento Celular , Quimiocina CXCL1/fisiologia , Interleucina-17/farmacologia , Miócitos de Músculo Liso/fisiologia , Movimento Celular/efeitos dos fármacos , Quimiocina CXCL1/genética , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Humanos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Receptores de Interleucina-8B/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
12.
Am J Physiol Lung Cell Mol Physiol ; 303(1): L54-63, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22523281

RESUMO

Ovalbumin (OVA) is the most frequently used allergen in animal models of asthma. Lipopolysaccharide (LPS) contaminating commercial OVA may modulate the evoked airway inflammatory response to OVA. However, the effect of LPS in OVA on airway remodeling, especially airway smooth muscle (ASM) has not been evaluated. We hypothesized that LPS in commercial OVA may enhance allergen-induced airway inflammation and remodeling. Brown Norway rats were sensitized with OVA on day 0. PBS, OVA, or endotoxin-free OVA (Ef-OVA) was instilled intratracheally on days 14, 19, 24. Bronchoalveolar lavage (BAL) fluid, lung, and intrathoracic lymph node tissues were collected 48 h after the last challenge. Immunohistochemistry for α-smooth muscle actin, Periodic-Acid-Schiff staining, and real-time qPCR were performed. Airway hyperresponsiveness (AHR) was also measured. BAL fluid macrophages, eosinophils, neutrophils, and lymphocytes were increased in OVA-challenged animals, and macrophages and neutrophils were significantly lower in Ef-OVA-challenged animals. The ASM area in larger airways was significantly increased in both OVA and Ef-OVA compared with PBS-challenged animals. The mRNA expression of IFN-γ and IL-13 in lung tissues and IL-4 in lymph nodes was significantly increased by both OVA and Ef-OVA compared with PBS and were not significantly different between OVA and Ef-OVA. Monocyte chemoattractant protein (MCP)-1 in BAL fluid and AHR were significantly increased in OVA but not in Ef-OVA. LPS contamination in OVA contributes to the influx of macrophages and MCP-1 increase in the airways and to AHR after OVA challenges but does not affect OVA-induced Th1 and Th2 cytokine expression, goblet cell hyperplasia, and ASM remodeling.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Remodelação das Vias Aéreas/imunologia , Asma/imunologia , Inflamação/imunologia , Lipopolissacarídeos/imunologia , Ovalbumina/imunologia , Animais , Asma/induzido quimicamente , Asma/metabolismo , Asma/patologia , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/patologia , Líquido da Lavagem Broncoalveolar/imunologia , Quimiocina CCL2/imunologia , Quimiocina CXCL1/imunologia , Modelos Animais de Doenças , Contaminação de Medicamentos , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Eosinófilos/metabolismo , Eosinófilos/patologia , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Hiperplasia/imunologia , Hiperplasia/patologia , Inflamação/induzido quimicamente , Inflamação/patologia , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-13/imunologia , Interleucina-13/metabolismo , Lipopolissacarídeos/farmacologia , Linfonodos/imunologia , Linfonodos/metabolismo , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Músculo Liso/efeitos dos fármacos , Músculo Liso/imunologia , Músculo Liso/metabolismo , Músculo Liso/patologia , NF-kappa B/imunologia , NF-kappa B/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Ovalbumina/farmacologia , Ratos , Ratos Endogâmicos BN
13.
Am J Physiol Lung Cell Mol Physiol ; 302(8): L736-45, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22287614

RESUMO

Sphingosine-1-phosphate (S1P) is an immunomodulatory lipid mediator that plays an important role in lymphocyte trafficking. Elevated levels of S1P are found in bronchoalveolar lavage (BAL) fluid of patients with asthma; however, its role in disease is not known. FTY720, a synthetic analog of S1P, has been shown to abrogate allergic inflammation and airway hyperresponsiveness following acute allergen challenge. However, its effects on asthmatic airway remodeling induced by repeated allergen exposure are unknown. Ovalbumin (OVA)-sensitized rats were challenged on days 14, 19, and 24 after sensitization. FTY720 or vehicle (PBS) therapy was administered 1 h prior to each challenge. BAL fluid and quantitative histological analysis were performed 48 h after the last challenge. FTY720 inhibited OVA-induced features of airway remodeling including increased airway smooth muscle mass and bronchial neovascularization, without affecting lymphocyte numbers in secondary lymphoid organs. Furthermore, CD3+ cells adjacent to airway smooth muscle bundles were increased in OVA-challenged rats but the increase was inhibited by FTY720. There was an expansion of bronchus-associated lymphoid tissue following FTY720 treatment of OVA-challenged animals. Real-time quantitative PCR revealed that Th2-associated transcription factors were inhibited following FTY720 therapy. Airway remodeling is a cardinal feature of severe asthma. These results demonstrate that allergen-driven airway remodeling can be inhibited by FTY720, offering potential new therapies for the treatment of severe asthma.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Alérgenos/efeitos adversos , Imunossupressores/uso terapêutico , Lisofosfolipídeos/agonistas , Lisofosfolipídeos/uso terapêutico , Propilenoglicóis/uso terapêutico , Esfingosina/análogos & derivados , Animais , Antiasmáticos/uso terapêutico , Asma/tratamento farmacológico , Brônquios/irrigação sanguínea , Brônquios/efeitos dos fármacos , Brônquios/patologia , Líquido da Lavagem Broncoalveolar , Complexo CD3/análise , Cloridrato de Fingolimode , Masculino , Músculo Liso/efeitos dos fármacos , Ratos , Índice de Gravidade de Doença , Esfingosina/agonistas , Esfingosina/uso terapêutico , Resultado do Tratamento
14.
J Allergy Clin Immunol ; 127(4): 1046-53.e1-2, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21345484

RESUMO

BACKGROUND: Migration of airway smooth muscle cells (ASMCs) might contribute to increased airway smooth muscle mass in asthma. T(H)17 cells and T(H)17-associated cytokines are involved in the pathogenesis of asthma and might also contribute to airway remodeling. OBJECTIVE: We sought to explore the possibility that migration of ASMCs might contribute to airway remodeling through the action of T(H)17-related cytokines. METHODS: The effect of exogenous T(H)17 cytokines on ex vivo human ASMC migration was investigated by using a chemotaxis assay. The involvement of signaling pathways, including p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase 1/2 MAPK, nuclear factor κB, and phosphoinositide 3-kinase, was also examined. RESULTS: We demonstrated that IL-17A, IL-17F, and IL-22 promote migration in a dose-dependent manner. We further demonstrated that ASMCs express receptors for IL-17RA, IL-17RC, and IL-22R1. Using mAbs directed against these receptors, we confirmed that T(H)17-associated cytokine-induced migration was dependent on selective receptor activation. Moreover, IL-17A and IL-17F exert their effects through signaling pathways that are distinct from those used by IL-22. The p38 MAPK inhibitor BIRB0796 inhibited the migration induced by IL-17A and IL-17F. PS1145, an inhibitor of nuclear factor κB, abolished the IL-22-induced migration. CONCLUSION: These data raise the possibility that T(H)17-associated cytokines promote human ASMC migration in vivo and suggest an important new mechanism for the promotion of airway remodeling in asthma.


Assuntos
Remodelação das Vias Aéreas/fisiologia , Movimento Celular/fisiologia , Citocinas/metabolismo , Miócitos de Músculo Liso/citologia , Células Th17/metabolismo , Asma/imunologia , Asma/metabolismo , Asma/fisiopatologia , Separação Celular , Citocinas/imunologia , Citometria de Fluxo , Humanos , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais/fisiologia , Células Th17/imunologia
15.
Am J Respir Cell Mol Biol ; 45(5): 984-90, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21493783

RESUMO

Severe or refractory asthma affects 5 to 15% of all patients with asthma, but is responsible for more than half of the health burden associated with the disease. Severe asthma is characterized by a dramatic increase in smooth muscle and airway inflammation. Although glucocorticoids are the mainstay of treatment in asthma, they are unable to fully control the disease in individuals with severe asthma. We found that airway smooth muscle cells (ASMCs) from individuals with severe asthma showed elevated activities of the ERK1/ERK2 and p38 MAPK pathways despite treatment with oral and inhaled glucocorticoids, which increased the expression of DUSP1, a phosphatase shown to limit p38 MAPK activity. In ex vivo ASMCs, TNF-α but not IL-17A induced expression of the neutrophil chemoattractant CXCL8. Moreover, TNF-α led to up-regulation of the ERK1/ERK2 and p38 MAPKs pathways, with only the latter being sensitive to pretreatment with the glucocorticoid dexamethasone. In contrast to epithelial and endothelial cells, TNF-α-stimulated CXCL8 synthesis was dependent on ERK1/ERK2 but not on p38 MAPK. Moreover, suppressing ERK1/ERK2 activation prevented neutrophil recruitment by ASMCs, whereas suppressing p38 MAPK activity had no impact. Taken together, these results highlight the ERK1/ERK2 MAPK cascade as a novel and attractive target in severe asthma because the activation of this pathway is insensitive to the action of glucocorticoids and is involved in neutrophil recruitment, contributing the to inflammation seen in the disease.


Assuntos
Asma/metabolismo , Interleucina-8/biossíntese , Sistema de Sinalização das MAP Quinases , Neutrófilos/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Antiasmáticos/uso terapêutico , Asma/tratamento farmacológico , Asma/patologia , Células Cultivadas , Fosfatase 1 de Especificidade Dupla/biossíntese , Feminino , Glucocorticoides/uso terapêutico , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Índice de Gravidade de Doença , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima , Adulto Jovem
16.
Am J Physiol Lung Cell Mol Physiol ; 300(6): L958-66, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21460123

RESUMO

IL-13 is an important mediator of allergen-induced airway hyperresponsiveness. This Th2 cytokine, produced by activated T cells, mast cells, and basophils, has been described to mediate a part of its effects independently of inflammation through a direct modulation of the airway smooth muscle (ASM). Previous studies demonstrated that IL-13 induces hyperresponsiveness in vivo and enhances calcium signaling in response to contractile agonists in vitro. We hypothesized that IL-13 drives human ASM cells (ASMC) to a procontractile phenotype. We evaluated ASM phenotype through the ability of the cell to proliferate, to contract, and to express contractile protein in response to IL-13. We found that IL-13 inhibits human ASMC proliferation (expression of Ki67 and bromodeoxyuridine incorporation) in response to serum, increasing the number of cells in G0/G1 phase and decreasing the number of cells in G2/M phases of the cell cycle. IL-13-induced inhibition of proliferation was not dependent on signal transducer and activator of transcription-6 but was IL-13Rα2 receptor dependent and associated with a decrease of Kruppel-like factor 5 expression. In parallel, IL-13 increased calcium signaling and the stiffening of human ASMC in response to 1 µM histamine, whereas the stiffening response to 30 mM KCl was unchanged. However, Western blot analysis showed unchanged levels of calponin, smooth muscle α-actin, vinculin, and myosin. We conclude that IL-13 inhibits proliferation via the IL-13Rα2 receptor and induces hypercontractility of human ASMC without change of the phenotypic markers of contractility.


Assuntos
Brônquios/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Interleucina-13/farmacologia , Contração Muscular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Sistema Respiratório/efeitos dos fármacos , Western Blotting , Brônquios/citologia , Brônquios/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Proteínas Contráteis/metabolismo , Histamina/farmacologia , Agonistas dos Receptores Histamínicos/farmacologia , Humanos , Subunidade alfa1 de Receptor de Interleucina-13/genética , Subunidade alfa1 de Receptor de Interleucina-13/metabolismo , Microscopia de Força Atômica , Fenótipo , RNA Mensageiro/genética , Sistema Respiratório/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/metabolismo , Transdução de Sinais
17.
Eur J Immunol ; 40(6): 1590-602, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20373517

RESUMO

EGF receptor (EGFR) is involved in cell differentiation and proliferation in airways and may trigger cytokine production by T cells. We hypothesized that EGFR inhibition at the time of allergic sensitization may affect subsequent immune reactions. Brown Norway rats were sensitized with OVA, received the EGFR tyrosine kinase inhibitor, AG1478 from days 0 to 7 and OVA challenge on day 14. OVA-specific IgE in serum and cytokines and chemokines in BAL were measured 24 h after challenge. To evaluate effects on airway hyperresponsiveness (AHR), rats were sensitized, treated with AG1478, intranasally challenged, and then AHR was assessed. Furthermore chemotactic activity of BALF for CD4(+) T cells was examined. The eosinophils, neutrophils and lymphocytes in BAL were increased by OVA and only the lymphocytes were reduced by AG1478. OVA significantly enhanced IL-6 concentration in BAL, which was inhibited by AG1478. However AHR, OVA-specific IgE and IL-4 mRNA expression in CD4(+) T cells were not affected by AG1478. BALF from OVA-sensitized/challenged rats induced CD4(+) T-cell migration, which was inhibited by both AG1478 treatment in vivo and neutralization of IL-6 in vitro. EGFR activation during sensitization may affect the subsequent influx of CD4(+) T cells to airways, mainly mediated through IL-6.


Assuntos
Asma/imunologia , Receptores ErbB/imunologia , Interleucina-6/imunologia , Linfócitos T/imunologia , Alérgenos/imunologia , Animais , Asma/metabolismo , Western Blotting , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Separação Celular , Quimiotaxia de Leucócito/efeitos dos fármacos , Quimiotaxia de Leucócito/imunologia , Citocinas/biossíntese , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Receptores ErbB/metabolismo , Citometria de Fluxo , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Ovalbumina/imunologia , Quinazolinas , Ratos , Ratos Endogâmicos BN , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/efeitos dos fármacos , Tirfostinas/farmacologia
18.
J Allergy Clin Immunol ; 125(5): 1037-1045.e3, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20451038

RESUMO

BACKGROUND: The origin of the excess airway smooth muscle in asthma and when in the course of the disease it is acquired are uncertain. OBJECTIVES: We examined the relative sensitivities of 2 markers of proliferation, proliferating cell nuclear antigen (PCNA) and Ki 67, in airway smooth muscle in vivo and in vitro. We then studied whether muscle remodeling is a dynamic process in asthma by quantifying proliferation rate and area. Finally we examined heparin-binding epidermal growth factor as a biomarker of remodeling. METHODS: We obtained bronchoscopic biopsies from subjects with moderate or severe asthma and healthy controls (n = 9/group). For in vitro studies, airway smooth muscle cells were cultured from tracheas of transplant donors. The proliferation rate was quantified from PCNA and Ki 67, co-localized to smooth muscle-specific alpha-actin cells in vivo. Muscle area was assessed morphometrically. We examined the expression of heparin-binding epidermal growth factor on tissues by in situ hybridization and by immunohistochemistry and in cells in culture by RT-PCR. RESULTS: Proliferating cell nuclear antigen and Ki 67 were highly correlated, but PCNA was a significantly more sensitive marker both in vivo and in vitro. Muscle area was 3.4-fold greater and the fraction of PCNA(+) nuclei in muscle was 5-fold greater in severe asthma than in healthy subjects. Heparin-binding epidermal growth factor was upregulated in proliferating muscle cells in culture and in airway smooth muscle in severe asthmatic tissues. CONCLUSION: Proliferating cell nuclear antigen is a highly sensitive marker of proliferation and heparin-binding epidermal growth factor is a potential biomarker during active remodeling of ASM in severe asthma.


Assuntos
Remodelação das Vias Aéreas/fisiologia , Asma/fisiopatologia , Músculo Liso , Índice de Gravidade de Doença , Adulto , Asma/patologia , Proliferação de Células , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Feminino , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Antígeno Ki-67/metabolismo , Masculino , Pessoa de Meia-Idade , Músculo Liso/citologia , Músculo Liso/metabolismo , Músculo Liso/patologia , Músculo Liso/fisiopatologia , Reação em Cadeia da Polimerase , Antígeno Nuclear de Célula em Proliferação/metabolismo
19.
Am J Physiol Lung Cell Mol Physiol ; 299(6): L808-15, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20889674

RESUMO

Airway epithelial cells release proinflammatory mediators that may contribute to airway remodeling and leukocyte recruitment. We explored the hypothesis that leukotriene D4 (LTD4) may trigger the release of proremodeling factors through activation of the EGF receptor (EGFR). We particularly focused on the effects of LTD4 on release of heparin-binding EGF-like factor (HB-EGF) and IL-8 (CXCL8), a potent neutrophil chemoattractant that may be released downstream of EGFR activation. To address this hypothesis, both primary (NHBE) and transformed bronchial human epithelial cells (BEAS-2B) were grown on an air-liquid interface and stimulated with LTD4. HB-EGF and CXCL8 were evaluated by ELISA in cell culture supernatants. To explore the EGFR signaling pathway, we used a broad-spectrum matrix metalloproteinase (MMP) inhibitor, GM-6001, two selective EGFR tyrosine kinase inhibitors, AG-1478 and PD-153035, an HB-EGF neutralizing antibody, and a specific small interfering RNA (siRNA) against the EGFR. Expression of the CysLT1 cysteinyl leukotriene receptor was demonstrated by RT-PCR and immunocytochemistry in both BEAS-2B and NHBE cells. Four hours after stimulation with LTD4, HB-EGF and CXCL8 were significantly increased in cell culture supernatant. GM-6001 and montelukast, a specific CysLT1 receptor antagonist, blocked the LTD4-induced increase in HB-EGF. All inhibitors/antagonists decreased LTD4-induced CXCL8 release. siRNA against EGFR abrogated CXCL8 release following stimulation with LTD4 and exogenous HB-EGF. These findings suggest LTD4 induced EGFR transactivation through the release of HB-EGF in human bronchial epithelial cells with downstream release of CXCL8. These effects may contribute to epithelial-mediated airway remodeling in asthma and other conditions associated with cysteinyl leukotriene release.


Assuntos
Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Interleucina-8/metabolismo , Leucotrieno D4/farmacologia , Mucosa Respiratória/citologia , Linhagem Celular , Relação Dose-Resposta a Droga , Células Epiteliais/citologia , Receptores ErbB/genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Humanos , Leucotrieno D4/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
20.
Respir Res ; 11: 139, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20929541

RESUMO

BACKGROUND: Human hemokinin-1 (hHK-1) and endokinins are peptides of the tachykinin family encoded by the TAC4 gene. TAC4 and hHK-1 expression as well as effects of hHK-1 in the lung and airways remain however unknown and were explored in this study. METHODS: RT-PCR analysis was performed on human bronchi to assess expression of tachykinin and tachykinin receptors genes. Enzyme immunoassay was used to quantify hHK-1, and effects of hHK-1 and endokinins on contraction of human and guinea pig airways were then evaluated, as well as the role of hHK-1 on cytokines production by human lung parenchyma or bronchi explants and by lung macrophages. RESULTS: In human bronchi, expression of the genes that encode for hHK-1, tachykinin NK1-and NK2-receptors was demonstrated. hHK-1 protein was found in supernatants from explants of human bronchi, lung parenchyma and lung macrophages. Exogenous hHK-1 caused a contractile response in human bronchi mainly through the activation of NK2-receptors, which blockade unmasked a NK1-receptor involvement, subject to a rapid desensitization. In the guinea pig trachea, hHK-1 caused a concentration-dependant contraction mainly mediated through the activation of NK1-receptors. Endokinin A/B exerted similar effects to hHK-1 on both human bronchi and guinea pig trachea, whereas endokinins C and D were inactive. hHK-1 had no impact on the production of cytokines by explants of human bronchi or lung parenchyma, or by human lung macrophages. CONCLUSIONS: We demonstrate endogenous expression of TAC4 in human bronchi, the encoded peptide hHK-1 being expressed and involved in contraction of human and guinea pig airways.


Assuntos
Brônquios/fisiologia , Broncoconstrição/fisiologia , Regulação da Expressão Gênica , Taquicininas/biossíntese , Animais , Feminino , Cobaias , Humanos , Masculino , Especificidade da Espécie , Taquicininas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA