Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Bioinformatics ; 40(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38317055

RESUMO

MOTIVATION: Many membrane peripheral proteins have evolved to transiently interact with the surface of (curved) lipid bilayers. Currently, methods to quantitatively predict sensing and binding free energies for protein sequences or structures are lacking, and such tools could greatly benefit the discovery of membrane-interacting motifs, as well as their de novo design. RESULTS: Here, we trained a transformer neural network model on molecular dynamics data for >50 000 peptides that is able to accurately predict the (relative) membrane-binding free energy for any given amino acid sequence. Using this information, our physics-informed model is able to classify a peptide's membrane-associative activity as either non-binding, curvature sensing, or membrane binding. Moreover, this method can be applied to detect membrane-interaction regions in a wide variety of proteins, with comparable predictive performance as state-of-the-art data-driven tools like DREAMM, PPM3, and MODA, but with a wider applicability regarding protein diversity, and the added feature to distinguish curvature sensing from general membrane binding. AVAILABILITY AND IMPLEMENTATION: We made these tools available as a web server, coined Protein-Membrane Interaction predictor (PMIpred), which can be accessed at https://pmipred.fkt.physik.tu-dortmund.de.


Assuntos
Proteínas de Membrana , Peptídeos , Peptídeos/química , Proteínas de Membrana/química , Sequência de Aminoácidos , Redes Neurais de Computação , Física
2.
J Biol Chem ; 298(9): 102236, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35809643

RESUMO

The twin-arginine translocation (Tat) system serves to translocate folded proteins across energy-transducing membranes in bacteria, archaea, plastids, and some mitochondria. In Escherichia coli, TatA, TatB, and TatC constitute functional translocons. TatA and TatB both possess an N-terminal transmembrane helix (TMH) followed by an amphipathic helix. The TMHs of TatA and TatB generate a hydrophobic mismatch with the membrane, as the helices comprise only 12 consecutive hydrophobic residues; however, the purpose of this mismatch is unclear. Here, we shortened or extended this stretch of hydrophobic residues in either TatA, TatB, or both and analyzed effects on translocon function and assembly. We found the WT length helices functioned best, but some variation was clearly tolerated. Defects in function were exacerbated by simultaneous mutations in TatA and TatB, indicating partial compensation of mutations in each by the other. Furthermore, length variation in TatB destabilized TatBC-containing complexes, revealing that the 12-residue-length is important but not essential for this interaction and translocon assembly. To also address potential effects of helix length on TatA interactions, we characterized these interactions by molecular dynamics simulations, after having characterized the TatA assemblies by metal-tagging transmission electron microscopy. In these simulations, we found that interacting short TMHs of larger TatA assemblies were thinning the membrane and-together with laterally-aligned tilted amphipathic helices-generated a deep V-shaped membrane groove. We propose the 12 consecutive hydrophobic residues may thus serve to destabilize the membrane during Tat transport, and their conservation could represent a delicate compromise between functionality and minimization of proton leakage.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Proteínas de Membrana Transportadoras , Sistema de Translocação de Argininas Geminadas , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Conformação Proteica em alfa-Hélice , Prótons , Sistema de Translocação de Argininas Geminadas/metabolismo
3.
Bioconjug Chem ; 34(2): 345-357, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36705971

RESUMO

Coiled-coil peptides are high-affinity, selective, self-assembling binding motifs, making them attractive components for the preparation of functional biomaterials. Photocontrol of coiled-coil self-assembly allows for the precise localization of their activity. To rationally explore photoactivity in a model coiled coil, three azobenzene-containing amino acids were prepared and substituted into the hydrophobic core of the E3/K3 coiled-coil heterodimer. Two of the non-natural amino acids, APhe1 and APhe2, are based on phenylalanine and differ in the presence of a carboxylic acid group. These have previously been demonstrated to modulate protein activity. When incorporated into peptide K3, coiled-coil binding strength was affected upon isomerization, with the two variants differing in their most folded state. The third azobenzene-containing amino acid, APgly, is based on phenylglycine and was prepared to investigate the effect of amino acid size on photoisomerization. When APgly is incorporated into the coiled coil, a 4.7-fold decrease in folding constant is observed upon trans-to-cis isomerization─the largest difference for all three amino acids. Omitting the methylene group between azobenzene and α-carbon was theorized to both position the diazene of APgly closer to the hydrophobic amino acids and reduce the possible rotations of the amino acid, with molecular dynamics simulations supporting these hypotheses. These results demonstrate the ability of photoswitchable amino acids to control coiled-coil assembly through disruption of the hydrophobic interface, a strategy that should be widely applicable.


Assuntos
Aminoácidos Básicos , Peptídeos , Sequência de Aminoácidos , Dicroísmo Circular , Peptídeos/química , Aminoácidos/química
4.
Nature ; 551(7682): 634-638, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29088698

RESUMO

Membrane fusion in eukaryotic cells mediates the biogenesis of organelles, vesicular traffic between them, and exo- and endocytosis of important signalling molecules, such as hormones and neurotransmitters. Distinct tasks in intracellular membrane fusion have been assigned to conserved protein systems. Tethering proteins mediate the initial recognition and attachment of membranes, whereas SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein complexes are considered as the core fusion engine. SNARE complexes provide mechanical energy to distort membranes and drive them through a hemifusion intermediate towards the formation of a fusion pore. This last step is highly energy-demanding. Here we combine the in vivo and in vitro fusion of yeast vacuoles with molecular simulations to show that tethering proteins are critical for overcoming the final energy barrier to fusion pore formation. SNAREs alone drive vacuoles only into the hemifused state. Tethering proteins greatly increase the volume of SNARE complexes and deform the site of hemifusion, which lowers the energy barrier for pore opening and provides the driving force. Thereby, tethering proteins assume a crucial mechanical role in the terminal stage of membrane fusion that is likely to be conserved at multiple steps of vesicular traffic. We therefore propose that SNAREs and tethering proteins should be considered as a single, non-dissociable device that drives fusion. The core fusion machinery may then be larger and more complex than previously thought.


Assuntos
Fusão de Membrana , Proteínas SNARE/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Ligantes , Simulação de Dinâmica Molecular , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Vacúolos/metabolismo
5.
EMBO J ; 37(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30120144

RESUMO

Constitutive membrane fusion within eukaryotic cells is thought to be controlled at its initial steps, membrane tethering and SNARE complex assembly, and to rapidly proceed from there to full fusion. Although theory predicts that fusion pore expansion faces a major energy barrier and might hence be a rate-limiting and regulated step, corresponding states with non-expanding pores are difficult to assay and have remained elusive. Here, we show that vacuoles in living yeast are connected by a metastable, non-expanding, nanoscopic fusion pore. This is their default state, from which full fusion is regulated. Molecular dynamics simulations suggest that SNAREs and the SM protein-containing HOPS complex stabilize this pore against re-closure. Expansion of the nanoscopic pore to full fusion can thus be triggered by osmotic pressure gradients, providing a simple mechanism to rapidly adapt organelle volume to increases in its content. Metastable, nanoscopic fusion pores are then not only a transient intermediate but can be a long-lived, physiologically relevant and regulated state of SNARE-dependent membrane fusion.


Assuntos
Fusão de Membrana , Simulação de Dinâmica Molecular , Proteínas SNARE , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Vacúolos , Proteínas SNARE/química , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/química , Vacúolos/genética , Vacúolos/metabolismo
6.
Proc Natl Acad Sci U S A ; 116(7): 2571-2576, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30700547

RESUMO

Biological membrane fusion proceeds via an essential topological transition of the two membranes involved. Known players such as certain lipid species and fusion proteins are generally believed to alter the free energy and thus the rate of the fusion reaction. Quantifying these effects by theory poses a major challenge since the essential reaction intermediates are collective, diffusive and of a molecular length scale. We conducted molecular dynamics simulations in conjunction with a state-of-the-art string method to resolve the minimum free-energy path of the first fusion intermediate state, the so-called stalk. We demonstrate that the isolated transmembrane domains (TMDs) of fusion proteins such as SNARE molecules drastically lower the free energy of both the stalk barrier and metastable stalk, which is not trivially explained by molecular shape arguments. We relate this effect to the local thinning of the membrane (negative hydrophobic mismatch) imposed by the TMDs which favors the nearby presence of the highly bent stalk structure or prestalk dimple. The distance between the membranes is the most crucial determinant of the free energy of the stalk, whereas the free-energy barrier changes only slightly. Surprisingly, fusion enhancing lipids, i.e., lipids with a negative spontaneous curvature, such as PE lipids have little effect on the free energy of the stalk barrier, likely because of its single molecular nature. In contrast, the lipid shape plays a crucial role in overcoming the hydration repulsion between two membranes and thus rather lowers the total work required to form a stalk.


Assuntos
Proteínas SNARE/metabolismo , Termodinâmica , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/metabolismo , Fusão de Membrana , Simulação de Dinâmica Molecular
7.
Biochem J ; 477(1): 243-258, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31951000

RESUMO

Physiological membrane vesicles are built to separate reaction spaces in a stable manner, even when they accidentally collide or are kept in apposition by spatial constraints in the cell. This requires a natural resistance to fusion and mixing of their content, which originates from substantial energetic barriers to membrane fusion [1]. To facilitate intracellular membrane fusion reactions in a controlled manner, proteinaceous fusion machineries have evolved. An important open question is whether protein fusion machineries actively pull the fusion reaction over the present free energy barriers, or whether they rather catalyze fusion by lowering those barriers. At first sight, fusion proteins such as SNARE complexes and viral fusion proteins appear to act as nano-machines, which mechanically transduce force to the membranes and thereby overcome the free energy barriers [2,3]. Whether fusion proteins additionally alter the free energy landscape of the fusion reaction via catalytic roles is less obvious. This is a question that we shall discuss in this review, with particular focus on the influence of the eukaryotic SNARE-dependent fusion machinery on the final step of the reaction, the formation and expansion of the fusion pore.


Assuntos
Membranas Intracelulares/metabolismo , Fusão de Membrana/fisiologia , Proteínas SNARE , Vacúolos/metabolismo , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Leveduras/metabolismo
8.
Biomacromolecules ; 21(2): 783-792, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31887030

RESUMO

The islet amyloid polypeptide (IAPP) is a regulatory peptide that can aggregate into fibrillar structures associated with type 2 diabetes. In this study, the IAPP21-27 segment was modified with a biotin linker at the N-terminus (Btn-GNNFGAIL) to immobilize peptide fibrils on streptavidin-coated surfaces. Key residues for fibril formation of the N-terminal biotinylated IAPP21-27 segment were identified by using an alanine scanning approach combined with molecular dynamics simulations, thioflavin T fluorescence measurements, and scanning electron microscopy. Significant contributions of phenylalanine (F23), leucine (L27), and isoleucine (I26) for the fibrillation of the short peptide segment were identified. The fibril morphologies of the peptide variants differed depending on their primary sequence, ranging from flexible and semiflexible to stiff and crystal-like structures. These insights could advance the design of new functional hybrid bionanomaterials and fibril-engineered surface coatings using short peptide segments. To validate this concept, the biotinylated fibrils were immobilized on streptavidin-coated surfaces under spatial control.


Assuntos
Biotinilação/métodos , Variação Genética/genética , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Polimorfismo Genético/genética , Humanos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Propriedades de Superfície
9.
EMBO Rep ; 17(11): 1590-1608, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27644261

RESUMO

SNAREs fuse membranes in several steps. Trans-SNARE complexes juxtapose membranes, induce hemifused stalk structures, and open the fusion pore. A recent penetration model of fusion proposed that SNAREs force the hydrophilic C-termini of their transmembrane domains through the hydrophobic core of the membrane(s). In contrast, the indentation model suggests that the C-termini open the pore by locally compressing and deforming the stalk. Here we test these models in the context of yeast vacuole fusion. Addition of small hydrophilic tags renders bilayer penetration by the C-termini energetically unlikely. It preserves fusion activity, however, arguing against the penetration model. Addition of large protein tags to the C-termini permits SNARE activation, trans-SNARE pairing, and hemifusion but abolishes pore opening. Fusion proceeds if the tags are detached from the membrane by a hydrophilic spacer or if only one side of the trans-SNARE complex carries a protein tag. Thus, both sides of a trans-SNARE complex can drive pore opening. Our results are consistent with an indentation model in which multiple SNARE C-termini cooperate in opening the fusion pore by locally deforming the inner leaflets.


Assuntos
Fusão de Membrana/fisiologia , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/fisiologia , Membrana Celular , Exocitose , Bicamadas Lipídicas , Lisossomos/fisiologia , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular
10.
Biophys J ; 112(12): 2475-2478, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28522140

RESUMO

Coarse-grained molecular dynamics simulations are applied to explore the experimentally observed ability of the liquid-ordered (lo)/liquid-disordered (ld) phase boundary to facilitate viral membrane fusion. Surprisingly, a formed fusion stalk can be both attracted (i.e., stalkophilic) and repelled (i.e., stalkophobic) by the lo/ld phase boundary. The phase boundary becomes stalkophilic if the lo phase constituents have the larger negative spontaneous curvature. In such a case, location of the highly curved stalk near the less-ordered and thus (relatively) softer boundary region becomes energetically favorable. These insights may explain why modeled viral fusion occurs preferentially near the lo/ld phase boundary.


Assuntos
Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/virologia , Internalização do Vírus , 1,2-Dipalmitoilfosfatidilcolina/química , Colesterol/química , Lipídeos de Membrana/metabolismo , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química
11.
Proc Natl Acad Sci U S A ; 111(30): 11043-8, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25024174

RESUMO

Over the past 20 years, it has been widely accepted that membrane fusion proceeds via a hemifusion step before opening of the productive fusion pore. An initial hourglass-shaped lipid structure, the fusion stalk, is formed between the adjacent membrane leaflets (cis leaflets). It remains controversial if and how fusion proteins drive the subsequent transition (expansion) of the stalk into a fusion pore. Here, we propose a comprehensive and consistent thermodynamic understanding in terms of the underlying free-energy landscape of stalk expansion. We illustrate how the underlying free energy landscape of stalk expansion and the concomitant pathway is altered by subtle differences in membrane environment, such as leaflet composition, asymmetry, and flexibility. Nonleaky stalk expansion (stalk widening) requires the formation of a critical trans-leaflet contact. The fusion machinery can mechanically enforce trans-leaflet contact formation either by directly enforcing the trans-leaflets in close proximity, or by (electrostatically) condensing the area of the cis leaflets. The rate of these fast fusion reactions may not be primarily limited by the energetics but by the forces that the fusion proteins are able to exert.


Assuntos
Membrana Celular/química , Fusão de Membrana , Modelos Químicos , Membrana Celular/metabolismo
12.
Phys Rev Lett ; 117(18): 188102, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27834997

RESUMO

A complete physical description of membrane remodeling processes, such as fusion or fission, requires knowledge of the underlying free energy landscapes, particularly in barrier regions involving collective shape changes, topological transitions, and high curvature, where Canham-Helfrich (CH) continuum descriptions may fail. To calculate these free energies using atomistic simulations, one must address not only the sampling problem due to high free energy barriers, but also an orthogonal sampling problem of combinatorial complexity stemming from the permutation symmetry of identical lipids. Here, we solve the combinatorial problem with a permutation reduction scheme to map a structural ensemble into a compact, nondegenerate subregion of configuration space, thereby permitting straightforward free energy calculations via umbrella sampling. We applied this approach, using a coarse-grained lipid model, to test the CH description of bending and found sharp increases in the bending modulus for curvature radii below 10 nm. These deviations suggest that an anharmonic bending term may be required for CH models to give quantitative energetics of highly curved states.


Assuntos
Bicamadas Lipídicas/química , Entropia , Membranas , Simulação de Dinâmica Molecular
13.
Angew Chem Int Ed Engl ; 55(37): 11242-6, 2016 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-27513605

RESUMO

The question of how amyloid fibril formation is influenced by surfaces is crucial for a detailed understanding of the process in vivo. We applied a combination of kinetic experiments and molecular dynamics simulations to elucidate how (model) surfaces influence fibril formation of the amyloid-forming sequences of prion protein SUP35 and human islet amyloid polypeptide. The kinetic data suggest that structural reorganization of the initial peptide corona around colloidal gold nanoparticles is the rate-limiting step. The molecular dynamics simulations reveal that partial physisorption to the surface results in the formation of aligned monolayers, which stimulate the formation of parallel, critical oligomers. The general mechanism implies that the competition between the underlying peptide-peptide and peptide-surface interactions must strike a balance to accelerate fibril formation.


Assuntos
Ouro/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Nanopartículas Metálicas/química , Proteínas Priônicas/química , Humanos , Cinética , Simulação de Dinâmica Molecular , Agregados Proteicos , Propriedades de Superfície
14.
Biophys J ; 116(12): 2235-2236, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31103232
15.
Biophys J ; 107(10): 2287-95, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25418297

RESUMO

The productive fusion pore in membrane fusion is generally thought to be toroidally shaped. Theoretical studies and recent experiments suggest that its formation, in some scenarios, may be preceded by an initial pore formed near the rim of the extended hemifusion diaphragm (HD), a rim-pore. This rim-pore is characterized by a nontoroidal shape that changes with size. To determine this shape as well as the free energy along the pathway of rim-pore expansion, we derived a simple analytical free energy model. We argue that dilation of HD material via expansion of a rim-pore is favored over a regular, circular pore. Further, the expanding rim-pore faces a free energy barrier that linearly increases with HD size. In contrast, the tension required to expand the rim-pore decreases with HD size. Pore flickering, followed by sudden opening, occurs when the tension in the HD competes with the line energy of the rim-pore, and the rim-pore reaches its equilibrium size before reaching the critical pore size. The experimental observation of flickering and closing fusion pores (kiss-and-run) is very well explained by the observed behavior of rim-pores. Finally, the free energy landscape of rim-pore expansion/HD dilation may very well explain why some cellular fusion reactions, in their attempt to minimize energetic costs, progress via alternative formation and dilation of microscopic hemifusion intermediates.


Assuntos
Fusão de Membrana , Simulação de Dinâmica Molecular , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Conformação Molecular , Porosidade , Termodinâmica
16.
J Chem Theory Comput ; 20(5): 1763-1776, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38413010

RESUMO

Biomolecular research traditionally revolves around comprehending the mechanisms through which peptides or proteins facilitate specific functions, often driven by their relevance to clinical ailments. This conventional approach assumes that unraveling mechanisms is a prerequisite for wielding control over functionality, which stands as the ultimate research goal. However, an alternative perspective emerges from physics-based inverse design, shifting the focus from mechanisms to the direct acquisition of functional control strategies. By embracing this methodology, we can uncover solutions that might not have direct parallels in natural systems, yet yield crucial insights into the isolated molecular elements dictating functionality. This provides a distinctive comprehension of the underlying mechanisms.In this context, we elucidate how physics-based inverse design, facilitated by evolutionary algorithms and coarse-grained molecular simulations, charts a promising course for innovating the reverse engineering of biopolymers interacting with intricate fluid phases such as lipid membranes and liquid protein phases. We introduce evolutionary molecular dynamics (Evo-MD) simulations, an approach that merges evolutionary algorithms with the Martini coarse-grained force field. This method directs the evolutionary process from random amino acid sequences toward peptides interacting with complex fluid phases such as biological lipid membranes, offering significant promises in the development of peptide-based sensors and drugs. This approach can be tailored to recognize or selectively target specific attributes such as membrane curvature, lipid composition, membrane phase (e.g., lipid rafts), and protein fluid phases. Although the resulting optimal solutions may not perfectly align with biological norms, physics-based inverse design excels at isolating relevant physicochemical principles and thermodynamic driving forces governing optimal biopolymer interaction within complex fluidic environments. In addition, we expound upon how physics-based evolution using the Evo-MD approach can be harnessed to extract the evolutionary optimization fingerprints of protein-lipid interactions from native proteins. Finally, we outline how such an approach is uniquely able to generate strategic training data for predictive neural network models that cover the whole relevant physicochemical domain. Exploring challenges, we address key considerations such as choosing a fitting fitness function to delineate the desired functionality. Additionally, we scrutinize assumptions tied to system setup, the targeted protein structure, and limitations posed by the utilized (coarse-grained) force fields and explore potential strategies for guiding evolution with limited experimental data. This discourse encapsulates the potential and remaining obstacles of physics-based inverse design, paving the way for an exciting frontier in biomolecular research.


Assuntos
Simulação de Dinâmica Molecular , Física , Termodinâmica , Peptídeos , Biopolímeros , Lipídeos
17.
Adv Mater ; 36(6): e2310872, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37988682

RESUMO

The membrane-protein interface on lipid-based nanoparticles influences their in vivo behavior. Better understanding may evolve current drug delivery methods toward effective targeted nanomedicine. Previously, the cell-selective accumulation of a liposome formulation in vivo is demonstrated, through the recognition of lipid phase-separation by triglyceride lipases. This exemplified how liposome morphology and composition can determine nanoparticle-protein interactions. Here, the lipase-induced compositional and morphological changes of phase-separated liposomes-which bear a lipid droplet in their bilayer- are investigated, and the mechanism upon which lipases recognize and bind to the particles is unravelled. The selective lipolytic degradation of the phase-separated lipid droplet is observed, while nanoparticle integrity remains intact. Next, the Tryptophan-rich loop of the lipase is identified as the region with which the enzymes bind to the particles. This preferential binding is due to lipid packing defects induced on the liposome surface by phase separation. In parallel, the existing knowledge that phase separation leads to in vivo selectivity, is utilized to generate phase-separated mRNA-LNPs that target cell-subsets in zebrafish embryos, with subsequent mRNA delivery and protein expression. Together, these findings can expand the current knowledge on selective nanoparticle-protein communications and in vivo behavior, aspects that will assist to gain control of lipid-based nanoparticles.


Assuntos
Lipossomos , Nanopartículas , Animais , Lipossomos/química , Peixe-Zebra , Nanopartículas/química , Lipase/metabolismo , Lipídeos/química , RNA Mensageiro
18.
Cell Rep ; 43(3): 113866, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38416638

RESUMO

To mount an adaptive immune response, dendritic cells must migrate to lymph nodes to present antigens to T cells. Critical to 3D migration is the nucleus, which is the size-limiting barrier for migration through the extracellular matrix. Here, we show that inflammatory activation of dendritic cells leads to the nucleus becoming spherically deformed and enables dendritic cells to overcome the typical 2- to 3-µm diameter limit for 3D migration through gaps in the extracellular matrix. We show that the nuclear shape change is partially attained through reduced cell adhesion, whereas improved 3D migration is achieved through reprogramming of the actin cytoskeleton. Specifically, our data point to a model whereby the phosphorylation of cofilin-1 at serine 41 drives the assembly of a cofilin-actomyosin ring proximal to the nucleus and enhances migration through 3D collagen gels. In summary, these data describe signaling events through which dendritic cells deform their nucleus and enhance their migratory capacity.


Assuntos
Fatores de Despolimerização de Actina , Actomiosina , Fatores de Despolimerização de Actina/metabolismo , Movimento Celular/fisiologia , Actomiosina/metabolismo , Citocinese , Cofilina 1/metabolismo , Matriz Extracelular/metabolismo , Células Dendríticas/metabolismo
19.
ACS Nano ; 17(14): 13554-13562, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37432037

RESUMO

Graphene oxide (GO) has proved itself as a nanomaterial capable of acting as a surfactant by lowering the interfacial tension of the oil-water interface due to its polar oxygen groups. However, the surfactant behavior of the pure graphene sheet─since prevention of edge oxidation in experimental setups is nontrivial─is still an unresolved issue in graphene research despite significant progress in the field in recent years. Here, we conduct both atomistic and coarse-grained simulations to demonstrate that─surprisingly─even pristine graphene, which only consists of hydrophobic carbon atoms, is attracted to the octanol-water interface and consequently reduces its surface tension by 2.3 kBT/nm2 or about 10 mN/m. Interestingly, the location of the free energy minimum is not precisely at the oil-water interface itself but is rather buried about two octanol layers into the octanol phase, being about 0.9 nm from the water phase. We demonstrate that the observed surfactant behavior is purely entropically driven and can be attributed to the unfavorable lipid-like structuring of octanol molecules at the free octanol-water interface. In essence, graphene enhances the inherent lipid-like behavior of octanol at the water interface rather than directly acting as a surfactant. Importantly, graphene does not display surfactant-like behavior in corresponding Martini coarse-grained simulations of the octanol-water system since the free liquid-liquid interface loses essential structure at the lower coarse-grained resolution. However, a similar surfactant behavior is recovered in coarse-grained simulations of longer alcohols such as dodecan-1-ol and hexadecan-1-ol. The observed discrepancies at different model resolutions enable us to construct a comprehensive model of the surfactant behavior of graphene at the octanol-water interface. The here-gained insights may facilitate the broader utilization of graphene in numerous domains of nanotechnology. Furthermore, since a drug's octanol-water partition coefficient is a crucial physicochemical parameter in rational drug discovery, we also believe that the universality of the here-illustrated entropic surfactant behavior of planar molecules deserves special attention in the drug design and development field.

20.
Sci Adv ; 9(11): eade8839, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36930719

RESUMO

Proteins can specifically bind to curved membranes through curvature-induced hydrophobic lipid packing defects. The chemical diversity among such curvature "sensors" challenges our understanding of how they differ from general membrane "binders" that bind without curvature selectivity. Here, we combine an evolutionary algorithm with coarse-grained molecular dynamics simulations (Evo-MD) to resolve the peptide sequences that optimally recognize the curvature of lipid membranes. We subsequently demonstrate how a synergy between Evo-MD and a neural network (NN) can enhance the identification and discovery of curvature sensing peptides and proteins. To this aim, we benchmark a physics-trained NN model against experimental data and show that we can correctly identify known sensors and binders. We illustrate that sensing and binding are phenomena that lie on the same thermodynamic continuum, with only subtle but explainable differences in membrane binding free energy, consistent with the serendipitous discovery of sensors.


Assuntos
Bicamadas Lipídicas , Peptídeos , Bicamadas Lipídicas/química , Peptídeos/química , Proteínas , Simulação de Dinâmica Molecular , Física
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA