Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ann Bot ; 128(1): 115-125, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-33693521

RESUMO

BACKGROUND AND AIMS: The number of plastome sequences has increased exponentially during the last decade. However, there is still little knowledge of the levels and distribution of intraspecific variation. The aims of this study were to estimate plastome diversity within Zea mays and analyse the distribution of haplotypes in connection with the landrace groups previously delimited for South American maize based on nuclear markers. METHODS: We obtained the complete plastomes of 30 South American maize landraces and three teosintes by means of next-generation sequencing (NGS) and used them in combination with data from public repositories. After quality filtering, the curated data were employed to search for single-nucleotide polymorphisms, indels and chloroplast simple sequence repeats. Exact permutational contingency tests were performed to assess associations between plastome and nuclear variation. Network and Bayesian phylogenetic analyses were used to infer evolutionary relationships among haplotypes. KEY RESULTS: Our analyses identified a total of 124 polymorphic plastome loci, with the intergenic regions psbE-rps18, petN-rpoB, trnL_UAG-ndhF and rpoC2-atpI exhibiting the highest marker densities. Although restricted in number, these markers allowed the discrimination of 27 haplotypes in a total of 51 Zea mays individuals. Andean and lowland South American landraces differed significantly in haplotype distribution. However, overall differentiation patterns were not informative with respect to subspecies diversification, as evidenced by the scattered distribution of maize and teosinte plastomes in both the network and Bayesian phylogenetic reconstructions. CONCLUSIONS: Knowledge of intraspecific plastome variation provides the framework for a more comprehensive understanding of evolutionary processes at low taxonomic levels and may become increasingly important for future plant barcoding efforts. Whole-plastome sequencing provided useful variability to contribute to maize phylogeographic studies. The structuring of haplotype diversity in the maize landraces examined here clearly reflects the distinction between the Andean and South American lowland gene pools previously inferred based on nuclear markers.


Assuntos
Pool Gênico , Zea mays , Teorema de Bayes , Cloroplastos , Variação Genética , Genômica , Filogenia , Filogeografia , América do Sul , Zea mays/genética
2.
Front Genet ; 15: 1361418, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606359

RESUMO

Eucalyptus dunnii is one of the most important Eucalyptus species for short-fiber pulp production in regions where other species of the genus are affected by poor soil and climatic conditions. In this context, E. dunnii holds promise as a resource to address and adapt to the challenges of climate change. Despite its rapid growth and favorable wood properties for solid wood products, the advancement of its improvement remains in its early stages. In this work, we evaluated the performance of two single nucleotide polymorphism, (SNP), genotyping methods for population genetics analysis and Genomic Selection in E. dunnii. Double digest restriction-site associated DNA sequencing (ddRADseq) was compared with the EUChip60K array in 308 individuals from a provenance-progeny trial. The compared SNP set included 8,011 and 19,008 informative SNPs distributed along the 11 chromosomes, respectively. Although the two datasets differed in the percentage of missing data, genome coverage, minor allele frequency and estimated genetic diversity parameters, they revealed a similar genetic structure, showing two subpopulations with little differentiation between them, and low linkage disequilibrium. GS analyses were performed for eleven traits using Genomic Best Linear Unbiased Prediction (GBLUP) and a conventional pedigree-based model (ABLUP). Regardless of the SNP dataset, the predictive ability (PA) of GBLUP was better than that of ABLUP for six traits (Cellulose content, Total and Ethanolic extractives, Total and Klason lignin content and Syringyl and Guaiacyl lignin monomer ratio). When contrasting the SNP datasets used to estimate PAs, the GBLUP-EUChip60K model gave higher and significant PA values for six traits, meanwhile, the values estimated using ddRADseq gave higher values for three other traits. The PAs correlated positively with narrow sense heritabilities, with the highest correlations shown by the ABLUP and GBLUP-EUChip60K. The two genotyping methods, ddRADseq and EUChip60K, are generally comparable for population genetics and genomic prediction, demonstrating the utility of the former when subjected to rigorous SNP filtering. The results of this study provide a basis for future whole-genome studies using ddRADseq in non-model forest species for which SNP arrays have not yet been developed.

3.
PLoS One ; 17(12): e0271424, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36542628

RESUMO

Maize (Zea mays ssp. mays) is a major cereal crop worldwide and is traditionally or commercially cultivated almost all over the Americas. The North-Western Argentina (NWA) region constitutes one of the main diversity hotspots of the Southern Andes, with contrasting landscapes and a large number of landraces. Despite the extensive collections performed by the "Banco Activo de Germoplasma INTA Pergamino, Argentina" (BAP), most of them have not been characterized yet. Here we report the morphological and molecular evaluation of 30 accessions collected from NWA, along an altitudinal gradient between 1120 and 2950 meters above sea level (masl). Assessment of morphological variation in a common garden allowed the discrimination of two groups, which differed mainly in endosperm type and overall plant size. Although the groups retrieved by the molecular analyses were not consistent with morphological clusters, they showed a clear pattern of altitudinal structuring. Affinities among accessions were not in accordance with racial assignments. Overall, our results revealed that there are two maize gene pools co-existing in NWA, probably resulting from various waves of maize introduction in pre-Columbian times as well as from the adoption of modern varieties by local farmers. In conclusion, the NWA maize landraces preserved at the BAP possess high morphological and molecular variability. Our results highlight their potential as a source of diversity for increasing the genetic basis of breeding programs and provide useful information to guide future sampling and conservation efforts.


Assuntos
Variação Genética , Zea mays , Zea mays/genética , Melhoramento Vegetal , Argentina , Produtos Agrícolas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA