RESUMO
Retinitis pigmentosa (RP) is a Mendelian disease characterized by gradual loss of vision, due to the progressive degeneration of retinal cells. Genetically, it is highly heterogeneous, with pathogenic variants identified in more than 100 genes so far. Following a large-scale sequencing screening, we identified five individuals (four families) with recessive and non-syndromic RP, carrying as well bi-allelic DNA changes in COQ8B, a gene involved in the biosynthesis of coenzyme Q10. Specifically, we detected compound heterozygous assortments of five disease-causing variants (c.187C>T [p.Arg63Trp], c.566G>A [p.Trp189Ter], c.1156G>A [p.Asp386Asn], c.1324G>A [p.Val442Met], and c.1560G>A [p.Trp520Ter]), all segregating with disease according to a recessive pattern of inheritance. Cell-based analysis of recombinant proteins deriving from these genotypes, performed by target engagement assays, showed in all cases a significant decrease in ligand-protein interaction compared to the wild type. Our results indicate that variants in COQ8B lead to recessive non-syndromic RP, possibly by impairing the biosynthesis of coenzyme Q10, a key component of oxidative phosphorylation in the mitochondria.
Assuntos
Alelos , Linhagem , Retinose Pigmentar , Ubiquinona , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Genes Recessivos , Heterozigoto , Mutação , Retinose Pigmentar/genética , Ubiquinona/biossíntese , Ubiquinona/genética , Ubiquinona/análogos & derivadosRESUMO
Sterile alpha motif domain containing 7 (SAMD7) is a component of the Polycomb repressive complex 1, which inhibits transcription of many genes, including those activated by the transcription factor Cone-Rod Homeobox (CRX). Here we report bi-allelic mutations in SAMD7 as a cause of autosomal-recessive macular dystrophy with or without cone dysfunction. Four of these mutations affect splicing, while another mutation is a missense variant that alters the repressive effect of SAMD7 on CRX-dependent promoter activity, as shown by in vitro assays. Immunostaining of human retinal sections revealed that SAMD7 is localized in the nuclei of both rods and cones, as well as in those of cells belonging to the inner nuclear layer. These results place SAMD7 as a gene crucial for human retinal function and demonstrate a significant difference in the role of SAMD7 between the human and the mouse retina.
Assuntos
Anormalidades do Olho , Degeneração Macular , Camundongos , Animais , Humanos , Transativadores/genética , Proteínas de Homeodomínio/genética , Retina , Mutação/genética , Degeneração Macular/genéticaRESUMO
Copy-number variants (CNVs) play a substantial role in the molecular pathogenesis of hereditary disease and cancer, as well as in normal human interindividual variation. However, they are still rather difficult to identify in mainstream sequencing projects, especially involving exome sequencing, because they often occur in DNA regions that are not targeted for analysis. To overcome this problem, we developed OFF-PEAK, a user-friendly CNV detection tool that builds on a denoising approach and the use of "off-target" DNA reads, which are usually discarded by sequencing pipelines. We benchmarked OFF-PEAK on data from targeted sequencing of 96 cancer samples, as well as 130 exomes of individuals with inherited retinal disease from three different populations. For both sets of data, OFF-PEAK demonstrated excellent performance (>95% sensitivity and >80% specificity vs. experimental validation) in detecting CNVs from in silico data alone, indicating its immediate applicability to molecular diagnosis and genetic research.
Assuntos
Algoritmos , Neoplasias , Humanos , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Exoma , Variações do Número de Cópias de DNA/genética , Neoplasias/genéticaRESUMO
Genome analysis of individuals affected by retinitis pigmentosa (RP) identified two rare nucleotide substitutions at the same genomic location on chromosome 11 (g.61392563 [GRCh38]), 69 base pairs upstream of the start codon of the ciliopathy gene TMEM216 (c.-69G>A, c.-69G>T [GenBank: NM_001173991.3]), in individuals of South Asian and African ancestry, respectively. Genotypes included 71 homozygotes and 3 mixed heterozygotes in trans with a predicted loss-of-function allele. Haplotype analysis showed single-nucleotide variants (SNVs) common across families, suggesting ancestral alleles within the two distinct ethnic populations. Clinical phenotype analysis of 62 available individuals from 49 families indicated a similar clinical presentation with night blindness in the first decade and progressive peripheral field loss thereafter. No evident systemic ciliopathy features were noted. Functional characterization of these variants by luciferase reporter gene assay showed reduced promotor activity. Nanopore sequencing confirmed the lower transcription of the TMEM216 c.-69G>T allele in blood-derived RNA from a heterozygous carrier, and reduced expression was further recapitulated by qPCR, using both leukocytes-derived RNA of c.-69G>T homozygotes and total RNA from genome-edited hTERT-RPE1 cells carrying homozygous TMEM216 c.-69G>A. In conclusion, these variants explain a significant proportion of unsolved cases, specifically in individuals of African ancestry, suggesting that reduced TMEM216 expression might lead to abnormal ciliogenesis and photoreceptor degeneration.
Assuntos
Linhagem , Polimorfismo de Nucleotídeo Único , Retinose Pigmentar , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Adulto Jovem , Alelos , Haplótipos , Heterozigoto , Homozigoto , Proteínas de Membrana/genética , Fenótipo , Retinose Pigmentar/genética , Retinose Pigmentar/patologiaRESUMO
Long non-coding RNAs (lncRNAs) can be important components in gene-regulatory networks1, but the exact nature and extent of their involvement in human Mendelian disease is largely unknown. Here we show that genetic ablation of a lncRNA locus on human chromosome 2 causes a severe congenital limb malformation. We identified homozygous 27-63-kilobase deletions located 300 kilobases upstream of the engrailed-1 gene (EN1) in patients with a complex limb malformation featuring mesomelic shortening, syndactyly and ventral nails (dorsal dimelia). Re-engineering of the human deletions in mice resulted in a complete loss of En1 expression in the limb and a double dorsal-limb phenotype that recapitulates the human disease phenotype. Genome-wide transcriptome analysis in the developing mouse limb revealed a four-exon-long non-coding transcript within the deleted region, which we named Maenli. Functional dissection of the Maenli locus showed that its transcriptional activity is required for limb-specific En1 activation in cis, thereby fine-tuning the gene-regulatory networks controlling dorso-ventral polarity in the developing limb bud. Its loss results in the En1-related dorsal ventral limb phenotype, a subset of the full En1-associated phenotype. Our findings demonstrate that mutations involving lncRNA loci can result in human Mendelian disease.
Assuntos
Extremidades , Proteínas de Homeodomínio/genética , Deformidades Congênitas dos Membros/genética , RNA Longo não Codificante/genética , Deleção de Sequência/genética , Transcrição Gênica , Ativação Transcricional/genética , Animais , Linhagem Celular , Cromatina/genética , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos TransgênicosRESUMO
The purpose of this paper is to identify likely pathogenic non-coding variants in inherited retinal dystrophy (IRD) genes, using genome sequencing (GS). Patients with IRD were recruited to the study and underwent comprehensive ophthalmological evaluation and GS. The results of GS were investigated through virtual gene panel analysis, and plausible pathogenic variants and clinical phenotype evaluated by the multidisciplinary team (MDT) discussion. For unsolved patients in whom a specific gene was suspected to harbor a missed pathogenic variant, targeted re-analysis of non-coding regions was performed on GS data. Candidate variants were functionally tested by messenger RNA analysis, minigene or luciferase reporter assays. Previously unreported, likely pathogenic, non-coding variants in 7 genes (PRPF31, NDP, IFT140, CRB1, USH2A, BBS10 and GUCY2D), were identified in 11 patients. These were shown to lead to mis-splicing (PRPF31, IFT140, CRB1 and USH2A) or altered transcription levels (BBS10 and GUCY2D). MDT-led, phenotype-driven, non-coding variant re-analysis of GS is effective in identifying the missing causative alleles.
Assuntos
Distrofias Retinianas , Humanos , Mutação , Linhagem , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética , Sequenciamento Completo do Genoma , Equipe de Assistência ao Paciente , Análise Mutacional de DNA/métodos , Proteínas do Olho/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genéticaRESUMO
We used a machine learning approach to analyze the within-gene distribution of missense variants observed in hereditary conditions and cancer. When applied to 840 genes from the ClinVar database, this approach detected a significant non-random distribution of pathogenic and benign variants in 387 (46%) and 172 (20%) genes, respectively, revealing that variant clustering is widespread across the human exome. This clustering likely occurs as a consequence of mechanisms shaping pathogenicity at the protein level, as illustrated by the overlap of some clusters with known functional domains. We then took advantage of these findings to develop a pathogenicity predictor, MutScore, that integrates qualitative features of DNA substitutions with the new additional information derived from this positional clustering. Using a random forest approach, MutScore was able to identify pathogenic missense mutations with very high accuracy, outperforming existing predictive tools, especially for variants associated with autosomal-dominant disease and cancer. Thus, the within-gene clustering of pathogenic and benign DNA changes is an important and previously underappreciated feature of the human exome, which can be harnessed to improve the prediction of pathogenicity and disambiguation of DNA variants of uncertain significance.
Assuntos
Genoma Humano , Mutação de Sentido Incorreto , Análise por Conglomerados , Exoma/genética , Genoma Humano/genética , Humanos , Mutação de Sentido Incorreto/genética , VirulênciaRESUMO
North Carolina macular dystrophy (NCMD) is a rare autosomal-dominant disease affecting macular development. The disease is caused by non-coding single-nucleotide variants (SNVs) in two hotspot regions near PRDM13 and by duplications in two distinct chromosomal loci, overlapping DNase I hypersensitive sites near either PRDM13 or IRX1. To unravel the mechanisms by which these variants cause disease, we first established a genome-wide multi-omics retinal database, RegRet. Integration of UMI-4C profiles we generated on adult human retina then allowed fine-mapping of the interactions of the PRDM13 and IRX1 promoters and the identification of eighteen candidate cis-regulatory elements (cCREs), the activity of which was investigated by luciferase and Xenopus enhancer assays. Next, luciferase assays showed that the non-coding SNVs located in the two hotspot regions of PRDM13 affect cCRE activity, including two NCMD-associated non-coding SNVs that we identified herein. Interestingly, the cCRE containing one of these SNVs was shown to interact with the PRDM13 promoter, demonstrated in vivo activity in Xenopus, and is active at the developmental stage when progenitor cells of the central retina exit mitosis, suggesting that this region is a PRDM13 enhancer. Finally, mining of single-cell transcriptional data of embryonic and adult retina revealed the highest expression of PRDM13 and IRX1 when amacrine cells start to synapse with retinal ganglion cells, supporting the hypothesis that altered PRDM13 or IRX1 expression impairs interactions between these cells during retinogenesis. Overall, this study provides insight into the cis-regulatory mechanisms of NCMD and supports that this condition is a retinal enhanceropathy.
Assuntos
Distrofias Hereditárias da Córnea , Tomografia de Coerência Óptica , Adulto , Animais , Humanos , Linhagem , Retina/metabolismo , Xenopus laevis/genéticaRESUMO
In the framework of the UK 100 000 Genomes Project, we investigated the genetic origin of a previously undescribed recessive dermatological condition, which we named LIPHAK (LTV1-associated Inflammatory Poikiloderma with Hair abnormalities and Acral Keratoses), in four affected individuals from two UK families of Pakistani and Indian origins, respectively. Our analysis showed that only one gene, LTV1, carried rare biallelic variants that were shared in all affected individuals, and specifically they bore the NM_032860.5:c.503A > G, p.(Asn168Ser) change, found homozygously in all of them. In addition, high-resolution homozygosity mapping revealed the presence of a small 652-kb stretch on chromosome 6, encompassing LTV1, that was haploidentical and common to all affected individuals. The c.503A > G variant was predicted by in silico tools to affect the correct splicing of LTV1's exon 5. Minigene-driven splicing assays in HEK293T cells and in a skin sample from one of the patients confirmed that this variant was indeed responsible for the creation of a new donor splice site, resulting in aberrant splicing and in a premature termination codon in exon 6 of this gene. LTV1 encodes one of the ribosome biogenesis factors that promote the assembly of the small (40S) ribosomal subunit. In yeast, defects in LTV1 alter the export of nascent ribosomal subunits to the cytoplasm; however, the role of this gene in human pathology is unknown to date. Our data suggest that LIPHAK could be a previously unrecognized ribosomopathy.
Assuntos
Doenças do Cabelo , Ribossomos , Dermatopatias , Humanos , Doenças do Cabelo/genética , Células HEK293 , Mutação , Ribossomos/genética , Dermatopatias/genética , SíndromeRESUMO
PURPOSE: Inherited retinal diseases (IRDs) are a group of monogenic conditions that can lead to progressive blindness. Their missing heritability is still considerable, due in part to the presence of disease genes that await molecular identification. The purpose of this work was to identify novel genetic associations with IRDs. METHODS: Patients underwent a comprehensive ophthalmological evaluation using standard-of-care tests, such as detailed retinal imaging (macular optical coherence tomography and short-wavelength fundus autofluorescence) and electrophysiological testing. Exome and genome sequencing, as well as computer-assisted data analysis were used for genotyping and detection of DNA variants. A minigene-driven splicing assay was performed to validate the deleterious effects of 1 of such variants. RESULTS: We identified 8 unrelated families from Hungary, the United States, Israel, and The Netherlands with members presenting with a form of autosomal recessive and nonsyndromic retinal degeneration, predominantly described as rod-cone dystrophy but also including cases of cone/cone-rod dystrophy. Age of disease onset was very variable, with some patients experiencing first symptoms during their fourth decade of life or later. Myopia greater than 5 diopters was present in 5 of 7 cases with available refractive data, and retinal detachment was reported in 2 cases. All ascertained patients carried biallelic loss-of-function variants in UBAP1L (HGNC: 40028), a gene with unknown function and with homologies to UBAP1, encoding a protein involved in ubiquitin metabolism. One of these pathogenic variants, the intronic NM_001163692.2:c.910-7G>A substitution, was identified in 5 unrelated families. Minigene-driven splicing assays in HEK293T cells confirmed that this DNA change is responsible for the creation of a new acceptor splice site, resulting in aberrant splicing. CONCLUSION: We identified UBAP1L as a novel IRD gene. Although its function is currently unknown, UBAP1L is almost exclusively expressed in photoreceptors and the retinal pigment epithelium, hence possibly explaining the link between pathogenic variants in this gene and an ocular phenotype.
Assuntos
Linhagem , Degeneração Retiniana , Humanos , Masculino , Feminino , Adulto , Degeneração Retiniana/genética , Pessoa de Meia-Idade , Mutação com Perda de Função , Genes Recessivos , Criança , Adolescente , Distrofias de Cones e Bastonetes/genética , Hungria , Adulto Jovem , Predisposição Genética para DoençaRESUMO
PURPOSE: To measure the retinal oxygen metabolic function with retinal oximetry (RO) in patients with choroideremia (CHM) and compare these findings with retinitis pigmentosa (RP) patients and controls. METHODS: Prospective observational study including 18 eyes of 9 molecularly confirmed CHM patients (9â; 40.2 ± 21.2 years (mean ± SD), 77 eyes from 39 patients with RP (15â 24â; 45.6 ± 14.7 years) and 100 eyes from 53 controls (31â 22â; 40.2 ± 13.4 years). Main outcome parameters were the mean arterial (A-SO2; %), venular (V-SO2; %) oxygen saturation, and their difference (A-V SO2; %) recorded with the oxygen saturation tool of the Retinal Vessel Analyzer (IMEDOS Systems UG, Germany). Statistical analyses were performed with linear mixed-effects models. RESULTS: Eyes suffering from CHM differed significantly from both RP and control eyes, when the retinal oxygen metabolic parameters were taken into account. While RP showed significantly higher A-SO2 and V-SO2 values when compared to controls, CHM showed opposite findings with significantly lower values when compared to both RP and controls (P < 0.001). The A-V SO2, which represents the retinal oxygen metabolic consumption, showed significantly lower values in CHM compared to controls. CONCLUSION: The retina in CHM is a relatively hypoxic environment. The decrease in oxygen levels may be due to the profound choroidal degeneration, leading to decreased oxygen flux to the retina. RO measurements may help understand the pathogenesis of CHM and RP. These findings may provide useful details to inform the planning of clinical trials of emerging therapies for CHM. KEY MESSAGES: What was known before? Retinal oxygen metabolic function measured with retinal oximetry (RO) shows significant alterations in patients with retinitis pigmentosa. WHAT THIS STUDY ADDS: RO function in choroideremia is significantly altered when compared to controls. Furthermore, RO in choroideremia shows opposing findings within different oxygen metabolic parameters to those that were so far known for retinitis pigmentosa. By providing insights into the retinal oxygen metabolic mechanisms, RO can help understand the underlying pathophysiology in choroideremia.
RESUMO
PURPOSE: Retinitis pigmentosa (RP) comprises a genetically and clinically heterogeneous group of inherited retinal degenerations, where 20-30% of patients exhibit extra-ocular manifestations (syndromic RP). Understanding the genetic profile of RP has important implications for disease prognosis and genetic counseling. This study aimed to characterize the genetic profile of syndromic RP in Portugal. METHODS: Multicenter, retrospective cohort study. Six Portuguese healthcare providers identified patients with a clinical diagnosis of syndromic RP and available genetic testing results. All patients had been previously subjected to a detailed ophthalmologic examination and clinically oriented genetic testing. Genetic variants were classified according to the American College of Medical Genetics and Genomics; only likely pathogenic or pathogenic variants were considered relevant for disease etiology. RESULTS: One hundred and twenty-two patients (53.3% males) from 100 families were included. Usher syndrome was the most frequent diagnosis (62.0%), followed by Bardet-Biedl (19.0%) and Senior-Løken syndromes (7.0%). Deleterious variants were identified in 86/100 families for a diagnostic yield of 86.0% (87.1% for Usher and 94.7% for Bardet-Biedl). A total of 81 genetic variants were identified in 25 different genes, 22 of which are novel. USH2A and MYO7A were responsible for most type II and type I Usher syndrome cases, respectively. BBS1 variants were the cause of Bardet-Biedl syndrome in 52.6% of families. Best-corrected visual acuity (BCVA) records were available at baseline and last visit for 99 patients (198 eyes), with a median follow-up of 62.0 months. The mean BCVA was 56.5 ETDRS letters at baseline (Snellen equivalent ~ 20/80), declining to 44.9 ETDRS letters (Snellen equivalent ~ 20/125) at the last available follow-up (p < 0.001). CONCLUSION: This is the first multicenter study depicting the genetic profile of syndromic RP in Portugal, thus contributing toward a better understanding of this heterogeneous disease group. Usher and Bardet-Biedl syndromes were found to be the most common types of syndromic RP in this large Portuguese cohort. A high diagnostic yield was obtained, highlighting current genetic testing capabilities in providing a molecular diagnosis to most affected individuals. This has major implications in determining disease-related prognosis and providing targeted genetic counseling for syndromic RP patients in Portugal.
Assuntos
Testes Genéticos , Mutação , Retinose Pigmentar , Humanos , Retinose Pigmentar/genética , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/epidemiologia , Portugal/epidemiologia , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Adulto , Adolescente , Adulto Jovem , Criança , Idoso , Linhagem , Síndromes de Usher/genética , Síndromes de Usher/diagnóstico , Síndromes de Usher/epidemiologia , Pré-Escolar , Análise Mutacional de DNA , Seguimentos , DNA/genética , Proteínas do Olho/genéticaRESUMO
BACKGROUND: Although the p.C759F (c.2276G>T, p.Cys759Phe) variant in the USH2A gene has been identified in association with retinal degeneration by several authors, its pathogenicity has been questioned once by the publication of two unaffected homozygotes from a single family. OBJECTIVES: The objective of the study was to ascertain the role of p.C759F in hereditary retinal disease. METHODS: We examined 87 research articles reporting on patients carrying this variant and then used this information as primary data for a series of meta-analytical tests. RESULTS: Independent statistical analyses showed that p.C759F (i) is highly enriched in patients with respect to healthy individuals, (ii) represents a clear-cut recessive allele causing disease when it is in trans with other mutations, (iii) is pathogenic in homozygotes. CONCLUSIONS: Our results confirm that p.C759F is a bona fide mutation, leading to retinal blindness according to a recessive pattern of inheritance.
Assuntos
Retinose Pigmentar , Síndromes de Usher , Humanos , Retinose Pigmentar/genética , Síndromes de Usher/genética , Mutação , Genótipo , Proteínas da Matriz Extracelular/genética , Análise Mutacional de DNARESUMO
INTRODUCTION: Mutational screening of inherited retinal disorders is prerequisite for gene targeted therapy. Our aim was to report and analyze the proportions of mutations in inherited retinal disease (IRD)-causing genes from a single center in Switzerland in order to describe the distribution of IRDs in Western Switzerland. METHODS: We conducted a retrospective study of patient records. Criteria for inclusion were residence in Western Switzerland for patients and relatives presenting a clinical diagnosis of IRDs and an established molecular diagnosis managed by the genetics service of the Jules-Gonin Eye Hospital (JGEH) of Lausanne between January 2002 and December 2022. We initially investigated the IRD phenotypes in all patients (full cohort) with a clinical diagnosis, then calculated the distribution of IRD gene mutations in the entire cohort (genetically determined cohort). We analyzed a sub-group that comprised pediatric patients (≤18 years of age). In addition, we calculated the distribution of gene mutations within the most represented IRDs. Comprehensive gene screening was performed using a combined approach of different generation of DNA microarray analysis, direct sequencing, and Sanger sequencing. RESULTS: The full cohort comprised 899 individuals from 690 families with a clinical diagnosis of IRDs. We identified 400 individuals from 285 families with an elucidated molecular diagnosis (variants in 84 genes) in the genetically determined cohort. The pediatric cohort included 89 individuals from 65 families with an elucidated molecular diagnosis. The molecular diagnosis rate for the genetically determined cohort was 58.2% (family ratio) and the 5 most frequently implicated genes per family were ABCA4 (11.6%), USH2A (7.4%), EYS (6.7%), PRPH2 (6.3%), and BEST1 (4.6%). The pediatric cohort had a family molecular diagnosis rate of 64.4% and the 5 most common mutated genes per family were RS1 (9.2%), ABCA4 (7.7%), CNGB3 (7.7%), CACNA1F (6.2%), CEP290 (4.6%). CONCLUSIONS: This study describes the genetic mutation landscape of IRDs in Western Switzerland in order to quantify their disease burden and contribute to a better orientation of the development of future gene targeted therapies.
Assuntos
Proteínas do Olho , Mutação , Retinose Pigmentar , Humanos , Estudos Retrospectivos , Masculino , Feminino , Suíça/epidemiologia , Retinose Pigmentar/genética , Retinose Pigmentar/diagnóstico , Criança , Adulto , Adolescente , Análise Mutacional de DNA , Pessoa de Meia-Idade , Proteínas do Olho/genética , Pré-Escolar , Linhagem , Adulto Jovem , Idoso , Fenótipo , Testes Genéticos/métodos , LactenteRESUMO
INTRODUCTION: The purpose of this project was to explore the current standards of clinical care genetic testing and counseling for patients with inherited retinal diseases (IRDs) from the perspective of leading experts in selected European countries. Also, to gather opinions on current bottlenecks and future solutions to improve patient care. METHODS: On the initiative of the European Vision Institute, a survey questionnaire with 41 questions was designed and sent to experts in the field from ten European countries. Each participant was asked to answer with reference to the situation in their own country. RESULTS: Sixteen questionnaires were collected by November 2023. IRD genetic tests are performed in clinical care settings for 80% or more of tested patients in 9 countries, and the costs of genetic tests in clinical care are covered by the public health service to the extent of 90% or more in 8 countries. The median proportion of patients who are genetically tested, the median rate of genetically solved patients among those who are tested, and the median proportion of patients receiving counseling are 51-70%, 61-80%, and 61-80%, respectively. Improving the education of healthcare professionals who facilitate patient referrals to specialized centers, improving access of patients to more thorough genotyping, and increasing the number of available counselors were the most advocated solutions. CONCLUSION: There is a significant proportion of IRD patients who are not genetically tested, whose genetic testing is inconclusive, or who do not receive counseling. Educational programs, greater availability of state-of-the-art genotyping and genetic counselors could improve healthcare for IRD patients.
Assuntos
Testes Genéticos , Doenças Retinianas , Humanos , Testes Genéticos/métodos , Europa (Continente) , Doenças Retinianas/genética , Doenças Retinianas/diagnóstico , Inquéritos e Questionários , Aconselhamento GenéticoRESUMO
The cause of autosomal-dominant retinitis pigmentosa (adRP), which leads to loss of vision and blindness, was investigated in families lacking a molecular diagnosis. A refined locus for adRP on Chr17q22 (RP17) was delineated through genotyping and genome sequencing, leading to the identification of structural variants (SVs) that segregate with disease. Eight different complex SVs were characterized in 22 adRP-affected families with >300 affected individuals. All RP17 SVs had breakpoints within a genomic region spanning YPEL2 to LINC01476. To investigate the mechanism of disease, we reprogrammed fibroblasts from affected individuals and controls into induced pluripotent stem cells (iPSCs) and differentiated them into photoreceptor precursor cells (PPCs) or retinal organoids (ROs). Hi-C was performed on ROs, and differential expression of regional genes and a retinal enhancer RNA at this locus was assessed by qPCR. The epigenetic landscape of the region, and Hi-C RO data, showed that YPEL2 sits within its own topologically associating domain (TAD), rich in enhancers with binding sites for retinal transcription factors. The Hi-C map of RP17 ROs revealed creation of a neo-TAD with ectopic contacts between GDPD1 and retinal enhancers, and modeling of all RP17 SVs was consistent with neo-TADs leading to ectopic retinal-specific enhancer-GDPD1 accessibility. qPCR confirmed increased expression of GDPD1 and increased expression of the retinal enhancer that enters the neo-TAD. Altered TAD structure resulting in increased retinal expression of GDPD1 is the likely convergent mechanism of disease, consistent with a dominant gain of function. Our study highlights the importance of SVs as a genomic mechanism in unsolved Mendelian diseases.
Assuntos
Cromossomos Humanos Par 17/química , Proteínas Nucleares/genética , Diester Fosfórico Hidrolases/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Retinose Pigmentar/genética , Fatores de Transcrição/genética , Adulto , Sequência de Aminoácidos , Diferenciação Celular , Reprogramação Celular , Criança , Mapeamento Cromossômico , Estudos de Coortes , Elementos Facilitadores Genéticos , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Expressão Gênica , Genes Dominantes , Genoma Humano , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Proteínas Nucleares/metabolismo , Organoides/metabolismo , Organoides/patologia , Diester Fosfórico Hidrolases/metabolismo , Polimorfismo Genético , Cultura Primária de Células , Células Fotorreceptoras Retinianas Cones/patologia , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia , Fatores de Transcrição/metabolismo , Sequenciamento Completo do GenomaRESUMO
INTRODUCTION: Retinitis pigmentosa (RP) is a rare degenerative retinal disease caused by mutations in approximately seventy genes. Currently, despite the availability of large-scale DNA sequencing technologies, â¼30-40% of patients still cannot be diagnosed at the molecular level. In this study, we investigated a novel intronic deletion of PDE6B, encoding the beta subunit of phosphodiesterase 6 in association with recessive RP. METHODS: Three unrelated consanguineous families were recruited from the northwestern part of Pakistan. Whole exome sequencing was performed for the proband of each family, and the data were analyzed according to an in-house computer pipeline. Relevant DNA variants in all available members of these families were assessed through Sanger sequencing. A minigene-based splicing assay was also performed. RESULTS: The clinical phenotype for all patients was compatible with rod cone degeneration, with the onset during childhood. Whole exome sequencing revealed a homozygous 18 bp intronic deletion (NM_000283.3:c.1921-20_1921-3del) in PDE6B, which co-segregated with disease in 10 affected individuals. In vitro splicing tests showed that this deletion causes aberrant RNA splicing of the gene, leading to the in-frame deletion of 6 codons and, likely, to disease. CONCLUSION: Our findings further expand the mutational spectrum of the PDE6B gene.
Assuntos
Retinose Pigmentar , Humanos , Análise Mutacional de DNA , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/genética , Mutação , Splicing de RNA , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Linhagem , Proteínas do Olho/genéticaRESUMO
One of the major questions in human genetics is what percentage of individuals in the general population carry a disease-causing mutation. Based on publicly available information on genotypes from six main world populations, we created a database including data on 276,921 sequence variants, present within 187 genes associated with autosomal recessive (AR) inherited retinal diseases (IRDs). Assessment of these variants revealed that 10,044 were categorized as disease-causing mutations. We developed an algorithm to compute the gene-specific prevalence of disease, as well as the mutational burden in healthy subjects. We found that the genetic prevalence of AR-IRDs corresponds approximately to 1 case in 1,380 individuals, with 5.5 million people expected to be affected worldwide. In addition, we calculated that unaffected carriers of mutations are numerous, ranging from 1 in 2.26 individuals in Europeans to 1 in 3.50 individuals in the Finnish population. Our analysis indicates that about 2.7 billion people worldwide (36% of the population) are healthy carriers of at least one mutation that can cause AR-IRD, a value that is probably the highest across any group of Mendelian conditions in humans.
Assuntos
Frequência do Gene , Doenças Retinianas/genética , África , Ásia , Europa (Continente) , Genes Recessivos , Heterozigoto , Humanos , Mutação , Linhagem , Prevalência , Doenças Retinianas/congênito , Doenças Retinianas/etnologiaRESUMO
Conjunctival melanoma (CJM) is a rare but potentially lethal and highly-recurrent cancer of the eye. Similar to cutaneous melanoma (CM), it originates from melanocytes. Unlike CM, however, CJM is relatively poorly characterized from a genomic point of view. To fill this knowledge gap and gain insight into the genomic nature of CJM, we performed whole-exome (WES) or whole-genome sequencing (WGS) of tumor-normal tissue pairs in 14 affected individuals, as well as RNA sequencing in a subset of 11 tumor tissues. Our results show that, similarly to CM, CJM is also characterized by a very high mutation load, composed of approximately 500 somatic mutations in exonic regions. This, as well as the presence of a UV light-induced mutational signature, are clear signs of the role of sunlight in CJM tumorigenesis. In addition, the genomic classification of CM proposed by TCGA seems to be well-applicable to CJM, with the presence of four typical subclasses defined on the basis of the most frequently mutated genes: BRAF, NF1, RAS, and triple wild-type. In line with these results, transcriptomic analyses revealed similarities with CM as well, namely the presence of a transcriptomic subtype enriched for immune genes and a subtype enriched for genes associated with keratins and epithelial functions. Finally, in seven tumors we detected somatic mutations in ACSS3, a possible new candidate oncogene. Transfected conjunctival melanoma cells overexpressing mutant ACSS3 showed higher proliferative activity, supporting the direct involvement of this gene in the tumorigenesis of CJM. Altogether, our results provide the first unbiased and complete genomic and transcriptomic classification of CJM.
Assuntos
Neoplasias da Túnica Conjuntiva/genética , Variações do Número de Cópias de DNA , Melanoma/genética , Mutação , Transcriptoma , Linhagem Celular Tumoral , Neoplasias da Túnica Conjuntiva/metabolismo , Feminino , Humanos , Masculino , Melanoma/metabolismo , Pessoa de Meia-Idade , Neurofibromina 1/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas ras/genéticaRESUMO
We investigated the genetic origin of the phenotype displayed by three children from two unrelated Italian families, presenting with a previously unrecognized autosomal recessive disorder that included a severe form of spondylo-epiphyseal dysplasia, sensorineural hearing loss, intellectual disability and Leber congenital amaurosis (SHILCA), as well as some brain anomalies that were visible at the MRI. Autozygome-based analysis showed that these children shared a 4.76 Mb region of homozygosity on chromosome 1, with an identical haplotype. Nonetheless, whole-exome sequencing failed to identify any shared rare coding variants, in this region or elsewhere. We then determined the transcriptome of patients' fibroblasts by RNA sequencing, followed by additional whole-genome sequencing experiments. Gene expression analysis revealed a 4-fold downregulation of the gene NMNAT1, residing indeed in the shared autozygous interval. Short- and long-read whole-genome sequencing highlighted a duplication involving 2 out of the 5 exons of NMNAT1 main isoform (NM_022787.3), leading to the production of aberrant mRNAs. Pathogenic variants in NMNAT1 have been previously shown to cause non-syndromic Leber congenital amaurosis (LCA). However, no patient with null biallelic mutations has ever been described, and murine Nmnat1 knockouts show embryonic lethality, indicating that complete absence of NMNAT1 activity is probably not compatible with life. The rearrangement found in our cases, presumably causing a strong but not complete reduction of enzymatic activity, may therefore result in an intermediate syndromic phenotype with respect to LCA and lethality.