Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biol Reprod ; 100(3): 660-671, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30329018

RESUMO

Seminal plasma has conventionally been viewed as a transport and survival medium for mammalian sperm; however, its role now extends beyond this process to actively targeting female tissues. Studies in rodents, swine, and humans demonstrate that seminal plasma induces molecular and cellular changes within the endometrium or cervix following insemination. Seminal-plasma-induced alterations to the maternal environment have been theorized to facilitate embryo development, modulate maternal immunity toward the conceptus, and potentially improve pregnancy success. It is unknown if bovine seminal plasma modulates the uterine environment following insemination in the cow, where routine use of artificial insemination reduces maternal exposure to seminal plasma. We hypothesize that seminal plasma modulates the expression of inflammatory mediators in the endometrium, altering the maternal environment of early pregnancy. In vitro, seminal plasma altered intact endometrial explant expression of CSF2, IL1B, IL6, IL17A, TGFB1, IFNE, PTGS2, and AKR1C4. Furthermore, endometrial epithelial cell CSF2, CXCL8, TGFB1, PTGS2, and AKR1C4 expression were increased after seminal plasma exposure, while endometrial stromal cell CSF2, IL1B, IL6, CXCL8, IL17A, TGFB1, PTGS2, and AKR1C4 expression were increased following seminal plasma exposure. Endometrial expression of IL1B was increased in the cow 24 h after uterine infusion of seminal plasma, while other evaluated inflammatory mediators remained unchanged. These data indicate that seminal plasma may induce changes in the bovine endometrium in a temporal manner. Understanding the role of seminal plasma in modulating the maternal environment may aid in improving pregnancy success in cattle.


Assuntos
Bovinos , Endométrio/metabolismo , Regulação da Expressão Gênica , Inflamação/veterinária , Sêmen/fisiologia , Animais , Endométrio/citologia , Células Epiteliais/metabolismo , Feminino , Inflamação/metabolismo , Inseminação Artificial/veterinária , Masculino , Fatores de Tempo
2.
Reproduction ; 158(6): 529-541, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31645014

RESUMO

Semen induces post-coital inflammation of the endometrium in several species. Post-coital inflammation is proposed to alter the endometrial environment of early pregnancy, mediate embryonic development and modulate the maternal immune response to pregnancy. In cattle, it is common for pregnancies to occur in the absence of whole semen due to the high utilization of artificial insemination. Here, we have utilized a cell culture system to characterize semen-induced expression of inflammatory mediators in bovine endometrial cells and test the efficacy of transforming growth factor beta as the active agent in mediating any such change. We hypothesize that seminal plasma-derived transforming growth factor beta increases the expression of inflammatory mediators in bovine endometrial cells. Initially, we describe a heat-labile cytotoxic effect of seminal plasma on BEND cells, and a moderate increase in IL1B and IL6 expression. In addition, we show that transforming growth factor beta is present in bovine semen and can increase the expression of endometrial IL6, whereas blocking transforming growth factor beta in semen ameliorates this effect. However, intra-uterine infusion of seminal plasma, sperm or transforming growth factor beta did not alter the endometrial expression of inflammatory mediators. We conclude that bovine semen can modulate endometrial gene expression in vitro, which is partially due to the presence of transforming growth factor beta. It is likely that additional, unidentified, bioactive molecules in semen can alter the endometrial environment. Characterizing bioactive molecules in bovine semen may lead to the development of additives to improve artificial insemination in domestic species.


Assuntos
Endométrio/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Inflamação/imunologia , Inseminação Artificial/veterinária , Sêmen/fisiologia , Fator de Crescimento Transformador beta/farmacologia , Animais , Bovinos , Citocinas/metabolismo , Endométrio/citologia , Endométrio/efeitos dos fármacos , Feminino , Inflamação/metabolismo , Inflamação/patologia , Masculino , Gravidez , Sêmen/citologia
3.
Reprod Fertil Dev ; 30(2): 415, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29530216

RESUMO

The question of 'how does the allogeneic fetus survive gestation in the face of the maternal immune system?' has yet to be definitively answered. Several acceptable mechanisms exist to facilitate survival of the semi-allogeneic fetus in various species; paramount is the immunological separation of maternal and fetal tissues during gestation. However, keen observation of the maternal immune system during pregnancy has noted maternal immune tolerance to paternal-specific antigens. A mechanism by which the maternal immune system tolerates specific paternal antigens expressed on the fetus would be far more beneficial than the previously proposed immune indolence that would leave the mother susceptible to infection. In species like human or rodent, implantation occurs days after fertilisation and, as such, the mechanisms to establish antigen-specific tolerance must be initiated very early during pregnancy. We and others propose that these mechanisms are initiated at the time of insemination when paternal antigens are first introduced to the maternal immune system. Indeed, a new paradigm demonstrating the importance of paternal-maternal communication at the time of insemination is becoming evident as it relates to maternal tolerance to fetal antigen and ultimately pregnancy success.

4.
Reprod Fertil Dev ; 30(1): 50-55, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29539302

RESUMO

The question of 'how does the allogeneic fetus survive gestation in the face of the maternal immune system?' has yet to be definitively answered. Several acceptable mechanisms exist to facilitate survival of the semi-allogeneic fetus in various species; paramount is the immunological separation of maternal and fetal tissues during gestation. However, keen observation of the maternal immune system during pregnancy has noted maternal immune tolerance to paternal-specific antigens. A mechanism by which the maternal immune system tolerates specific paternal antigens expressed on the fetus would be far more beneficial than the previously proposed immune indolence that would leave the mother susceptible to infection. In species like human or rodent, implantation occurs days after fertilisation and, as such, the mechanisms to establish antigen-specific tolerance must be initiated very early during pregnancy. We and others propose that these mechanisms are initiated at the time of insemination when paternal antigens are first introduced to the maternal immune system. Indeed, a new paradigm demonstrating the importance of paternal-maternal communication at the time of insemination is becoming evident as it relates to maternal tolerance to fetal antigen and ultimately pregnancy success.


Assuntos
Fertilização/imunologia , Tolerância Imunológica/fisiologia , Resultado da Gravidez , Sêmen/imunologia , Interações Espermatozoide-Óvulo/imunologia , Animais , Perda do Embrião/imunologia , Feminino , Fertilização/fisiologia , Humanos , Masculino , Gravidez , Interações Espermatozoide-Óvulo/fisiologia
5.
STAR Protoc ; 5(1): 102894, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38363685

RESUMO

Postnatal development of the uterus involves the specification of undifferentiated epithelium into uterine-type epithelium. That specification is regulated by stromal-epithelial interactions as well as intrinsic cell-specific transcription factors and gene regulatory networks. Here, we present a co-culture system to study the effects of stromal-derived factors on epithelial cell growth and differentiation into organoids. First, we describe epithelial cell isolation and organoid growth characterization. Second, we detail a co-culture system that allows the study of stromal-derived paracrine factors on epithelial development. For complete details on the use and execution of this protocol, please refer to Rizo et al.1.


Assuntos
Células Epiteliais , Células Estromais , Feminino , Humanos , Técnicas de Cocultura , Epitélio , Organoides
6.
iScience ; 26(9): 107568, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37622003

RESUMO

Postnatal development of the uterus involves specification of undifferentiated epithelium into uterine-type epithelium. That specification is regulated by stromal-epithelial interactions as well as intrinsic cell-specific transcription factors and gene regulatory networks. This study utilized mouse genetic models of Esr1 deletion, endometrial epithelial organoids (EEO), and organoid-stromal co-cultures to decipher the role of Esr1 in uterine epithelial development. Organoids derived from wild-type (WT) mice developed a normal single layer of columnar epithelium. In contrast, EEO from Esr1 null mice developed a multilayered stratified squamous type of epithelium with basal cells. Co-culturing Esr1 null epithelium with WT uterine stromal fibroblasts inhibited basal cell development. Of note, estrogen treatment of EEO-stromal co-cultures and Esr1 conditional knockout mice increased basal epithelial cell markers. Collectively, these findings suggest that Esr1 regulates uterine epithelium lineage plasticity and homeostasis and loss of ESR1 promotes altered luminal-to-basal differentiation driven by ESR1-mediated paracrine factors from the stroma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA