Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Neurol ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747498

RESUMO

OBJECTIVES: Due to increased gene dose for the amyloid precursor protein (APP), elderly adults with Down syndrome (DS) are at a markedly increased risk of Alzheimer's disease (AD), known as DS-AD. How the increased APP gene dose acts and which APP products are responsible for DS-AD is not well understood, thus limiting strategies to target pathogenesis. As one approach to address this question, we used a novel class of γ-secretase modulators that promote γ-site cleavages by the γ-secretase complex, resulting in lower levels of the Aß42 and Aß40 peptides. METHODS: Ts65Dn mice, which serve as a model of DS, were treated via oral gavage with 10 mg/kg/weekday of BPN15606 (a potent and novel pyridazine-containing γ-secretase modulators). Treatment started at 3 months-of-age and lasted for 4 months. RESULTS: Demonstrating successful target engagement, treatment with BPN15606 significantly decreased levels of Aß40 and Aß42 in the cortex and hippocampus; it had no effect on full-length APP or its C-terminal fragments in either 2 N or Ts65Dn mice. Importantly, the levels of total amyloid-ß were not impacted, pointing to BPN15606-mediated enhancement of processivity of γ-secretase. Additionally, BPN15606 rescued hyperactivation of Rab5, a protein responsible for regulating endosome function, and normalized neurotrophin signaling deficits. BPN15606 treatment also normalized the levels of synaptic proteins and tau phosphorylation, while reducing astrocytosis and microgliosis, and countering cognitive deficits. INTERPRETATION: Our findings point to the involvement of increased levels of Aß42 and/or Aß40 in contributing to several molecular and cognitive traits associated with DS-AD. They speak to increased dosage of the APP gene acting through heightened levels of Aß42 and/or Aß40 as supporting pathogenesis. These findings further the interest in the potential use of γ-secretase modulators for treating and possibly preventing AD in individuals with DS. ANN NEUROL 2024.

2.
Nat Chem Biol ; 19(3): 275-283, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36175661

RESUMO

Prevention of infection and propagation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a high priority in the Coronavirus Disease 2019 (COVID-19) pandemic. Here we describe S-nitrosylation of multiple proteins involved in SARS-CoV-2 infection, including angiotensin-converting enzyme 2 (ACE2), the receptor for viral entry. This reaction prevents binding of ACE2 to the SARS-CoV-2 spike protein, thereby inhibiting viral entry, infectivity and cytotoxicity. Aminoadamantane compounds also inhibit coronavirus ion channels formed by envelope (E) protein. Accordingly, we developed dual-mechanism aminoadamantane nitrate compounds that inhibit viral entry and, thus, the spread of infection by S-nitrosylating ACE2 via targeted delivery of the drug after E protein channel blockade. These non-toxic compounds are active in vitro and in vivo in the Syrian hamster COVID-19 model and, thus, provide a novel avenue to pursue therapy.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Ligação Proteica , Peptidil Dipeptidase A/metabolismo
3.
Mol Psychiatry ; 29(2): 529-542, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135755

RESUMO

Large conductance potassium (BK) channels are among the most sensitive molecular targets of ethanol and genetic variations in the channel-forming α subunit have been nominally associated with alcohol use disorders. However, whether the action of ethanol at BK α influences the motivation to drink alcohol remains to be determined. To address this question, we first tested the effect of systemically administered BK channel modulators on voluntary alcohol consumption in C57BL/6J males. Penitrem A (blocker) exerted dose-dependent effects on moderate alcohol intake, while paxilline (blocker) and BMS-204352 (opener) were ineffective. Because pharmacological manipulations are inherently limited by non-specific effects, we then sought to investigate the behavioral relevance of ethanol's direct interaction with BK α by introducing in the mouse genome a point mutation known to render BK channels insensitive to ethanol while preserving their physiological function. The BK α K361N substitution prevented ethanol from reducing spike threshold in medial habenula neurons. However, it did not alter acute responses to ethanol in vivo, including ataxia, sedation, hypothermia, analgesia, and conditioned place preference. Furthermore, the mutation did not have reproducible effects on alcohol consumption in limited, continuous, or intermittent access home cage two-bottle choice paradigms conducted in both males and females. Notably, in contrast to previous observations made in mice missing BK channel auxiliary ß subunits, the BK α K361N substitution had no significant impact on ethanol intake escalation induced by chronic intermittent alcohol vapor inhalation. It also did not affect the metabolic and locomotor consequences of chronic alcohol exposure. Altogether, these data suggest that the direct interaction of ethanol with BK α does not mediate the alcohol-related phenotypes examined here in mice.


Assuntos
Consumo de Bebidas Alcoólicas , Etanol , Camundongos Endogâmicos C57BL , Animais , Etanol/farmacologia , Masculino , Camundongos , Consumo de Bebidas Alcoólicas/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Feminino
4.
Neurobiol Dis ; 190: 106361, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992784

RESUMO

The prefrontal cortex is a crucial regulator of alcohol drinking, and dependence, and other behavioral phenotypes associated with AUD. Comprehensive identification of cell-type specific transcriptomic changes in alcohol dependence will improve our understanding of mechanisms underlying the excessive alcohol use associated with alcohol dependence and will refine targets for therapeutic development. We performed single nucleus RNA sequencing (snRNA-seq) and Visium spatial gene expression profiling on the medial prefrontal cortex (mPFC) obtained from C57BL/6 J mice exposed to the two-bottle choice-chronic intermittent ethanol (CIE) vapor exposure (2BC-CIE, defined as dependent group) paradigm which models phenotypes of alcohol dependence including escalation of alcohol drinking. Gene co-expression network analysis and differential expression analysis identified highly dysregulated co-expression networks in multiple cell types. Dysregulated modules and their hub genes suggest novel understudied targets for studying molecular mechanisms contributing to the alcohol dependence state. A subtype of inhibitory neurons was the most alcohol-sensitive cell type and contained a downregulated gene co-expression module; the hub gene for this module is Cpa6, a gene previously identified by GWAS to be associated with excessive alcohol consumption. We identified an astrocytic Gpc5 module significantly upregulated in the alcohol-dependent group. To our knowledge, there are no studies linking Cpa6 and Gpc5 to the alcohol-dependent phenotype. We also identified neuroinflammation related gene expression changes in multiple cell types, specifically enriched in microglia, further implicating neuroinflammation in the escalation of alcohol drinking. Here, we present a comprehensive atlas of cell-type specific alcohol dependence mediated gene expression changes in the mPFC and identify novel cell type-specific targets implicated in alcohol dependence.


Assuntos
Alcoolismo , Animais , Camundongos , Alcoolismo/genética , Doenças Neuroinflamatórias , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Córtex Pré-Frontal/metabolismo , Etanol/toxicidade
5.
Brain Behav Immun ; 118: 1-21, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38360376

RESUMO

Human immunodeficiency virus-1 (HIV-1) infects the central nervous system (CNS) and causes HIV-associated neurocognitive disorders (HAND) in about half of the population living with the virus despite combination anti-retroviral therapy (cART). HIV-1 activates the innate immune system, including the production of type 1 interferons (IFNs) α and ß. Transgenic mice expressing HIV-1 envelope glycoprotein gp120 (HIVgp120tg) in the CNS develop memory impairment and share key neuropathological features and differential CNS gene expression with HIV patients, including the induction of IFN-stimulated genes (ISG). Here we show that knocking out IFNß (IFNßKO) in HIVgp120tg and non-tg control mice impairs recognition and spatial memory, but does not affect anxiety-like behavior, locomotion, or vision. The neuropathology of HIVgp120tg mice is only moderately affected by the KO of IFNß but in a sex-dependent fashion. Notably, in cerebral cortex of IFNßKO animals presynaptic terminals are reduced in males while neuronal dendrites are reduced in females. The IFNßKO results in the hippocampal CA1 region of both male and female HIVgp120tg mice in an ameliorated loss of neuronal presynaptic terminals but no protection of neuronal dendrites. Only female IFNß-deficient HIVgp120tg mice display diminished microglial activation in cortex and hippocampus and increased astrocytosis in hippocampus compared to their IFNß-expressing counterparts. RNA expression for some immune genes and ISGs is also affected in a sex-dependent way. The IFNßKO abrogates or diminishes the induction of MX1, DDX58, IRF7 and IRF9 in HIVgp120tg brains of both sexes. Expression analysis of neurotransmission related genes reveals an influence of IFNß on multiple components with more pronounced changes in IFNßKO females. In contrast, the effects of IFNßKO on MAPK activities are independent of sex with pronounced reduction of active ERK1/2 but also of active p38 in the HIVgp120tg brain. In summary, our findings show that the absence of IFNß impairs memory dependent behavior and modulates neuropathology in HIVgp120tg brains, indicating that its absence may facilitate development of HAND. Moreover, our data suggests that endogenous IFNß plays a vital role in maintaining neuronal homeostasis and memory function.


Assuntos
Infecções por HIV , HIV-1 , Interferon beta , Animais , Feminino , Masculino , Camundongos , Encéfalo/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Interferon beta/metabolismo , Camundongos Transgênicos
6.
Brain Behav Immun ; 118: 149-166, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38423397

RESUMO

Macrophages (MΦ) infected with human immunodeficiency virus (HIV)-1 or activated by its envelope protein gp120 exert neurotoxicity. We found previously that signaling via p38 mitogen-activated protein kinase (p38 MAPK) is essential to the neurotoxicity of HIVgp120-stimulated MΦ. However, the associated downstream pathways remained elusive. Here we show that cysteinyl-leukotrienes (CysLT) released by HIV-infected or HIVgp120 stimulated MΦ downstream of p38 MAPK critically contribute to neurotoxicity. SiRNA-mediated or pharmacological inhibition of p38 MAPK deprives MΦ of CysLT synthase (LTC4S) and, pharmacological inhibition of the cysteinyl-leukotriene receptor 1 (CYSLTR1) protects cerebrocortical neurons against toxicity of both gp120-stimulated and HIV-infected MΦ. Components of the CysLT pathway are differentially regulated in brains of HIV-infected individuals and a transgenic mouse model of NeuroHIV (HIVgp120tg). Moreover, genetic ablation of LTC4S or CysLTR1 prevents neuronal damage and impairment of spatial memory in HIVgp120tg mice. Altogether, our findings suggest a novel critical role for cysteinyl-leukotrienes in HIV-associated brain injury.


Assuntos
Cisteína , Infecções por HIV , HIV-1 , Camundongos , Humanos , Animais , HIV-1/metabolismo , Macrófagos/metabolismo , Leucotrienos/metabolismo , Neurônios/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Camundongos Transgênicos , Infecções por HIV/metabolismo
7.
Mol Psychiatry ; 27(8): 3441-3451, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35668157

RESUMO

Prefrontal circuits are thought to underlie aberrant emotion contributing to relapse in abstinence; however, the discrete cell-types and mechanisms remain largely unknown. Corticotropin-releasing factor and its cognate type-1 receptor, a prominent brain stress system, is implicated in anxiety and alcohol use disorder (AUD). Here, we tested the hypothesis that medial prefrontal cortex CRF1-expressing (mPFCCRF1+) neurons comprise a distinct population that exhibits neuroadaptations following withdrawal from chronic ethanol underlying AUD-related behavior. We found that mPFCCRF1+ neurons comprise a glutamatergic population with distinct electrophysiological properties and regulate anxiety and conditioned rewarding effects of ethanol. Notably, mPFCCRF1+ neurons undergo unique neuroadaptations compared to neighboring neurons including a remarkable decrease in excitability and glutamatergic signaling selectively in withdrawal, which is driven in part by the basolateral amygdala. To gain mechanistic insight into these electrophysiological adaptations, we sequenced the transcriptome of mPFCCRF1+ neurons and found that withdrawal leads to an increase in colony-stimulating factor 1 (CSF1) in this population. We found that selective overexpression of CSF1 in mPFCCRF1+ neurons is sufficient to decrease glutamate transmission, heighten anxiety, and abolish ethanol reinforcement, providing mechanistic insight into the observed mPFCCRF1+ synaptic adaptations in withdrawal that drive these behavioral phenotypes. Together, these findings highlight mPFCCRF1+ neurons as a critical site of enduring adaptations that may contribute to the persistent vulnerability to ethanol misuse in abstinence, and CSF1 as a novel target for therapeutic intervention for withdrawal-related negative affect.


Assuntos
Alcoolismo , Síndrome de Abstinência a Substâncias , Humanos , Receptores de Hormônio Liberador da Corticotropina/genética , Etanol/farmacologia , Alcoolismo/genética , Hormônio Liberador da Corticotropina , Neurônios , Ansiedade
8.
PLoS Comput Biol ; 18(2): e1009800, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35176017

RESUMO

Alcohol Use Disorder (AUD) is a chronic, relapsing syndrome diagnosed by a heterogeneous set of behavioral signs and symptoms. There are no laboratory tests that provide direct objective evidence for diagnosis. Microarray and RNA-Seq technologies enable genome-wide transcriptome profiling at low costs and provide an opportunity to identify biomarkers to facilitate diagnosis, prognosis, and treatment of patients. However, access to brain tissue in living patients is not possible. Blood contains cellular and extracellular RNAs that provide disease-relevant information for some brain diseases. We hypothesized that blood gene expression profiles can be used to diagnose AUD. We profiled brain (prefrontal cortex, amygdala, and hypothalamus) and blood gene expression levels in C57BL/6J mice using RNA-seq one week after chronic intermittent ethanol (CIE) exposure, a mouse model of alcohol dependence. We found a high degree of preservation (rho range: [0.50, 0.67]) between blood and brain transcript levels. There was small overlap between blood and brain DEGs, and considerable overlap of gene networks perturbed after CIE related to cell-cell signaling (e.g., GABA and glutamate receptor signaling), immune responses (e.g., antigen presentation), and protein processing / mitochondrial functioning (e.g., ubiquitination, oxidative phosphorylation). Blood gene expression data were used to train classifiers (logistic regression, random forest, and partial least squares discriminant analysis), which were highly accurate at predicting alcohol dependence status (maximum AUC: 90.1%). These results suggest that gene expression profiles from peripheral blood samples contain a biological signature of alcohol dependence that can discriminate between CIE and Air subjects.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Etanol/administração & dosagem , Expressão Gênica , Animais , Camundongos , Camundongos Endogâmicos C57BL
9.
Brain ; 145(10): 3608-3621, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35603900

RESUMO

The lipid phosphatase PTEN (phosphatase and tensin homologue on chromosome 10) is a key tumour suppressor gene and an important regulator of neuronal signalling. PTEN mutations have been identified in patients with autism spectrum disorders, characterized by macrocephaly, impaired social interactions and communication, repetitive behaviour, intellectual disability, and epilepsy. PTEN enzymatic activity is regulated by a cluster of phosphorylation sites at the C-terminus of the protein. Here, we focused on the role of PTEN T366 phosphorylation and generated a knock-in mouse line in which Pten T366 was substituted with alanine (PtenT366A/T366A). We identify that phosphorylation of PTEN at T366 controls neuron size and connectivity of brain circuits involved in sensory processing. We show in behavioural tests that PtenT366/T366A mice exhibit cognitive deficits and selective sensory impairments, with significant differences in male individuals. We identify restricted cellular overgrowth of cortical neurons in PtenT366A/T366A brains, linked to increases in both dendritic arborization and soma size. In a combinatorial approach of anterograde and retrograde monosynaptic tracing using rabies virus, we characterize differences in connectivity to the primary somatosensory cortex of PtenT366A/T366A brains, with imbalances in long-range cortico-cortical input to neurons. We conclude that phosphorylation of PTEN at T366 controls neuron size and connectivity of brain circuits involved in sensory processing and propose that PTEN T366 signalling may account for a subset of autism-related functions of PTEN.


Assuntos
PTEN Fosfo-Hidrolase , Treonina , Animais , Camundongos , Masculino , Treonina/metabolismo , Tensinas/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Neurônios/metabolismo , Alanina/metabolismo , Lipídeos
10.
Cell Mol Neurobiol ; 41(4): 733-750, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32447612

RESUMO

Neuroimmune factors, including the cytokine interleukin-6 (IL-6), are important chemical regulators of central nervous system (CNS) function under both physiological and pathological conditions. Elevated expression of IL-6 occurs in the CNS in a variety of disorders associated with altered CNS function, including excessive alcohol use. Alcohol-induced production of IL-6 has been reported for several CNS regions including the cerebellum. Cerebellar actions of alcohol occur through a variety of mechanisms, but alcohol-induced changes in signal transduction, transcription, and translation are known to play important roles. IL-6 is an activator of signal transduction that regulates gene expression. Thus, alcohol-induced IL-6 production could contribute to cerebellar effects of alcohol by altering gene expression, especially under conditions of chronic alcohol abuse, where IL-6 levels could be habitually elevated. To gain an understanding of the effects of alcohol on IL-6 signal transduction, we studied activation/expression of IL-6 signal transduction partners STAT3 (Signal Transducer and Activator of Transcription), CCAAT-enhancer binding protein (C/EBP) beta, and p42/p44 mitogen-activated protein kinase (MAPK) at the protein level. Cerebella of transgenic mice that express elevated levels of astrocyte produced IL-6 in the CNS were studied. Results show that the both IL-6 and chronic intermittent alcohol exposure/withdrawal affect IL-6 signal transduction partners and that the actions of IL-6 and alcohol interact to alter activation/expression of IL-6 signal transduction partners. The alcohol/IL-6 interactions may contribute to cerebellar actions of alcohol, whereas the effects of IL-6 alone may have relevance to cerebellar changes occurring in CNS disorders associated with elevated levels of IL-6.


Assuntos
Astrócitos/metabolismo , Sistema Nervoso Central/metabolismo , Etanol/toxicidade , Interleucina-6/metabolismo , Transdução de Sinais , Animais , Astrócitos/efeitos dos fármacos , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfopiruvato Hidratase/metabolismo , Fosforilação/efeitos dos fármacos , Análise de Regressão , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Proc Natl Acad Sci U S A ; 115(29): E6937-E6945, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29967167

RESUMO

N-acyl amino acids (NAAs) are a structurally diverse class of bioactive signaling lipids whose endogenous functions have largely remained uncharacterized. To clarify the physiologic roles of NAAs, we generated mice deficient in the circulating enzyme peptidase M20 domain-containing 1 (PM20D1). Global PM20D1-KO mice have dramatically reduced NAA hydrolase/synthase activities in tissues and blood with concomitant bidirectional dysregulation of endogenous NAAs. Compared with control animals, PM20D1-KO mice exhibit a variety of metabolic and pain phenotypes, including insulin resistance, altered body temperature in cold, and antinociceptive behaviors. Guided by these phenotypes, we identify N-oleoyl-glutamine (C18:1-Gln) as a key PM20D1-regulated NAA. In addition to its mitochondrial uncoupling bioactivity, C18:1-Gln also antagonizes certain members of the transient receptor potential (TRP) calcium channels including TRPV1. Direct administration of C18:1-Gln to mice is sufficient to recapitulate a subset of phenotypes observed in PM20D1-KO animals. These data demonstrate that PM20D1 is a dominant enzymatic regulator of NAA levels in vivo and elucidate physiologic functions for NAA signaling in metabolism and nociception.


Assuntos
Amidoidrolases/metabolismo , Glutamina/metabolismo , Nociceptividade/fisiologia , Ácidos Oleicos/metabolismo , Transdução de Sinais/fisiologia , Amidoidrolases/genética , Animais , Temperatura Corporal/fisiologia , Glutamina/genética , Glutamina/farmacologia , Camundongos , Camundongos Knockout , Nociceptividade/efeitos dos fármacos , Ácidos Oleicos/genética , Ácidos Oleicos/farmacologia , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
12.
J Neuroinflammation ; 17(1): 226, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727588

RESUMO

BACKGROUND: HIV-1 infection remains a major public health concern despite effective combination antiretroviral therapy (cART). The virus enters the central nervous system (CNS) early in infection and continues to cause HIV-associated neurocognitive disorders (HAND). The pathogenic mechanisms of HIV-associated brain injury remain incompletely understood. Since HIV-1 activates the type I interferon system, which signals via interferon-α receptor (IFNAR) 1 and 2, this study investigated the potential role of IFNAR1 in HIV-induced neurotoxicity. METHODS: We cross-bred HIVgp120-transgenic (tg) and IFNAR1 knockout (IFNAR1KO) mice. At 11-14 months of age, we performed a behavioral assessment and subsequently analyzed neuropathological alterations using deconvolution and quantitative immunofluorescence microscopy, quantitative RT-PCR, and bioinformatics. Western blotting of brain lysates and an in vitro neurotoxicity assay were employed for analysis of cellular signaling pathways. RESULTS: We show that IFNAR1KO results in partial, sex-dependent protection from neuronal injury and behavioral deficits in a transgenic model of HIV-induced brain injury. The IFNAR1KO rescues spatial memory and ameliorates loss of presynaptic terminals preferentially in female HIVgp120tg mice. Similarly, expression of genes involved in neurotransmission reveals sex-dependent effects of IFNAR1KO and HIVgp120. In contrast, IFNAR1-deficiency, independent of sex, limits damage to neuronal dendrites, microgliosis, and activation of p38 MAPK and restores ERK activity in the HIVgp120tg brain. In vitro, inhibition of p38 MAPK abrogates neurotoxicity caused similarly by blockade of ERK kinase and HIVgp120. CONCLUSION: Our findings indicate that IFNAR1 plays a pivotal role in both sex-dependent and independent processes of neuronal injury and behavioral impairment triggered by HIV-1.


Assuntos
Complexo AIDS Demência/metabolismo , Complexo AIDS Demência/patologia , Encéfalo/patologia , Neurônios/patologia , Receptor de Interferon alfa e beta/metabolismo , Animais , Encéfalo/metabolismo , Feminino , Proteína gp120 do Envelope de HIV , HIV-1 , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo
13.
Brain Behav Immun ; 89: 184-199, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32534984

RESUMO

People living with HIV (PLWH) continue to develop HIV-associated neurocognitive disorders despite combination anti-retroviral therapy. Lipocalin-2 (LCN2) is an acute phase protein that has been implicated in neurodegeneration and is upregulated in a transgenic mouse model of HIV-associated brain injury. Here we show that LCN2 is significantly upregulated in neocortex of a subset of HIV-infected individuals with brain pathology and correlates with viral load in CSF and pro-viral DNA in neocortex. However, the question if LCN2 contributes to HIV-associated neurotoxicity or is part of a protective host response required further investigation. We found that the knockout of LCN2 in transgenic mice expressing HIVgp120 in the brain (HIVgp120tg) abrogates behavioral impairment, ameliorates neuronal damage, and reduces microglial activation in association with an increase of the neuroprotective CCR5 ligand CCL4. In vitro experiments show that LCN2 neurotoxicity also depends on microglia and p38 MAPK activity. Genetic ablation of CCR5 in LCN2-deficient HIVgp120tg mice restores neuropathology, suggesting that LCN2 overrides neuroprotection mediated by CCR5 and its chemokine ligands. RNA expression of 168 genes involved in neurotransmission reveals that neuronal injury and protection are each associated with genotype- and sex-specific patterns affecting common neural gene networks. In conclusion, our study identifies LCN2 as a novel factor in HIV-associated brain injury involving CCR5, p38 MAPK and microglia. Furthermore, the mechanistic interaction between LCN2 and CCR5 may serve as a diagnostic and therapeutic target in HIV patients at risk of developing brain pathology and neurocognitive impairment.


Assuntos
Infecções por HIV , HIV-1 , Proteínas de Fase Aguda/genética , Animais , Infecções por HIV/complicações , HIV-1/metabolismo , Humanos , Lipocalina-2/genética , Camundongos , Neurônios/metabolismo , Receptores CCR5/genética
14.
Glia ; 67(10): 1976-1989, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31348567

RESUMO

The second messenger inositol 1,4,5-trisphosphate (IP3 ) is paramount for signal transduction in biological cells, mediating Ca2+ release from the endoplasmic reticulum. Of the three isoforms of IP3 receptors identified in the nervous system, Type 2 (IP3 R2) is the main isoform expressed by astrocytes. The complete lack of IP3 R2 in transgenic mice was shown to significantly disrupt Ca2+ signaling in astrocytes, while leaving neuronal intracellular pathways virtually unperturbed. Whether and how this predominantly nonneuronal receptor might affect long-term memory function has been a matter of intense debate. In this work, we found that the absence of IP3 R2-mediated signaling did not disrupt normal learning or recent (24-48 h) memory. Contrary to expectations, however, mice lacking IP3 R2 exhibited remote (2-4 weeks) memory deficits. Not only did the lack of IP3 R2 impair remote recognition, fear, and spatial memories, but it also prevented naturally occurring post-encoding memory enhancements consequent to memory consolidation. Consistent with the key role played by the downscaling of synaptic transmission in memory consolidation, we found that NMDAR-dependent long-term depression was abnormal in ex vivo hippocampal slices acutely prepared from IP3 R2-deficient mice, a deficit that could be prevented upon supplementation with D-serine - an NMDA-receptor co-agonist whose synthesis depends upon astrocytes' activity. Our results reveal that IP3 R2 activation, which in the brain is paramount for Ca2+ signaling in astrocytes, but not in neurons, can help shape brain plasticity by enhancing the consolidation of newly acquired information into long-term memories that can guide remote cognitive behaviors.


Assuntos
Receptores de Inositol 1,4,5-Trifosfato/deficiência , Transtornos da Memória/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Medo/fisiologia , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Aprendizagem/fisiologia , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Consolidação da Memória/fisiologia , Memória de Longo Prazo/fisiologia , Memória de Curto Prazo/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/metabolismo , Memória Espacial/fisiologia , Técnicas de Cultura de Tecidos
15.
Brain Behav Immun ; 82: 188-202, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31437534

RESUMO

Accumulating evidence from preclinical and clinical studies has implicated a role for the cytokine IL-6 in a variety of CNS diseases including anxiety-like and depressive-like behaviors, as well as alcohol use disorder. Here we use homozygous and heterozygous transgenic mice expressing elevated levels of IL-6 in the CNS due to increased astrocyte expression and non-transgenic littermates to examine a role for astrocyte-produced IL-6 in emotionality (response to novelty, anxiety-like, and depressive-like behaviors). Our results from homozygous IL-6 mice in a variety of behavioral tests (light/dark transfer, open field, digging, tail suspension, and forced swim tests) support a role for IL-6 in stress-coping behaviors. Ex vivo electrophysiological studies of neuronal excitability and inhibitory GABAergic synaptic transmission in the central nucleus of the amygdala (CeA) of the homozygous transgenic mice revealed increased inhibitory GABAergic signaling and increased excitability of CeA neurons, suggesting a role for astrocyte produced IL-6 in the amygdala in exploratory drive and depressive-like behavior. Furthermore, studies in the hippocampus of activation/expression of proteins associated with IL-6 signal transduction and inhibitory GABAergic mechanisms support a role for astrocyte produced IL-6 in depressive-like behaviors. Our studies indicate a complex and dose-dependent relationship between IL-6 and behavior and implicate IL-6 induced neuroadaptive changes in neuronal excitability and the inhibitory GABAergic system as important contributors to altered behavior associated with IL-6 expression in the CNS.


Assuntos
Alcoolismo/metabolismo , Astrócitos/metabolismo , Núcleo Central da Amígdala/metabolismo , Interleucina-6/biossíntese , Síndrome de Abstinência a Substâncias/metabolismo , Transmissão Sináptica/fisiologia , Tonsila do Cerebelo/metabolismo , Animais , Ansiedade/metabolismo , Transtornos de Ansiedade/metabolismo , Depressão/metabolismo , Transtorno Depressivo/metabolismo , Feminino , Neurônios GABAérgicos/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurônios/metabolismo
16.
Brain Behav Immun ; 75: 208-219, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30791967

RESUMO

The interleukin-1 system (IL-1) is a prominent pro-inflammatory pathway responsible for the initiation and regulation of immune responses. Human genetic and preclinical studies suggest a critical role for IL-1ß signaling in ethanol drinking and dependence, but little is known about the effects of chronic ethanol on the IL-1 system in addiction-related brain regions such as the central amygdala (CeA). In this study, we generated naïve, non-dependent (Non-Dep) and dependent (Dep) male mice using a paradigm of chronic-intermittent ethanol vapor exposure interspersed with two-bottle choice to examine 1) the expression of IL-1ß, 2) the role of the IL-1 system on GABAergic transmission, and 3) the potential interaction with the acute effects of ethanol in the CeA. Immunohistochemistry with confocal microscopy was used to assess expression of IL-1ß in microglia and neurons in the CeA, and whole-cell patch clamp recordings were obtained from CeA neurons to measure the effects of IL-1ß (50 ng/ml) or the endogenous IL-1 receptor antagonist (IL-1ra; 100 ng/ml) on action potential-dependent spontaneous inhibitory postsynaptic currents (sIPSCs). Overall, we found that IL-1ß expression is significantly increased in microglia and neurons of Dep compared to Non-Dep and naïve mice, IL-1ß and IL-1ra bi-directionally modulate GABA transmission through both pre- and postsynaptic mechanisms in all three groups, and IL-1ß and IL-1ra do not alter the facilitation of GABA release induced by acute ethanol. These data suggest that while ethanol dependence induces a neuroimmune response in the CeA, as indicated by increased IL-1ß expression, this does not significantly alter the neuromodulatory role of IL-1ß on synaptic transmission.


Assuntos
Núcleo Central da Amígdala/efeitos dos fármacos , Etanol/administração & dosagem , Interleucina-1beta/biossíntese , Ácido gama-Aminobutírico/metabolismo , Animais , Núcleo Central da Amígdala/metabolismo , Depressores do Sistema Nervoso Central/farmacologia , Etanol/efeitos adversos , Etanol/toxicidade , Neurônios GABAérgicos/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Receptores de GABA-A/metabolismo , Transmissão Sináptica/efeitos dos fármacos
17.
J Neurosci ; 37(5): 1139-1155, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27986929

RESUMO

Toll-like receptor 4 (TLR4) is a critical component of innate immune signaling and has been implicated in alcohol responses in preclinical and clinical models. Members of the Integrative Neuroscience Initiative on Alcoholism (INIA-Neuroimmune) consortium tested the hypothesis that TLR4 mediates excessive ethanol drinking using the following models: (1) Tlr4 knock-out (KO) rats, (2) selective knockdown of Tlr4 mRNA in mouse nucleus accumbens (NAc), and (3) injection of the TLR4 antagonist (+)-naloxone in mice. Lipopolysaccharide (LPS) decreased food/water intake and body weight in ethanol-naive and ethanol-trained wild-type (WT), but not Tlr4 KO rats. There were no consistent genotypic differences in two-bottle choice chronic ethanol intake or operant self-administration in rats before or after dependence. In mice, (+)-naloxone did not decrease drinking-in-the-dark and only modestly inhibited dependence-driven consumption at the highest dose. Tlr4 knockdown in mouse NAc did not decrease drinking in the two-bottle choice continuous or intermittent access tests. However, the latency to ethanol-induced loss of righting reflex increased and the duration decreased in KO versus WT rats. In rat central amygdala neurons, deletion of Tlr4 altered GABAA receptor function, but not GABA release. Although there were no genotype differences in acute ethanol effects before or after chronic intermittent ethanol exposure, genotype differences were observed after LPS exposure. Using different species and sexes, different methods to inhibit TLR4 signaling, and different ethanol consumption tests, our comprehensive studies indicate that TLR4 may play a role in ethanol-induced sedation and GABAA receptor function, but does not regulate excessive drinking directly and would not be an effective therapeutic target. SIGNIFICANCE STATEMENT: Toll-like receptor 4 (TLR4) is a key mediator of innate immune signaling and has been implicated in alcohol responses in animal models and human alcoholics. Members of the Integrative Neuroscience Initiative on Alcoholism (INIA-Neuroimmune) consortium participated in the first comprehensive study across multiple laboratories to test the hypothesis that TLR4 regulates excessive alcohol consumption in different species and different models of chronic, dependence-driven, and binge-like drinking. Although TLR4 was not a critical determinant of excessive drinking, it was important in the acute sedative effects of alcohol. Current research efforts are directed at determining which neuroimmune pathways mediate excessive alcohol drinking and these findings will help to prioritize relevant pathways and potential therapeutic targets.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/psicologia , Alcoolismo/genética , Alcoolismo/psicologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/fisiologia , Animais , Peso Corporal/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Feminino , Técnicas de Inativação de Genes , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Knockout , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Núcleo Accumbens/metabolismo , Ratos , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/genética , Receptor 4 Toll-Like/antagonistas & inibidores
18.
Alcohol Clin Exp Res ; 42(3): 540-550, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29265376

RESUMO

BACKGROUND: Sleep disruptions are an important consequence of alcohol use disorders. There is a dearth of preclinical studies examining sex differences in sleep patterns associated with ethanol (EtOH) dependence despite documented sex differences in alcohol-related behaviors and withdrawal symptoms. The purpose of this study was to investigate the effects of chronic intermittent EtOH on sleep characteristics in female and male mice. METHODS: Female and male C57BL6/J mice had access to EtOH/water 2-bottle choice (2BC) 2 h/d for 3 weeks followed by exposure to EtOH vapor (vapor-2BC) or air for 5 cycles of 4 days. An additional group never experienced EtOH (naïve). Mice were implanted with electroencephalographic (EEG) electrodes, and vigilance states were recorded across 24 hours on the fourth day of withdrawal. The amounts of wakefulness, slow-wave sleep (SWS), and rapid eye movement sleep were calculated, and spectral analysis was performed by fast Fourier transformation. RESULTS: Overall, vapor-2BC mice showed a decrease in the amount of SWS 4 days into withdrawal as well as a decrease in the power density of slow waves, indicating disruptions in both the amount and quality of sleep in EtOH-dependent mice. This was associated with a decrease in duration and an increase in number of SWS episodes in males and an increase in latency to sleep in females. CONCLUSIONS: Our results revealed overall deficits in sleep regulation in EtOH-dependent mice of both sexes. Female mice appeared to be more affected with regard to the triggering of sleep, while male mice appeared more sensitive to disruptions in the maintenance of sleep.


Assuntos
Depressores do Sistema Nervoso Central/efeitos adversos , Etanol/efeitos adversos , Sono REM/fisiologia , Sono de Ondas Lentas/fisiologia , Síndrome de Abstinência a Substâncias/fisiopatologia , Alcoolismo , Animais , Eletroencefalografia , Feminino , Masculino , Camundongos , Fatores Sexuais , Sono/fisiologia , Síndrome de Abstinência a Substâncias/etiologia , Vigília/fisiologia
19.
Proc Natl Acad Sci U S A ; 112(22): 7091-6, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25964320

RESUMO

G protein-gated inwardly rectifying potassium (GIRK) channels are critical regulators of neuronal excitability and can be directly activated by ethanol. Constitutive deletion of the GIRK3 subunit has minimal phenotypic consequences, except in response to drugs of abuse. Here we investigated how the GIRK3 subunit contributes to the cellular and behavioral effects of ethanol, as well as to voluntary ethanol consumption. We found that constitutive deletion of GIRK3 in knockout (KO) mice selectively increased ethanol binge-like drinking, without affecting ethanol metabolism, sensitivity to ethanol intoxication, or continuous-access drinking. Virally mediated expression of GIRK3 in the ventral tegmental area (VTA) reversed the phenotype of GIRK3 KO mice and further decreased the intake of their wild-type counterparts. In addition, GIRK3 KO mice showed a blunted response of the mesolimbic dopaminergic (DA) pathway to ethanol, as assessed by ethanol-induced excitation of VTA neurons and DA release in the nucleus accumbens. These findings support the notion that the subunit composition of VTA GIRK channels is a critical determinant of DA neuron sensitivity to drugs of abuse. Furthermore, our study reveals the behavioral impact of this cellular effect, whereby the level of GIRK3 expression in the VTA tunes ethanol intake under binge-type conditions: the more GIRK3, the less ethanol drinking.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Etanol/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Ativação do Canal Iônico/fisiologia , Motivação/genética , Análise de Variância , Animais , Consumo Excessivo de Bebidas Alcoólicas/genética , Primers do DNA/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/deficiência , Hibridização In Situ , Ativação do Canal Iônico/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microdiálise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Recompensa
20.
Proc Natl Acad Sci U S A ; 111(32): E3343-52, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25071179

RESUMO

Glial cells are an integral part of functional communication in the brain. Here we show that astrocytes contribute to the fast dynamics of neural circuits that underlie normal cognitive behaviors. In particular, we found that the selective expression of tetanus neurotoxin (TeNT) in astrocytes significantly reduced the duration of carbachol-induced gamma oscillations in hippocampal slices. These data prompted us to develop a novel transgenic mouse model, specifically with inducible tetanus toxin expression in astrocytes. In this in vivo model, we found evidence of a marked decrease in electroencephalographic (EEG) power in the gamma frequency range in awake-behaving mice, whereas neuronal synaptic activity remained intact. The reduction in cortical gamma oscillations was accompanied by impaired behavioral performance in the novel object recognition test, whereas other forms of memory, including working memory and fear conditioning, remained unchanged. These results support a key role for gamma oscillations in recognition memory. Both EEG alterations and behavioral deficits in novel object recognition were reversed by suppression of tetanus toxin expression. These data reveal an unexpected role for astrocytes as essential contributors to information processing and cognitive behavior.


Assuntos
Astrócitos/fisiologia , Reconhecimento Psicológico/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Ondas Encefálicas/efeitos dos fármacos , Ondas Encefálicas/fisiologia , Sinalização do Cálcio , Carbacol/farmacologia , Eletroencefalografia , Expressão Gênica , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Neurológicos , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transmissão Sináptica , Toxina Tetânica/genética , Toxina Tetânica/metabolismo , Técnicas de Cultura de Tecidos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA