Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 496
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(15): 2617-2620, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35868264

RESUMO

With recent dramatic advances in various techniques used for protein structure research, we asked researchers to comment on the next exciting questions for the field and about how these techniques will advance our knowledge not only about proteins but also about human health and diseases.

2.
Cell ; 185(21): 3931-3949.e26, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36240740

RESUMO

Neural migration is a critical step during brain development that requires the interactions of cell-surface guidance receptors. Cancer cells often hijack these mechanisms to disseminate. Here, we reveal crystal structures of Uncoordinated-5 receptor D (Unc5D) in complex with morphogen receptor glypican-3 (GPC3), forming an octameric glycoprotein complex. In the complex, four Unc5D molecules pack into an antiparallel bundle, flanked by four GPC3 molecules. Central glycan-glycan interactions are formed by N-linked glycans emanating from GPC3 (N241 in human) and C-mannosylated tryptophans of the Unc5D thrombospondin-like domains. MD simulations, mass spectrometry and structure-based mutants validate the crystallographic data. Anti-GPC3 nanobodies enhance or weaken Unc5-GPC3 binding and, together with mutant proteins, show that Unc5/GPC3 guide migrating pyramidal neurons in the mouse cortex, and cancer cells in an embryonic xenograft neuroblastoma model. The results demonstrate a conserved structural mechanism of cell guidance, where finely balanced Unc5-GPC3 interactions regulate cell migration.


Assuntos
Movimento Celular , Glipicanas/química , Receptores de Netrina/química , Animais , Glipicanas/metabolismo , Humanos , Camundongos , Proteínas Mutantes , Receptores de Netrina/metabolismo , Receptores de Superfície Celular/metabolismo , Anticorpos de Domínio Único , Trombospondinas
3.
Annu Rev Biochem ; 89: 1-19, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32343910

RESUMO

It is impossible to do justice in one review article to a researcher of the stature of Christopher Dobson. His career spanned almost five decades, resulting in more than 870 publications and a legacy that will continue to influence the lives of many for decades to come. In this review, I have attempted to capture Chris's major contributions: his early work, dedicated to understanding protein-folding mechanisms; his collaborative work with physicists to understand the process of protein aggregation; and finally, his later career in which he developed strategies to prevent misfolding. However, it is not only this body of work but also the man himself who inspired an entire generation of scientists through his patience, ability to mentor, and innate generosity. These qualities remain a hallmark of the way in which he conducted his research-research that will leave a lasting imprint on science.

4.
Cell ; 180(2): 348-358.e15, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31883796

RESUMO

Most bacterial and all archaeal cells are encapsulated by a paracrystalline, protective, and cell-shape-determining proteinaceous surface layer (S-layer). On Gram-negative bacteria, S-layers are anchored to cells via lipopolysaccharide. Here, we report an electron cryomicroscopy structure of the Caulobacter crescentus S-layer bound to the O-antigen of lipopolysaccharide. Using native mass spectrometry and molecular dynamics simulations, we deduce the length of the O-antigen on cells and show how lipopolysaccharide binding and S-layer assembly is regulated by calcium. Finally, we present a near-atomic resolution in situ structure of the complete S-layer using cellular electron cryotomography, showing S-layer arrangement at the tip of the O-antigen. A complete atomic structure of the S-layer shows the power of cellular tomography for in situ structural biology and sheds light on a very abundant class of self-assembling molecules with important roles in prokaryotic physiology with marked potential for synthetic biology and surface-display applications.


Assuntos
Proteínas da Membrana Bacteriana Externa/ultraestrutura , Caulobacter crescentus/metabolismo , Glicoproteínas de Membrana/ultraestrutura , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Caulobacter crescentus/ultraestrutura , Microscopia Crioeletrônica/métodos , Lipopolissacarídeos/metabolismo , Glicoproteínas de Membrana/metabolismo , Tomografia/métodos
5.
Annu Rev Biochem ; 88: 85-111, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30901263

RESUMO

Membrane proteins that exist in lipid bilayers are not isolated molecular entities. The lipid molecules that surround them play crucial roles in maintaining their full structural and functional integrity. Research directed at investigating these critical lipid-protein interactions is developing rapidly. Advancements in both instrumentation and software, as well as in key biophysical and biochemical techniques, are accelerating the field. In this review, we provide a brief outline of structural techniques used to probe protein-lipid interactions and focus on the molecular aspects of these interactions obtained from native mass spectrometry (native MS). We highlight examples in which lipids have been shown to modulate membrane protein structure and show how native MS has emerged as a complementary technique to X-ray crystallography and cryo-electron microscopy. We conclude with a short perspective on future developments that aim to better understand protein-lipid interactions in the native environment.


Assuntos
Glicerofosfolipídeos/metabolismo , Glicolipídeos/metabolismo , Espectrometria de Massas/métodos , Proteínas de Membrana/metabolismo , Esfingolipídeos/metabolismo , Esteróis/metabolismo , Bactérias/química , Bactérias/metabolismo , Sítios de Ligação , Membrana Celular/química , Membrana Celular/metabolismo , Microscopia Crioeletrônica/instrumentação , Microscopia Crioeletrônica/métodos , Fungos/química , Fungos/metabolismo , Glicerofosfolipídeos/química , Glicolipídeos/química , Espectroscopia de Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/instrumentação , Proteínas de Membrana/química , Proteínas de Membrana/ultraestrutura , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Esfingolipídeos/química , Esteróis/química
6.
Cell ; 178(1): 216-228.e21, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31204103

RESUMO

The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is the leading target for next-generation vaccines against the disease-causing blood-stage of malaria. However, little is known about how human antibodies confer functional immunity against this antigen. We isolated a panel of human monoclonal antibodies (mAbs) against PfRH5 from peripheral blood B cells from vaccinees in the first clinical trial of a PfRH5-based vaccine. We identified a subset of mAbs with neutralizing activity that bind to three distinct sites and another subset of mAbs that are non-functional, or even antagonistic to neutralizing antibodies. We also identify the epitope of a novel group of non-neutralizing antibodies that significantly reduce the speed of red blood cell invasion by the merozoite, thereby potentiating the effect of all neutralizing PfRH5 antibodies as well as synergizing with antibodies targeting other malaria invasion proteins. Our results provide a roadmap for structure-guided vaccine development to maximize antibody efficacy against blood-stage malaria.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antiprotozoários/imunologia , Eritrócitos/parasitologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Adolescente , Adulto , Animais , Sítios de Ligação , Proteínas de Transporte/imunologia , Reações Cruzadas/imunologia , Epitopos/imunologia , Feminino , Células HEK293 , Voluntários Saudáveis , Humanos , Malária Falciparum/parasitologia , Masculino , Merozoítos/fisiologia , Pessoa de Meia-Idade , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/imunologia , Coelhos , Ratos , Ratos Sprague-Dawley , Adulto Jovem
7.
Cell ; 175(4): 1045-1058.e16, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388443

RESUMO

Protein N-glycosylation is a widespread post-translational modification. The first committed step in this process is catalysed by dolichyl-phosphate N-acetylglucosamine-phosphotransferase DPAGT1 (GPT/E.C. 2.7.8.15). Missense DPAGT1 variants cause congenital myasthenic syndrome and disorders of glycosylation. In addition, naturally-occurring bactericidal nucleoside analogues such as tunicamycin are toxic to eukaryotes due to DPAGT1 inhibition, preventing their clinical use. Our structures of DPAGT1 with the substrate UDP-GlcNAc and tunicamycin reveal substrate binding modes, suggest a mechanism of catalysis, provide an understanding of how mutations modulate activity (thus causing disease) and allow design of non-toxic "lipid-altered" tunicamycins. The structure-tuned activity of these analogues against several bacterial targets allowed the design of potent antibiotics for Mycobacterium tuberculosis, enabling treatment in vitro, in cellulo and in vivo, providing a promising new class of antimicrobial drug.


Assuntos
Antibióticos Antituberculose/farmacologia , Defeitos Congênitos da Glicosilação/metabolismo , Inibidores Enzimáticos/farmacologia , N-Acetilglucosaminiltransferases/química , Animais , Antibióticos Antituberculose/química , Sítios de Ligação , Defeitos Congênitos da Glicosilação/genética , Inibidores Enzimáticos/química , Feminino , Células HEK293 , Células Hep G2 , Humanos , Metabolismo dos Lipídeos , Camundongos , Simulação de Acoplamento Molecular , Mutação , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Ligação Proteica , Células Sf9 , Spodoptera , Tunicamicina/química , Tunicamicina/farmacologia , Uridina Difosfato Ácido Glucurônico/química , Uridina Difosfato Ácido Glucurônico/metabolismo
8.
Mol Cell ; 83(15): 2739-2752.e5, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37499662

RESUMO

Solute carrier spinster homolog 2 (SPNS2), one of only four known major facilitator superfamily (MFS) lysolipid transporters in humans, exports sphingosine-1-phosphate (S1P) across cell membranes. Here, we explore the synergistic effects of lipid binding and conformational dynamics on SPNS2's transport mechanism. Using mass spectrometry, we discovered that SPNS2 interacts preferentially with PI(4,5)P2. Together with functional studies and molecular dynamics (MD) simulations, we identified potential PI(4,5)P2 binding sites. Mutagenesis of proposed lipid binding sites and inhibition of PI(4,5)P2 synthesis reduce S1P transport, whereas the absence of the N terminus renders the transporter essentially inactive. Probing the conformational dynamics of SPNS2, we show how synergistic binding of PI(4,5)P2 and S1P facilitates transport, increases dynamics of the extracellular gate, and stabilizes the intracellular gate. Given that SPNS2 transports a key signaling lipid, our results have implications for therapeutic targeting and also illustrate a regulatory mechanism for MFS transporters.


Assuntos
Lisofosfolipídeos , Esfingosina , Humanos , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo
9.
Nature ; 630(8016): 437-446, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599239

RESUMO

Gasdermin D (GSDMD) is the common effector for cytokine secretion and pyroptosis downstream of inflammasome activation and was previously shown to form large transmembrane pores after cleavage by inflammatory caspases to generate the GSDMD N-terminal domain (GSDMD-NT)1-10. Here we report that GSDMD Cys191 is S-palmitoylated and that palmitoylation is required for pore formation. S-palmitoylation, which does not affect GSDMD cleavage, is augmented by mitochondria-generated reactive oxygen species (ROS). Cleavage-deficient GSDMD (D275A) is also palmitoylated after inflammasome stimulation or treatment with ROS activators and causes pyroptosis, although less efficiently than palmitoylated GSDMD-NT. Palmitoylated, but not unpalmitoylated, full-length GSDMD induces liposome leakage and forms a pore similar in structure to GSDMD-NT pores shown by cryogenic electron microscopy. ZDHHC5 and ZDHHC9 are the major palmitoyltransferases that mediate GSDMD palmitoylation, and their expression is upregulated by inflammasome activation and ROS. The other human gasdermins are also palmitoylated at their N termini. These data challenge the concept that cleavage is the only trigger for GSDMD activation. They suggest that reversible palmitoylation is a checkpoint for pore formation by both GSDMD-NT and intact GSDMD that functions as a general switch for the activation of this pore-forming family.


Assuntos
Gasderminas , Lipoilação , Proteínas de Ligação a Fosfato , Espécies Reativas de Oxigênio , Animais , Feminino , Humanos , Masculino , Camundongos , Aciltransferases/metabolismo , Microscopia Crioeletrônica , Cisteína/metabolismo , Gasderminas/química , Gasderminas/metabolismo , Inflamassomos/metabolismo , Lipossomos/metabolismo , Lipossomos/química , Mitocôndrias/metabolismo , Proteínas de Ligação a Fosfato/química , Proteínas de Ligação a Fosfato/metabolismo , Piroptose , Espécies Reativas de Oxigênio/metabolismo , Células THP-1
10.
EMBO J ; 43(14): 2979-3008, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38839991

RESUMO

Lipid-protein interactions play a multitude of essential roles in membrane homeostasis. Mitochondrial membranes have a unique lipid-protein environment that ensures bioenergetic efficiency. Cardiolipin (CL), the signature mitochondrial lipid, plays multiple roles in promoting oxidative phosphorylation (OXPHOS). In the inner mitochondrial membrane, the ADP/ATP carrier (AAC in yeast; adenine nucleotide translocator, ANT in mammals) exchanges ADP and ATP, enabling OXPHOS. AAC/ANT contains three tightly bound CLs, and these interactions are evolutionarily conserved. Here, we investigated the role of these buried CLs in AAC/ANT using a combination of biochemical approaches, native mass spectrometry, and molecular dynamics simulations. We introduced negatively charged mutations into each CL-binding site of yeast Aac2 and established experimentally that the mutations disrupted the CL interactions. While all mutations destabilized Aac2 tertiary structure, transport activity was impaired in a binding site-specific manner. Additionally, we determined that a disease-associated missense mutation in one CL-binding site in human ANT1 compromised its structure and transport activity, resulting in OXPHOS defects. Our findings highlight the conserved significance of CL in AAC/ANT structure and function, directly tied to specific lipid-protein interactions.


Assuntos
Cardiolipinas , Translocases Mitocondriais de ADP e ATP , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cardiolipinas/metabolismo , Sítios de Ligação , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Humanos , Translocases Mitocondriais de ADP e ATP/metabolismo , Translocases Mitocondriais de ADP e ATP/genética , Translocases Mitocondriais de ADP e ATP/química , Fosforilação Oxidativa , Translocador 1 do Nucleotídeo Adenina/metabolismo , Translocador 1 do Nucleotídeo Adenina/genética , Simulação de Dinâmica Molecular , Ligação Proteica , Mitocôndrias/metabolismo , Mitocôndrias/genética , Membranas Mitocondriais/metabolismo , Mutação , Mutação de Sentido Incorreto
11.
Cell ; 153(2): 461-70, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23582331

RESUMO

Is the order in which proteins assemble into complexes important for biological function? Here, we seek to address this by searching for evidence of evolutionary selection for ordered protein complex assembly. First, we experimentally characterize the assembly pathways of several heteromeric complexes and show that they can be simply predicted from their three-dimensional structures. Then, by mapping gene fusion events identified from fully sequenced genomes onto protein complex assembly pathways, we demonstrate evolutionary selection for conservation of assembly order. Furthermore, using structural and high-throughput interaction data, we show that fusion tends to optimize assembly by simplifying protein complex topologies. Finally, we observe protein structural constraints on the gene order of fusion that impact the potential for fusion to affect assembly. Together, these results reveal the intimate relationships among protein assembly, quaternary structure, and evolution and demonstrate on a genome-wide scale the biological importance of ordered assembly pathways.


Assuntos
Bactérias/metabolismo , Eucariotos/metabolismo , Evolução Molecular , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas/química , Bactérias/química , Bactérias/genética , Bases de Dados de Proteínas , Eucariotos/química , Eucariotos/genética , Fusão Gênica , Espectrometria de Massas/métodos , Redes e Vias Metabólicas , Polimerização , Estrutura Quaternária de Proteína , Proteínas/genética
12.
Nature ; 604(7905): 384-390, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35388214

RESUMO

G protein-coupled receptors (GPCRs) are cell-surface receptors that respond to various stimuli to induce signalling pathways across cell membranes. Recent progress has yielded atomic structures of key intermediates1,2 and roles for lipids in signalling3,4. However, capturing signalling events of a wild-type receptor in real time, across a native membrane to its downstream effectors, has remained elusive. Here we probe the archetypal class A GPCR, rhodopsin, directly from fragments of native disc membranes using mass spectrometry. We monitor real-time photoconversion of dark-adapted rhodopsin to opsin, delineating retinal isomerization and hydrolysis steps, and further showing that the reaction is significantly slower in its native membrane than in detergent micelles. Considering the lipids ejected with rhodopsin, we demonstrate that opsin can be regenerated in membranes through photoisomerized retinal-lipid conjugates, and we provide evidence for increased association of rhodopsin with unsaturated long-chain phosphatidylcholine during signalling. Capturing the secondary steps of the signalling cascade, we monitor light activation of transducin (Gt) through loss of GDP to generate an intermediate apo-trimeric G protein, and observe Gαt•GTP subunits interacting with PDE6 to hydrolyse cyclic GMP. We also show how rhodopsin-targeting compounds either stimulate or dampen signalling through rhodopsin-opsin and transducin signalling pathways. Our results not only reveal the effect of native lipids on rhodopsin signalling and regeneration but also enable us to propose a paradigm for GPCR drug discovery in native membrane environments.


Assuntos
Opsinas , Rodopsina , Transducina , Isomerismo , Metabolismo dos Lipídeos , Opsinas/metabolismo , Disco Óptico , Fosfatidilcolinas , Conformação Proteica , Receptores Acoplados a Proteínas G , Rodopsina/química
13.
Mol Cell ; 80(3): 501-511.e3, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33065002

RESUMO

Vesicular- or vacuolar-type adenosine triphosphatases (V-ATPases) are ATP-driven proton pumps comprised of a cytoplasmic V1 complex for ATP hydrolysis and a membrane-embedded Vo complex for proton transfer. They play important roles in acidification of intracellular vesicles, organelles, and the extracellular milieu in eukaryotes. Here, we report cryoelectron microscopy structures of human V-ATPase in three rotational states at up to 2.9-Å resolution. Aided by mass spectrometry, we build all known protein subunits with associated N-linked glycans and identify glycolipids and phospholipids in the Vo complex. We define ATP6AP1 as a structural hub for Vo complex assembly because it connects to multiple Vo subunits and phospholipids in the c-ring. The glycolipids and the glycosylated Vo subunits form a luminal glycan coat critical for V-ATPase folding, localization, and stability. This study identifies mechanisms of V-ATPase assembly and biogenesis that rely on the integrated roles of ATP6AP1, glycans, and lipids.


Assuntos
ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/fisiologia , ATPases Vacuolares Próton-Translocadoras/ultraestrutura , Microscopia Crioeletrônica/métodos , Citoplasma/metabolismo , Citosol/metabolismo , Células HEK293 , Humanos , Subunidades Proteicas/metabolismo , Relação Estrutura-Atividade
14.
Mol Cell ; 80(1): 72-86.e7, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32910895

RESUMO

Membrane protein biogenesis faces the challenge of chaperoning hydrophobic transmembrane helices for faithful membrane insertion. The guided entry of tail-anchored proteins (GET) pathway targets and inserts tail-anchored (TA) proteins into the endoplasmic reticulum (ER) membrane with an insertase (yeast Get1/Get2 or mammalian WRB/CAML) that captures the TA from a cytoplasmic chaperone (Get3 or TRC40, respectively). Here, we present cryo-electron microscopy reconstructions, native mass spectrometry, and structure-based mutagenesis of human WRB/CAML/TRC40 and yeast Get1/Get2/Get3 complexes. Get3 binding to the membrane insertase supports heterotetramer formation, and phosphatidylinositol binding at the heterotetramer interface stabilizes the insertase for efficient TA insertion in vivo. We identify a Get2/CAML cytoplasmic helix that forms a "gating" interaction with Get3/TRC40 important for TA insertion. Structural homology with YidC and the ER membrane protein complex (EMC) implicates an evolutionarily conserved insertion mechanism for divergent substrates utilizing a hydrophilic groove. Thus, we provide a detailed structural and mechanistic framework to understand TA membrane insertion.


Assuntos
Proteínas de Membrana/biossíntese , Proteínas de Membrana/química , Complexos Multiproteicos/metabolismo , Linhagem Celular , Sequência Conservada , Evolução Molecular , Humanos , Proteínas de Membrana/metabolismo , Modelos Moleculares , Fosfatidilinositóis/metabolismo , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Nature ; 593(7857): 125-129, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33854236

RESUMO

Antibiotics that target Gram-negative bacteria in new ways are needed to resolve the antimicrobial resistance crisis1-3. Gram-negative bacteria are protected by an additional outer membrane, rendering proteins on the cell surface attractive drug targets4,5. The natural compound darobactin targets the bacterial insertase BamA6-the central unit of the essential BAM complex, which facilitates the folding and insertion of outer membrane proteins7-13. BamA lacks a typical catalytic centre, and it is not obvious how a small molecule such as darobactin might inhibit its function. Here we resolve the mode of action of darobactin at the atomic level using a combination of cryo-electron microscopy, X-ray crystallography, native mass spectrometry, in vivo experiments and molecular dynamics simulations. Two cyclizations pre-organize the darobactin peptide in a rigid ß-strand conformation. This creates a mimic of the recognition signal of native substrates with a superior ability to bind to the lateral gate of BamA. Upon binding, darobactin replaces a lipid molecule from the lateral gate to use the membrane environment as an extended binding pocket. Because the interaction between darobactin and BamA is largely mediated by backbone contacts, it is particularly robust against potential resistance mutations. Our results identify the lateral gate as a functional hotspot in BamA and will allow the rational design of antibiotics that target this bacterial Achilles heel.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Fenilpropionatos/química , Fenilpropionatos/farmacologia , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Cristalografia por Raios X , Desenho de Fármacos , Escherichia coli/citologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Espectrometria de Massas , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína
16.
Nature ; 592(7854): 469-473, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33762731

RESUMO

Serotonin, or 5-hydroxytryptamine (5-HT), is an important neurotransmitter1,2 that activates the largest subtype family of G-protein-coupled receptors3. Drugs that target 5-HT1A, 5-HT1D, 5-HT1E and other 5-HT receptors are used to treat numerous disorders4. 5-HT receptors have high levels of basal activity and are subject to regulation by lipids, but the structural basis for the lipid regulation and basal activation of these receptors and the pan-agonism of 5-HT remains unclear. Here we report five structures of 5-HT receptor-G-protein complexes: 5-HT1A in the apo state, bound to 5-HT or bound to the antipsychotic drug aripiprazole; 5-HT1D bound to 5-HT; and 5-HT1E in complex with a 5-HT1E- and 5-HT1F-selective agonist, BRL-54443. Notably, the phospholipid phosphatidylinositol 4-phosphate is present at the G-protein-5-HT1A interface, and is able to increase 5-HT1A-mediated G-protein activity. The receptor transmembrane domain is surrounded by cholesterol molecules-particularly in the case of 5-HT1A, in which cholesterol molecules are directly involved in shaping the ligand-binding pocket that determines the specificity for aripiprazol. Within the ligand-binding pocket of apo-5-HT1A are structured water molecules that mimic 5-HT to activate the receptor. Together, our results address a long-standing question of how lipids and water molecules regulate G-protein-coupled receptors, reveal how 5-HT acts as a pan-agonist, and identify the determinants of drug recognition in 5-HT receptors.


Assuntos
Microscopia Crioeletrônica , Ligantes , Lipídeos , Receptores 5-HT1 de Serotonina/metabolismo , Receptores 5-HT1 de Serotonina/ultraestrutura , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestrutura , Aripiprazol/metabolismo , Aripiprazol/farmacologia , Sítios de Ligação , Colesterol/farmacologia , Proteínas Heterotriméricas de Ligação ao GTP/química , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/ultraestrutura , Humanos , Modelos Moleculares , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatos de Fosfatidilinositol/farmacologia , Receptor 5-HT1A de Serotonina/química , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT1A de Serotonina/ultraestrutura , Receptores 5-HT1 de Serotonina/química , Agonistas do Receptor 5-HT1 de Serotonina/química , Agonistas do Receptor 5-HT1 de Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Água/química
17.
Proc Natl Acad Sci U S A ; 121(41): e2408315121, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39361645

RESUMO

The peptidoglycan pathway represents one of the most successful antibacterial targets with the last critical step being the flipping of carrier lipid, undecaprenyl phosphate (C55-P), across the membrane to reenter the pathway. This translocation of C55-P is facilitated by DedA and DUF368 domain-containing family membrane proteins via unknown mechanisms. Here, we employ native mass spectrometry to investigate the interactions of UptA, a member of the DedA family of membrane protein from Bacillus subtilis, with C55-P, membrane phospholipids, and cell wall-targeting antibiotics. Our results show that UptA, expressed and purified in Escherichia coli, forms monomer-dimer equilibria, and binds to C55-P in a pH-dependent fashion. Specifically, we show that UptA interacts more favorably with C55-P over shorter-chain analogs and membrane phospholipids. Moreover, we demonstrate that lipopeptide antibiotics, amphomycin and aspartocin D, can directly inhibit UptA function by out-competing the substrate for the protein binding, in addition to their propensity to form complex with free C55-P. Overall, this study shows that UptA-mediated translocation of C55-P is potentially mediated by pH and anionic phospholipids and provides insights for future development of antibiotics targeting carrier lipid recycling.


Assuntos
Antibacterianos , Bacillus subtilis , Proteínas de Bactérias , Fosfatos de Poli-Isoprenil , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Fosfatos de Poli-Isoprenil/metabolismo , Lipopeptídeos/farmacologia , Lipopeptídeos/metabolismo , Proteínas de Membrana/metabolismo , Ligação Proteica , Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos
18.
Annu Rev Biochem ; 80: 247-71, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21548785

RESUMO

Rapid advances in structural genomics and in large-scale proteomic projects have yielded vast amounts of data on soluble proteins and their complexes. Despite these advances, progress in studying membrane proteins using mass spectrometry (MS) has been slow. This is due in part to the inherent solubility and dynamic properties of these proteins, but also to their low abundance and the absence of polar side chains in amino acid residues. Considerable progress in overcoming these challenges is, however, now being made for all levels of structural characterization. This progress includes MS studies of the primary structure of membrane proteins, wherein sophisticated enrichment and trapping procedures are allowing multiple posttranslational modifications to be defined through to the secondary structure level in which proteins and peptides have been probed using hydrogen exchange, covalent, or radiolytic labeling methods. Exciting possibilities now exist to go beyond primary and secondary structure to reveal the tertiary and quaternary interactions of soluble and membrane subunits within intact assemblies of more than 700 kDa.


Assuntos
Espectrometria de Massas/métodos , Proteínas de Membrana/química , Membrana Celular/química , Membrana Celular/metabolismo , Detergentes/química , Lipídeos/química , Microdomínios da Membrana/química , Micelas , Modelos Moleculares , Complexos Multiproteicos/química , Conformação Proteica , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Proteômica/métodos
19.
EMBO J ; 41(18): e109990, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35698912

RESUMO

Bacteria utilize small extracellular molecules to communicate in order to collectively coordinate their behaviors in response to the population density. Autoinducer-2 (AI-2), a universal molecule for both intra- and inter-species communication, is involved in the regulation of biofilm formation, virulence, motility, chemotaxis, and antibiotic resistance. While many studies have been devoted to understanding the biosynthesis and sensing of AI-2, very little information is available on its export. The protein TqsA from Escherichia coli, which belongs to the AI-2 exporter superfamily, has been shown to export AI-2. Here, we report the cryogenic electron microscopic structures of two AI-2 exporters (TqsA and YdiK) from E. coli at 3.35 Å and 2.80 Å resolutions, respectively. Our structures suggest that the AI-2 exporter exists as a homo-pentameric complex. In silico molecular docking and native mass spectrometry experiments were employed to demonstrate the interaction between AI-2 and TqsA, and the results highlight the functional importance of two helical hairpins in substrate binding. We propose that each monomer works as an independent functional unit utilizing an elevator-type transport mechanism.


Assuntos
Escherichia coli , Homosserina , Proteínas de Bactérias/química , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Homosserina/análogos & derivados , Homosserina/análise , Homosserina/metabolismo , Lactonas , Simulação de Acoplamento Molecular , Percepção de Quorum
20.
Proc Natl Acad Sci U S A ; 120(16): e2300137120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036998

RESUMO

Heme-containing integral membrane proteins are at the heart of many bioenergetic complexes and electron transport chains. The importance of these electron relay hubs across biology has inspired the design of de novo proteins that recreate their core features within robust, versatile, and tractable protein folds. To this end, we report here the computational design and in-cell production of a minimal diheme membrane cytochrome which successfully integrates into the cellular membrane of live bacteria. This synthetic construct emulates a four-helix bundle found in modern respiratory complexes but has no sequence homology to any polypeptide sequence found in nature. The two b-type hemes, which appear to be recruited from the endogenous heme pool, have distinct split redox potentials with values close to those of natural membrane-spanning cytochromes. The purified protein can engage in rapid biomimetic electron transport with small molecules, with other redox proteins, and with biologically relevant diffusive electron carriers. We thus report an artificial membrane metalloprotein with the potential to serve as a functional electron transfer module in both synthetic protocells and living systems.


Assuntos
Citocromos , Metaloproteínas , Citocromos/metabolismo , Oxirredução , Transporte de Elétrons , Metaloproteínas/metabolismo , Heme/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA