Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Hepatology ; 61(2): 678-91, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25203810

RESUMO

UNLABELLED: Connective tissue growth factor (CTGF) is a matricellular protein that mediates cell-matrix interaction through various subtypes of integrin receptors. This study investigated the role of CTGF and integrin αvß6 in hepatic progenitor/oval cell activation, which often occurs in the form of ductular reactions (DRs) when hepatocyte proliferation is inhibited during severe liver injury. CTGF and integrin αvß6 proteins were highly expressed in DRs of human cirrhotic livers and cholangiocarcinoma. Confocal microscopy analysis of livers from Ctgf promoter-driven green fluorescent protein reporter mice suggested that oval cells and cholangiocytes were the main sources of CTGF and integrin αvß6 during liver injury induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). Deletion of exon 4 of the Ctgf gene using tamoxifen-inducible Cre-loxP system down-regulated integrin αvß6 in DDC-damaged livers of knockout mice. Ctgf deficiency or inhibition of integrin αvß6, by administrating the neutralizing antibody, 6.3G9 (10 mg/kg body weight), caused low levels of epithelial cell adhesion molecule and cytokeratin 19 gene messenger RNAs. Also, there were smaller oval cell areas, fewer proliferating ductular epithelial cells, and lower cholestasis serum markers within 2 weeks after DDC treatment. Associated fibrosis was attenuated, as indicated by reduced expression of fibrosis-related genes, smaller areas of alpha-smooth muscle actin staining, and low collagen production based on hydroxyproline content and Sirius Red staining. Finally, integrin αvß6 could bind to CTGF mediating oval cell adhesion to CTGF and fibronection substrata and promoting transforming growth factor (TGF)-ß1 activation in vitro. CONCLUSIONS: CTGF and integrin αvß6 regulate oval cell activation and fibrosis, probably through interacting with their common matrix and signal partners, fibronectin and TGF-ß1. CTGF and integrin αvß6 are potential therapeutic targets to control DRs and fibrosis in related liver disease.


Assuntos
Antígenos de Neoplasias/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Integrinas/metabolismo , Cirrose Hepática/metabolismo , Células-Tronco Adultas/metabolismo , Animais , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos , Adesão Celular , Colangiocarcinoma/metabolismo , Feminino , Fibronectinas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Piridinas , Coelhos , Ratos , Fator de Crescimento Transformador beta1/metabolismo
2.
Hum Gene Ther ; 31(13-14): 743-755, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32414297

RESUMO

Recombinant adeno-associated viral (rAAV) vector-mediated gene therapy is being developed to treat X-linked retinitis pigmentosa (XLRP) in patients with mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene. In preparation for a clinical gene therapy trial, we conducted dose range finding (DRF) studies with an AAV2 capsid with three surface tyrosine residues changed to phenylalanine (AAV2tYF) vector administered by subretinal injection in a naturally occurring RPGR-mutant canine model (XLPRA2) to compare two different human RPGR (hRPGR) transgenes and to establish a reasonable starting dose for a clinical trial. Different dose levels of two candidate vectors (0.15 mL at 1.2 × 1010-3.0 × 1012 vg/mL of rAAV2tYF-GRK1-hRPGRco or 4 × 1010-3.0 × 1012 vg/mL of rAAV2tYF-GRK1-hRPGRstb), 6.0 × 1011 vg/mL rAAV5-GRK1-hRPGRco reference vector or Vehicle were subretinally administered, and the dogs were followed for 8 weeks postdose. Ophthalmic examinations, analyses of retinal structure by in vivo imaging using confocal scanning laser ophthalmoscopy (cSLO)/optical coherence tomography (OCT) in the Lower (4.0 × 1010 vg/mL) and Lowest (1.2 × 1010 vg/mL) Doses, immunological responses by cell based assays or enzyme-linked immunosorbent assay, RPGR transgene expression, and reversal of opsin mislocalization by immunohistochemistry were performed. No sustained signs of ocular discomfort or ophthalmic complications were noted in any of the injected eyes except some in the High Dose group (3.0 × 1012 vg/mL), which showed signs of retinal detachment and inflammation. A change in fundus reflectivity suggestive of a rescue effect was seen in the High, Mid (6.0 × 1011 vg/mL), and Low (1.2 × 1011 vg/mL) Dose groups. cSLO/OCT demonstrated qualitative and quantitative evidence of rescue effect in eyes treated with the Lower Dose. Anti-hRPGR antibodies were absent, but neutralizing antibody titers against AAV2 were detected in all animals dosed with rAAV2tYF in an apparent dose-related pattern. RPGR expression was stronger for rAAV2tYF-GRK1-hRPGRco compared to rAAV2tYF-GRK1-hRPGRstb at all dose levels. Subretinal administration of rAAV2tYF-GRK1-hRPGRco and rAAV2tYF-GRK1-hRPGRstb both corrected rod and cone opsin mislocalization, two early markers of disease in the XLPRA2 canine model of RPGR-XLRP. These results support the selection and use of rAAV2tYF-GRK1-hRPGRco (AGTC-501) and guided the initial doses in clinical studies in patients with XLRP caused by RPGR mutations.


Assuntos
Dependovirus/genética , Proteínas do Olho/genética , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Mutação , Retinose Pigmentar/terapia , Animais , Cães , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Vetores Genéticos/genética , Masculino , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Transgenes
3.
Hum Gene Ther ; 31(3-4): 253-267, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31910043

RESUMO

Applied Genetic Technologies Corporation (AGTC) is developing a recombinant adeno-associated virus (rAAV) vector AGTC-501, also designated rAAV2tYF-GRK1-hRPGRco, to treat X-linked retinitis pigmentosa (XLRP) in patients with mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene. The vector contains a codon-optimized human RPGR cDNA (hRPGRco) driven by a photoreceptor-specific promoter (G protein-coupled receptor kinase 1 [GRK1]), and is packaged in an AAV2 capsid variant with three surface tyrosine residues changed to phenylalanine (AAV2tYF). We conducted a toxicity and efficacy study of this vector administered by subretinal injection in the naturally occurring RPGR mutant (X-linked progressive retinal atrophy 2 [XLPRA2]) dog model. Sixteen RPGR mutant dogs divided into four groups of three to five animals each received either a subretinal injection of 0.07 mL of AGTC-501 at low (1.2 × 1011 vector genome [vg]/mL), mid (6 × 1011 vg/mL), or high dose (3 × 1012 vg/mL), or of vehicle control in the right eye at early-stage disease. The left eye remained untreated. Subretinal injections were well tolerated and were not associated with systemic toxicity. Electroretinography, in vivo retinal imaging, and histological analysis showed rescue of photoreceptor function and structure in the absence of ocular toxicity in the low- and mid-dose treatment groups when compared with the vehicle-treated group. The high-dose group showed evidence of both photoreceptor rescue and posterior segment toxicity. These results support the use of AGTC-501 in clinical studies with patients affected with XLRP caused by RPGR mutations and define the no-observed-adverse-effect level at 6 × 1011 vg/mL.


Assuntos
Dependovirus/genética , Proteínas do Olho/genética , Genes Ligados ao Cromossomo X , Terapia Genética , Vetores Genéticos/genética , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Animais , Biomarcadores , Biópsia , Linhagem Celular , Códon , Cães , Eletrorretinografia , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Humanos , Imuno-Histoquímica , Mutação , Retinose Pigmentar/diagnóstico , Tomografia de Coerência Óptica
4.
Hum Gene Ther Clin Dev ; 29(4): 188-197, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30280954

RESUMO

Applied Genetic Technologies Corporation (AGTC) is developing a recombinant adeno-associated virus (rAAV) vector AGTC-501, also designated AAV2tYF-GRK1-RPGRco, to treat retinitis pigmentosa (RP) in patients with mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene. The vector contains a codon-optimized human RPGR cDNA (RPGRco) driven by a photoreceptor-specific promoter (G protein-coupled receptor kinase 1, GRK1) and is packaged in an AAV2 capsid with three surface tyrosine residues changed to phenylalanine (AAV2tYF). We conducted a safety and potency study of this vector administered by subretinal a injection in the naturally occurring RPGR-deficient Rd9 mouse model. Sixty Rd9 mice (20 per group) received a subretinal injection in the right eye of vehicle (control) or AAV2tYF-GRK1-RPGRco at one of two dose levels (4 × 108 or 4 × 109 vg/eye) and were followed for 12 weeks after injection. Vector injections were well tolerated, with no systemic toxicity. There was a trend towards reduced electroretinography b-wave amplitudes in the high vector dose group that was not statistically significant. There were no clinically important changes in hematology or clinical chemistry parameters and no vector-related ocular changes in life or by histological examination. Dose-dependent RPGR protein expression, mainly in the inner segment of photoreceptors and the adjacent connecting cilium region, was observed in all vector-treated eyes examined. Sequence integrity of the codon-optimized RPGR was confirmed by sequencing of PCR-amplified DNA, or cDNA reverse transcribed from total RNA extracted from vector-treated retinal tissues, and by sequencing of RPGR protein obtained from transfected HEK 293 cells. These results support the use of rAAV2tYF-GRK1-RPGRco in clinical studies in patients with XLRP caused by RPGR mutations.


Assuntos
Proteínas de Transporte/genética , Dependovirus/genética , Proteínas do Olho/genética , Receptor Quinase 1 Acoplada a Proteína G/genética , Terapia Genética/métodos , Retinose Pigmentar/terapia , Animais , Proteínas de Transporte/metabolismo , Códon/genética , Códon/metabolismo , Dependovirus/metabolismo , Proteínas do Olho/metabolismo , Receptor Quinase 1 Acoplada a Proteína G/metabolismo , Terapia Genética/efeitos adversos , Camundongos , Retinose Pigmentar/genética
5.
Hum Gene Ther Clin Dev ; 28(2): 96-107, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28478700

RESUMO

Applied Genetic Technologies Corporation (AGTC) is developing a recombinant adeno-associated virus (rAAV) vector expressing the human CNGA3 gene designated AGTC-402 (rAAV2tYF-PR1.7-hCNGA3) for the treatment of achromatopsia, an inherited retinal disorder characterized by markedly reduced visual acuity, extreme light sensitivity, and absence of color discrimination. The results are herein reported of a study evaluating safety and efficacy of AGTC-402 in CNGA3-deficient sheep. Thirteen day-blind sheep divided into three groups of four or five animals each received a subretinal injection of an AAV vector expressing a CNGA3 gene in a volume of 500 µL in the right eye. Two groups (n = 9) received either a lower or higher dose of the AGTC-402 vector, and one efficacy control group (n = 4) received a vector similar in design to one previously shown to rescue cone photoreceptor responses in the day-blind sheep model (rAAV5-PR2.1-hCNGA3). The left eye of each animal received a subretinal injection of 500 µL of vehicle (n = 4) or was untreated (n = 9). Subretinal injections were generally well tolerated and not associated with systemic toxicity. Most animals had mild to moderate conjunctival hyperemia, chemosis, and subconjunctival hemorrhage immediately after surgery that generally resolved by postoperative day 7. Two animals treated with the higher dose of AGTC-402 and three of the efficacy control group animals had microscopic findings of outer retinal atrophy with or without inflammatory cells in the retina and choroid that were procedural and/or test-article related. All vector-treated eyes showed improved cone-mediated electroretinography responses with no change in rod-mediated electroretinography responses. Behavioral maze testing under photopic conditions showed significantly improved navigation times and reduced numbers of obstacle collisions in all vector-treated eyes compared to their contralateral control eyes or pre-dose results in the treated eyes. These results support the use of AGTC-402 in clinical studies in patients with achromatopsia caused by CNGA3 mutations, with careful evaluation for possible inflammatory and/or toxic effects.


Assuntos
Defeitos da Visão Cromática/terapia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Terapia Genética/efeitos adversos , Vetores Genéticos/efeitos adversos , Animais , Defeitos da Visão Cromática/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Dependovirus/genética , Vetores Genéticos/administração & dosagem , Hemorragia/etiologia , Hiperemia/etiologia , Injeções Intraoculares , Células Fotorreceptoras Retinianas Cones/metabolismo , Ovinos
6.
Hum Gene Ther Clin Dev ; 27(1): 27-36, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27003752

RESUMO

Applied Genetic Technologies Corporation (AGTC) is developing rAAV2tYF-PR1.7-hCNGB3, a recombinant adeno-associated virus (rAAV) vector expressing the human CNGB3 gene, for treatment of achromatopsia, an inherited retinal disorder characterized by markedly reduced visual acuity, extreme light sensitivity, and absence of color discrimination. We report here results of a study evaluating safety and biodistribution of rAAV2tYF-PR1.7-hCNGB3 in CNGB3-deficient mice. Three groups of animals (n = 35 males and 35 females per group) received a subretinal injection in one eye of 1 µl containing either vehicle or rAAV2tYF-PR1.7-hCNGB3 at one of two dose concentrations (1 × 10(12) or 4.2 × 10(12) vg/ml) and were euthanized 4 or 13 weeks later. There were no test-article-related changes in clinical observations, body weights, food consumption, ocular examinations, clinical pathology parameters, organ weights, or macroscopic observations at necropsy. Cone-mediated electroretinography (ERG) responses were detected after vector administration in the treated eyes in 90% of animals in the higher dose group and 31% of animals in the lower dose group. Rod-mediated ERG responses were reduced in the treated eye for all groups, with the greatest reduction in males given the higher dose of vector, but returned to normal by the end of the study. Microscopic pathology results demonstrated minimal mononuclear cell infiltrates in the retina and vitreous of some animals at the interim euthanasia and in the vitreous of some animals at the terminal euthanasia. Serum anti-AAV antibodies developed in most vector-injected animals. No animals developed antibodies to hCNGB3. Biodistribution studies demonstrated high levels of vector DNA in vector-injected eyes but little or no vector DNA in nonocular tissue. These results support the use of rAAV2tYF-PR1.7-hCNGB3 in clinical studies in patients with achromatopsia caused by CNGB3 mutations.


Assuntos
Defeitos da Visão Cromática/terapia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , DNA Recombinante/efeitos adversos , Dependovirus/genética , Terapia Genética , Vetores Genéticos/efeitos adversos , Animais , Defeitos da Visão Cromática/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/deficiência , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , DNA Recombinante/administração & dosagem , Feminino , Vetores Genéticos/administração & dosagem , Humanos , Injeções Intraoculares , Masculino , Camundongos , Retina/metabolismo
7.
Hum Gene Ther Clin Dev ; 27(1): 37-48, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27003753

RESUMO

Applied Genetic Technologies Corporation (AGTC) is developing rAAV2tYF-PR1.7-hCNGB3, a recombinant adeno-associated viral (rAAV) vector expressing the human CNGB3 gene, for treatment of achromatopsia, an inherited retinal disorder characterized by markedly reduced visual acuity, extreme light sensitivity, and absence of color discrimination. We report here results of a study evaluating the safety and biodistribution of rAAV2tYF-PR1.7-hCNGB3 in cynomolgus macaques. Three groups of animals (n = 2 males and 2 females per group) received a subretinal injection in one eye of 300 µl containing either vehicle or rAAV2tYF-PR1.7-hCNGB3 at one of two concentrations (4 × 10(11) or 4 × 10(12) vector genomes/ml) and were evaluated over a 3-month period before being euthanized. Administration of rAAV2tYF-PR1.7-hCNGB3 was associated with a dose-related anterior and posterior segment inflammatory response that was greater than that observed in eyes injected with the vehicle control. Most manifestations of inflammation improved over time except that vitreous cells persisted in vector-treated eyes until the end of the study. One animal in the lower vector dose group was euthanized on study day 5, based on a clinical diagnosis of endophthalmitis. There were no test article-related effects on intraocular pressure, visual evoked potential responses, hematology or clinical chemistry parameters, or gross necropsy observations. Histopathological examination demonstrated minimal mononuclear infiltrates in all vector-injected eyes. Serum anti-AAV antibodies developed in all vector-injected animals. No animals developed antibodies to CNGB3. Biodistribution studies demonstrated high levels of vector DNA in the injected eye but minimal or no vector DNA in any other tissue. These results support the use of rAAV2tYF-PR1.7-hCNGB3 in clinical studies in patients with achromatopsia caused by CNGB3 mutations.


Assuntos
Defeitos da Visão Cromática/terapia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , DNA Recombinante/efeitos adversos , Dependovirus/genética , Terapia Genética , Vetores Genéticos/efeitos adversos , Animais , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , DNA Recombinante/administração & dosagem , Feminino , Vetores Genéticos/administração & dosagem , Humanos , Injeções Intraoculares , Macaca fascicularis , Masculino
8.
Invest Ophthalmol Vis Sci ; 54(10): 6944-51, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-24065814

RESUMO

PURPOSE: The role of microRNA (miRNA) regulation in corneal wound healing and scar formation has yet to be elucidated. This study analyzed the miRNA expression pattern involved in corneal wound healing and focused on the effect of miR-133b on expression of several profibrotic genes. METHODS: Laser-ablated mouse corneas were collected at 0 and 30 minutes and 2 days. Ribonucleic acid was collected from corneas and analyzed using cell differentiation and development miRNA PCR arrays. Luciferase assay was used to determine whether miR-133b targeted the 3' untranslated region (UTR) of transforming growth factor ß1 (TGFß1) and connective tissue growth factor (CTGF) in rabbit corneal fibroblasts (RbCF). Quantitative real-time PCR (qRT-PCR) and Western blots were used to determine the effect of miR-133b on CTGF, smooth muscle actin (SMA), and collagen (COL1A1) in RbCF. Migration assay was used to determine the effect of miR-133b on RbCF migration. RESULTS: At day 2, 37 of 86 miRNAs had substantial expression fold changes. miR-133b had the greatest fold decrease at -14.33. Pre-miR-133b targeted the 3' UTR of CTGF and caused a significant decrease of 38% (P < 0.01). Transforming growth factor ß1-treated RbCF had a significant decrease of miR-133b of 49% (P < 0.01), whereas CTGF, SMA, and COL1A1 had significant increases of 20%, 54%, and 37% (P < 0.01), respectively. The RbCF treated with TGFß1 and pre-miR133b showed significant decreases in expression of CTGF, SMA, and COL1A1 of 30%, 37%, and 28% (P < 0.01), respectively. Finally, there was significant decrease in migration of miR-133b-treated RbCF. CONCLUSIONS: Significant changes occur in key miRNAs during early corneal wound healing, suggesting novel miRNA targets to reduce scar formation.


Assuntos
Epitélio Corneano/lesões , Fibroblastos/metabolismo , Lasers de Excimer/uso terapêutico , MicroRNAs/metabolismo , Cicatrização/fisiologia , Actinas/metabolismo , Análise de Variância , Animais , Colágeno Tipo I/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Modelos Animais de Doenças , Epitélio Corneano/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Coelhos , Reação em Cadeia da Polimerase em Tempo Real , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
9.
Methods Mol Biol ; 820: 117-32, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22131029

RESUMO

Excessive scarring (fibrosis) is a major cause of pathologies in multiple tissues, including lung, liver, kidney, heart, cornea, and skin. The transforming growth factor-ß (TGF-ß) system has been shown to play a key role in regulating the formation of scar tissue throughout the body. Furthermore, connective tissue growth factor (CTGF) has been shown to mediate most of the fibrotic actions of TGF-ß, including stimulation of synthesis of extracellular matrix and differentiation of fibroblasts into myofibroblasts. Currently, no approved drugs selectively and specifically regulate scar formation. Thus, there is a need for a drug that selectively targets the TGF-ß cascade at the molecular level and has minimal off-target side effects. This chapter focuses on the design of hammerhead ribozymes, measurement of kinetic activity, and assessment of knockdown mRNAs of TGF-ß and CTGF in cell cultures.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/metabolismo , Técnicas de Silenciamento de Genes/métodos , RNA Catalítico/metabolismo , RNA Mensageiro/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Diferenciação Celular , Células Cultivadas , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibrose/patologia , Humanos , RNA Catalítico/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Invest Ophthalmol Vis Sci ; 53(13): 8076-85, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23139271

RESUMO

PURPOSE: To investigate signal transduction pathways for connective tissue growth factor (CTGF) in human corneal fibroblasts (HCF). METHODS: Expression of 75 kinases in cultures of serum-starved (HCF) were investigated using protein kinase screens, and changes in levels of phosphorylation of 31 different phosphoproteins were determined at 0, 5, and 15 minutes after treatment with CTGF. Levels of phosphorylation of three signal transducing phosphoproteins (extracellular regulated kinase 1 [ERK1], extracellular regulated kinase 2 [ERK2] [MAPKs], and signal transducer and activator of transcription 3 [STAT3]) were measured at nine time points after exposure to CTGF using Western immunoblots. Inhibition of Ras, MEK1/2 (MAPKK), and ERK1/2, on CTGF-stimulated fibroblast proliferation and collagen gel contraction was assessed using selective inhibitors farnesylthiosalicylic acid, PD-98059, and SB203580, respectively. RESULTS: Thirty two of the 75 kinases (43%) evaluated by the kinase screen were detected in extracts of quiescent HCF, suggesting these kinases are available to respond acutely to CTGF exposure. Addition of CTGF increased levels of phosphorylation of five phosphoproteins (ERK1 and 2, MEK1/2 [MAPKK], STAT3, and SAPK/JNK), and decreased levels of phosphorylation of 14 phosphoproteins (including protein kinases B and C) after 5 and 15 minutes. Further analysis of ERK1 and 2 and STAT3 phosphorylation showed rapid increases within 1 minute of CTGF exposure that peaked between 5 and 10 minutes then returned to pretreatment levels by 30 minutes. Treatment of HCF with selective inhibitors of Ras, MEK 1/2, and ERK1/2 individually blocked both CTGF induced cell proliferation, and collagen gel contraction. CONCLUSIONS: Results from protein kinase screens and selective kinase inhibitors demonstrate Ras/MEK/ERK/STAT3 pathway is required for CTGF signaling in HCF.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/farmacologia , Ceratócitos da Córnea/efeitos dos fármacos , Proteínas Quinases/metabolismo , Western Blotting , Proliferação de Células , Células Cultivadas , Ceratócitos da Córnea/enzimologia , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , Proteínas ras/metabolismo
11.
Invest Ophthalmol Vis Sci ; 53(13): 8093-103, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23139278

RESUMO

PURPOSE: Connective tissue growth factor (CTGF) is a fibrogenic cytokine that is up-regulated by TGF-ß and mediates most key fibrotic actions of TGF-ß, including stimulation of synthesis of extracellular matrix and differentiation of fibroblasts into myofibroblasts. This study addresses the role of proteolytic processing of CTGF in human corneal fibroblasts (HCF) stimulated with TGF-ß, normal ocular tissues and wounded corneas. METHODS: Proteolytic processing of CTGF in HCF cultures, normal animal eyes, and excimer laser wounded rat corneas were examined by Western blot. The identity of a 21-kDa band was determined by tandem mass spectrometry, and possible alternative splice variants of CTGF were assessed by 5' Rapid Amplification of cDNA Ends (RACE). RESULTS: HCF stimulated by TGF-ß contained full length 38-kDa CTGF and fragments of 25, 21, 18, and 13 kDa, while conditioned medium contained full length 38- and a 21-kDa fragment of CTGF that contained the middle "hinge" region of CTGF. Fragmentation of recombinant CTGF incubated in HCF extracts was blocked by the aspartate protease inhibitor, pepstatin. Normal mouse, rat, and rabbit whole eyes and rabbit ocular tissues contained abundant amounts of C-terminal 25- and 21-kDa fragments and trace amounts of 38-kDa CTGF, although no alternative transcripts were detected. All forms of CTGF (38, 25, and 21 kDa) were detected during healing of excimer ablated rat corneas, peaking on day 11. CONCLUSIONS: Proteolytic processing of 38-kDa CTGF occurs during corneal wound healing, which may have important implications in regulation of corneal scar formation.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/metabolismo , Lesões da Córnea , Ceratócitos da Córnea/metabolismo , Traumatismos Oculares/metabolismo , Cicatrização/fisiologia , Animais , Western Blotting , Células Cultivadas , Ceratócitos da Córnea/efeitos dos fármacos , Modelos Animais de Doenças , Eletroforese em Gel de Poliacrilamida , Humanos , Masculino , Camundongos , Camundongos Knockout , Técnicas de Amplificação de Ácido Nucleico/métodos , Fragmentos de Peptídeos/metabolismo , Reação em Cadeia da Polimerase/métodos , Proteólise , Coelhos , Ratos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta1/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA