Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Environ Res ; 208: 112496, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34902379

RESUMO

Wastewater-based epidemiology has been used to measure SARS-CoV-2 prevalence in cities worldwide as an indicator of community health, however, few longitudinal studies have followed SARS-CoV-2 in wastewater in small communities from the start of the pandemic or evaluated the influence of tourism on viral loads. Therefore the objective of this study was to use measurements of SARS-CoV-2 in wastewater to monitor viral trends and variants in a small island community over a twelve-month period beginning May 1, 2020, before the community re-opened to tourists. Wastewater samples were collected weekly and analyzed to detect and quantify SARS-CoV-2 genome copies. Sanger sequencing was used to determine genome sequences from total RNA extracted from wastewater samples positive for SARS-CoV-2. Visitor data was collected from the local Chamber of Commerce. We performed Poisson and linear regression to determine if visitors to the Cedar Key Chamber of Commerce were positively associated with SARS-CoV-2-positive wastewater samples and the concentration of SARS-CoV-2 RNA. Results indicated that weekly wastewater samples were negative for SARS-CoV-2 until mid-July when positive samples were recorded in four of five consecutive weeks. Additional positive results were recorded in November and December 2020, as well as January, March, and April 2021. Tourism data revealed that the SARS-CoV-2 RNA concentration in wastewater increased by 1.06 Log10 genomic copies/L per 100 tourists weekly. Sequencing from six positive wastewater samples yielded two complete sequences of SARS-CoV-2, two overlapping sequences, and two low yield sequences. They show arrival of a new variant SARS-CoV-2 in January 2021. Our results demonstrate the utility of wastewater surveillance for SARS-CoV-2 in a small community. Wastewater surveillance and viral genome sequencing suggest that population mobility likely plays an important role in the introduction and circulation of SARS-CoV-2 variants among communities experiencing high tourism and who have a small population size.


Assuntos
COVID-19 , Vigilância Epidemiológica Baseada em Águas Residuárias , COVID-19/epidemiologia , Humanos , Prevalência , RNA Viral/genética , SARS-CoV-2/genética , Turismo , Águas Residuárias
2.
Toxicol Appl Pharmacol ; 404: 115167, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32771490

RESUMO

Growing use of carbon nanotubes (CNTs) have garnered concerns regarding their association with adverse health effects. Few studies have probed how CNTs affect a host's susceptibility to pathogens, particularly respiratory viruses. We reported that exposure of lung cells and mice to pristine single-walled CNTs (SWCNTs) leads to significantly increased influenza virus H1N1 strain A/Mexico/4108/2009 (IAV) titers in concert with repressed antiviral immune responses. In the present study, we investigated if hydroxylated multi-walled CNTs (MWCNTs), would result in similar outcomes. C57BL/6 mice were exposed to 20 µg MWCNTs on day 0 and IAV on day 3 and samples were collected on day 7. We investigated pathological changes, viral titers, immune-related gene expression in lung tissue, and quantified differential cell counts and cytokine and chemokine levels in bronchoalveolar lavage fluid. MWCNTs alone caused mild inflammation with no apparent changes in immune markers whereas IAV alone presented typical infection-associated inflammation, pathology, and titers. The co-exposure (MWCNTs + IAV) did not alter titers or immune cell profiles compared to the IAV only but increased concentrations of IL-1ß, TNFα, GM-CSF, KC, MIPs, and RANTES and inhibited mRNA expression of Tlr3, Rig-i, Mda5, and Ifit2. Our findings suggest MWCNTs modulate immune responses to IAV with no effect on the viral titer and modest pulmonary injury, a result different from those reported for SWCNT exposures. This is the first study to show that MWCNTs modify cytokine and chemokine responses that control aspects of host defenses which may play a greater role in mitigating IAV infections.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Lesão Pulmonar/induzido quimicamente , Nanotubos de Carbono , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
J Neurosci ; 37(42): 10063-10073, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28912160

RESUMO

Dopaminergic modulation of prefrontal cortex (PFC) is thought to play key roles in many cognitive functions and to be disrupted in pathological conditions, such as schizophrenia. We have previously described a phenomenon whereby dopamine D2 receptor (D2R) activation elicits afterdepolarizations (ADPs) in subcortically projecting (SC) pyramidal neurons within L5 of the PFC. These D2R-induced ADPs only occur following synaptic input, which activates NMDARs, even when the delay between the synaptic input and ADPs is relatively long (e.g., several hundred milliseconds). Here, we use a combination of electrophysiological, optogenetic, pharmacological, transgenic, and chemogenetic approaches to elucidate cellular mechanisms underlying this phenomenon in male and female mice. We find that knocking out D2Rs eliminates the ADP in a cell-autonomous fashion, confirming that this ADP depends on D2Rs. Hyperpolarizing current injection, but not AMPA receptor blockade, prevents synaptic stimulation from facilitating D2R-induced ADPs, suggesting that this phenomenon depends on the recruitment of voltage-dependent currents (e.g., NMDAR-mediated Ca2+ influx) by synaptic input. Finally, the D2R-induced ADP is blocked by inhibitors of cAMP/PKA signaling, insensitive to pertussis toxin or ß-arrestin knock-out, and mimicked by Gs-DREADD stimulation, suggesting that D2R activation elicits the ADP by stimulating cAMP/PKA signaling. These results show that this unusual physiological phenomenon, in which D2Rs enhance cellular excitability in a manner that depends on synaptic input, is mediated at the cellular level through the recruitment of signaling pathways associated with Gs, rather than the Gi/o-associated mechanisms that have classically been ascribed to D2Rs.SIGNIFICANCE STATEMENT Dopamine D2 receptors (D2Rs) in the prefrontal cortex (PFC) are thought to play important roles in behaviors, including working memory and cognitive flexibility. Variation in D2Rs has also been implicated in schizophrenia, Tourette syndrome, and bipolar disorder. Recently, we described a new mechanism through which D2R activation can enhance the excitability of pyramidal neurons in the PFC. Here, we explore the underlying cellular mechanisms. Surprisingly, although D2Rs are classically assumed to signal through Gi/o-coupled G-proteins and/or scaffolding proteins, such as ß-arrestin, we find that the effects of D2Rs on prefrontal pyramidal neurons are actually mediated by pathways associated with Gs-mediated signaling. Furthermore, we show how, via this D2R-dependent phenomenon, synaptic input can enhance the excitability of prefrontal neurons over timescales on the order of seconds. These results elucidate cellular mechanisms underlying a novel signaling pathway downstream of D2Rs that may contribute to prefrontal function under normal and pathological conditions.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/fisiologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Receptores de Dopamina D2/fisiologia , Transdução de Sinais/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , N-Metilaspartato/farmacologia , Técnicas de Cultura de Órgãos , Córtex Pré-Frontal/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Quimpirol/farmacologia , Receptores de Dopamina D2/agonistas , Transdução de Sinais/efeitos dos fármacos
4.
Virol J ; 14(1): 242, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29273069

RESUMO

BACKGROUND: Numerous toxicological studies have focused on injury caused by exposure to single types of nanoparticles, but few have investigated how such exposures impact a host's immune response to pathogen challenge. Few studies have shown that nanoparticles can alter a host's response to pathogens (chiefly bacteria) but there is even less knowledge of the impact of such particles on viral infections. In this study, we performed experiments to investigate if exposure of mice to single-walled carbon nanotubes (SWCNT) alters immune mechanisms and viral titers following subsequent influenza A virus (IAV) infection. METHODS: Male C57BL/6 mice were exposed to 20 µg of SWCNT or control vehicle by intratracheal instillation followed by intranasal exposure to 3.2 × 104 TCID50 IAV or PBS after 3 days. On day 7 mice were euthanized and near-infrared fluorescence (NIRF) imaging was used to track SWCNT in lung tissues. Viral titers, histopathology, and mRNA expression of antiviral and inflammatory genes were measured in lung tissue. Differential cell counts and cytokine levels were quantified in bronchoalveolar lavage fluid (BALF). RESULTS: Viral titers showed a 63-fold increase in IAV in SWCNT + IAV exposed lungs compared to the IAV only exposure. Quantitation of immune cells in BALF indicated an increase of neutrophils in the IAV group and a mixed profile of lymphocytes and neutrophils in SWCNT + IAV treated mice. NIRF indicated SWCNT remained in the lung throughout the experiment and localized in the junctions of terminal bronchioles, alveolar ducts, and surrounding alveoli. The dual exposure exacerbated pulmonary inflammation and tissue lesions compared to SWCNT or IAV single exposures. IAV exposure increased several cytokine and chemokine levels in BALF, but greater levels of IL-4, IL-12 (P70), IP-10, MIP-1, MIP-1α, MIP-1ß, and RANTES were evident in the SWCNT + IAV group. The expression of tlr3, ifnß1, rantes, ifit2, ifit3, and il8 was induced by IAV alone but several anti-viral targets showed a repressed trend (ifits) with pre-exposure to SWCNT. CONCLUSIONS: These findings reveal a pronounced effect of SWCNT on IAV infection in vivo as evidenced by exacerbated lung injury, increased viral titers and several cytokines/chemokines levels, and reduction of anti-viral gene expression. These results imply that SWCNT can increase susceptibility to respiratory viral infections as a novel mechanism of toxicity.


Assuntos
Lesão Pulmonar Aguda/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Nanotubos de Carbono/toxicidade , Infecções por Orthomyxoviridae/imunologia , Pneumonia Viral/imunologia , Carga Viral/imunologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/virologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/virologia , Citocinas/análise , Citocinas/imunologia , Regulação da Expressão Gênica/imunologia , Pulmão/patologia , Pulmão/ultraestrutura , Linfócitos/imunologia , Linfócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Neutrófilos/metabolismo , Infecções por Orthomyxoviridae/induzido quimicamente , Infecções por Orthomyxoviridae/virologia , Pneumonia Viral/induzido quimicamente , Pneumonia Viral/virologia , RNA Mensageiro/metabolismo
5.
Environ Sci Technol ; 51(2): 948-957, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-27977933

RESUMO

Recent evidence suggests that, because of their sorptive nature, if single-walled carbon nanotubes (SWCNTs) make their way into aquatic environments, they may reduce the toxicity of other waterborne contaminants. However, few studies have examined whether contaminants remain adsorbed following ingestion by aquatic organisms. The objective of this study was to examine the bioavailability and bioactivity of ethinyl estradiol (EE2) sorbed onto SWCNTs in a fish gastrointestinal (GI) tract. Sorption experiments indicated that SWCNTs effectively adsorbed EE2, but the chemical was still able to bind and activate soluble estrogen receptors (ERs) in vitro. However, centrifugation to remove SWCNTs and adsorbed EE2 significantly reduced ER activity compared to that of EE2 alone. Additionally, the presence of SWCNTs did not reduce the extent of EE2-driven induction of vitellogenin 1 in vivo compared to the levels in organisms exposed to EE2 alone. These results suggest that while SWCNTs adsorb EE2 from aqueous solutions, under biological conditions EE2 can desorb and retain bioactivity. Additional results indicate that interactions with gastrointestinal proteins may decrease the level of adsorption of estrogen to SWCNTs by 5%. This study presents valuable data for elucidating how SWCNTs interact with chemicals that are already present in our aquatic environments, which is essential for determining their potential health risk.


Assuntos
Etinilestradiol/metabolismo , Peixes/metabolismo , Trato Gastrointestinal/metabolismo , Nanotubos de Carbono , Animais , Disponibilidade Biológica , Estradiol , Estrogênios , Etinilestradiol/toxicidade , Absorção Gastrointestinal
6.
Ann Clin Transl Neurol ; 10(2): 181-194, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36427278

RESUMO

OBJECTIVE: To delineate the full phenotypic spectrum and characterize the natural history of limb girdle muscular dystrophy type D1 (LGMDD1). METHODS: We extracted age at clinical events of interest contributing to LGMDD1 disease burden via a systematic literature and chart review. Manual muscle testing and quantitative dynamometry data were used to estimate annualized rates of change. We also conducted a cross-sectional observational study using previously validated patient-reported outcome assessments (ACTIVLIM, PROMIS-57) and a new LGMDD1 questionnaire. Some individuals underwent repeat ACTIVLIM and LGMDD1 questionnaire assessments at 1.5 and 2.5 years. RESULTS: A total of 122 LGMDD1 patients were included from 14 different countries. We identified two new variants (p.E54K, p.V99A). In vitro assays and segregation support their pathogenicity. The mean onset age was 29.7 years. Genotype appears to impact onset age, weakness pattern, and median time to loss of ambulation (34 years). Dysphagia was the most frequent abnormality (51.4%). Deltoids, biceps, grip, iliopsoas, and hamstrings strength decreased by (0.5-1 lb/year). Cross-sectional ACTIVLIM and LGMDD1 questionnaire scores correlated with years from disease onset. Longitudinally, only the LGMDD1 questionnaire detected significant progression at both 1.5 and 2.5 years. Treatment trials would require 62 (1.5 years) or 30 (2.5 years) patients to detect a 70% reduction in the progression of the LGMDD1 questionnaire. INTERPRETATION: This study is the largest description of LGMDD1 patients to date and highlights potential genotype-dependent differences that need to be verified prospectively. Future clinical trials will need to account for variability in these key phenotypic features when selecting outcome measures and enrolling patients.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Humanos , Adulto , Estudos Transversais , Distrofia Muscular do Cíngulo dos Membros/genética , Músculo Esquelético , Genótipo
7.
Artigo em Inglês | MEDLINE | ID: mdl-37711680

RESUMO

CeO2 and CuO nanoparticles (NPs) are used as additives in petrodiesel to enhance engine performance leading to reduced diesel combustion emissions. Despite their benefits, the additive application poses human health concerns by releasing inhalable NPs into the ambient air. In this study, a bioinspired lung cell exposure system, Dosimetric Aerosol in Vitro Inhalation Device (DAVID), was employed for evaluating the toxicity of aerosolized CeO2 and CuO NPs with a short duration of exposure (≤10 min vs. hours in other systems) and without exerting toxicity from non-NP factors. Human epithelial A549 lung cells were cultured and maintained within DAVID at the air-liquid interface (ALI), onto which aerosolized NPs were deposited, and experiments in submerged cells were used for comparison. Exposure of the cells to the CeO2 NPs did not result in detectable IL-8 release, nor did it produce a significant reduction in cell viability based on lactate dehydrogenase (LDH) assay, with a marginal decrease (10%) at the dose of 388 µg/cm2 (273 cm2/cm2). In contrast, exposure to CuO NPs resulted in a concentration dependent reduction in LDH release based on LDH leakage, with 38% reduction in viability at the highest dose of 52 µg/cm2 (28.3 cm2/cm2). Cells exposed to CuO NPs resulted in a dose dependent cellular membrane toxicity and expressed IL-8 secretion at a global dose five times lower than cells exposed under submerged conditions. However, when comparing the ALI results at the local cellular dose of CuO NPs to the submerged results, the IL-8 secretion was similar. In this study, we demonstrated DAVID as a new exposure tool that helps evaluate aerosol toxicity in simulated lung environment. Our results also highlight the necessity in choosing the right assay endpoints for the given exposure scenario, e.g., LDH for ALI and Deep Blue for submerged conditions for cell viability.

8.
ACS ES T Water ; 3(1): 16-29, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37552720

RESUMO

Wastewater-based epidemiology (WBE) has been utilized for outbreak monitoring and response efforts in university settings during the coronavirus disease 2019 (COVID-19) pandemic. However, few studies examined the impact of university policies on the effectiveness of WBE to identify cases and mitigate transmission. The objective of this study was to retrospectively assess relationships between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) wastewater outcomes and COVID-19 cases in residential buildings of a large university campus across two academic semesters (August 2020-May 2021) under different COVID-19 mitigation policies. Clinical case surveillance data of student residents were obtained from the university COVID-19 response program. We collected and processed building-level wastewater for detection and quantification of SARS-CoV-2 RNA by RT-qPCR. The odds of obtaining a positive wastewater sample increased with COVID-19 clinical cases in the fall semester (OR = 1.50, P value = 0.02), with higher odds in the spring semester (OR = 2.63, P value < 0.0001). We observed linear associations between SARS-CoV-2 wastewater concentrations and COVID-19 clinical cases (parameter estimate = 1.2, P value = 0.006). Our study demonstrated the effectiveness of WBE in the university setting, though it may be limited under different COVID-19 mitigation policies. As a complementary surveillance tool, WBE should be accompanied by robust administrative and clinical testing efforts for the COVID-19 pandemic response.

9.
Sci Rep ; 12(1): 19085, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352013

RESUMO

Wastewater-based epidemiology (WBE) has emerged as a valuable epidemiologic tool to detect the presence of pathogens and track disease trends within a community. WBE overcomes some limitations of traditional clinical disease surveillance as it uses pooled samples from the entire community, irrespective of health-seeking behaviors and symptomatic status of infected individuals. WBE has the potential to estimate the number of infections within a community by using a mass balance equation, however, it has yet to be assessed for accuracy. We hypothesized that the mass balance equation-based approach using measured SARS-CoV-2 wastewater concentrations can generate accurate prevalence estimates of COVID-19 within a community. This study encompassed wastewater sampling over a 53-week period during the COVID-19 pandemic in Gainesville, Florida, to assess the ability of the mass balance equation to generate accurate COVID-19 prevalence estimates. The SARS-CoV-2 wastewater concentration showed a significant linear association (Parameter estimate = 39.43, P value < 0.0001) with clinically reported COVID-19 cases. Overall, the mass balance equation produced accurate COVID-19 prevalence estimates with a median absolute error of 1.28%, as compared to the clinical reference group. Therefore, the mass balance equation applied to WBE is an effective tool for generating accurate community-level prevalence estimates of COVID-19 to improve community surveillance.


Assuntos
COVID-19 , Vigilância Epidemiológica Baseada em Águas Residuárias , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Pandemias , Águas Residuárias , Prevalência , RNA Viral
10.
Environ Toxicol Chem ; 29(1): 168-75, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20821432

RESUMO

Suspended sediments are a natural component of aquatic ecosystems, but anthropogenic activity such as land development can result in significant increases, especially after rain events. Continuous exposures of suspended clay and silt have been shown to affect growth and reproduction of Cladocera, leading to a decrease in population growth rate. The mechanism of clay toxicity in these filter-feeding organisms is clogging of the gut tract, resulting in decreased food uptake and assimilation. When placed in clean water, daphnids can purge clay from their gut and recover. In many surface waters, aquatic organisms experience episodic exposures of high concentrations of suspended solids driven by rain events. However, little is known about the consequences of pulsed exposures on individuals and populations. The objective of the present study was to characterize the effects of continuous and pulsed exposures of natural and defined clays on survival, growth, and reproduction of Daphnia magna. Two defined clays, montmorillonite and kaolinite, as well as clay isolated from the Piedmont region of South Carolina, USA, were used. Continuous exposures of clays elicited a dose dependent decrease in survival. Toxicity varied depending on clay source with montmorillonite > natural clay > kaolinite. Pulsed exposures caused a decrease in survival in a 24 h exposure of 734 mg/L kaolinite. Exposure to 73.9 mg/L also caused an increase in the time to gravidity, although there was not a corresponding decrease in neonate production over 21 d. No significant effects resulted from 12 h exposures even at 730 mg/L, almost 10 times the 24-h reproductive effects concentration. This suggests that exposure duration impacted toxicity more than exposure concentration in these pulsed exposures.


Assuntos
Silicatos de Alumínio/toxicidade , Daphnia/efeitos dos fármacos , Sedimentos Geológicos , Poluentes Químicos da Água/toxicidade , Animais , Argila , Daphnia/fisiologia , Relação Dose-Resposta a Droga , Reprodução/efeitos dos fármacos , Suspensões
11.
J Hazard Mater ; 395: 122687, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32330784

RESUMO

In assessing the biological impact of airborne particles in vitro, air-liquid interface (ALI) exposure chambers are increasingly preferred over classical submerged exposure techniques, albeit historically limited by their inability to deliver sufficient aerosolized dose. A novel ALI system, the Dosimetric Aerosol in Vitro Inhalation Device (DAVID), bioinspired by the human respiratory system, uses water-based condensation for highly efficient aerosol deposition to ALI cell culture. Here, welding fumes (well-studied and inherently toxic ultrafine particles) were used to assess the ability of DAVID to generate toxicological responses between differing welding conditions. After fume exposure, ALI-cultured cells showed reductions in viability that were both distinct between welding conditions and linearly dose-dependent with respect to exposure time; comparatively, submerged cell cultures ran in parallel did not show these trends across exposure levels. DAVID delivers a substantial dose in minutes (> 100 µg/cm2), making it preferable over previous ALI systems, which require hours of exposure to deliver sufficient dose, and over submerged techniques, which lack comparable physiological relevance. DAVID has the potential to provide the most accurate assessment of in vitro toxicity yet from the perspectives of physiological relevance to the human respiratory system and efficiency in collecting ultrafine aerosol common to hazardous exposure conditions.


Assuntos
Poluentes Ocupacionais do Ar , Soldagem , Aerossóis/toxicidade , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/toxicidade , Gases , Humanos , Exposição por Inalação , Sistema Respiratório
12.
Nanotoxicology ; 13(9): 1176-1196, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31328592

RESUMO

Exposure of lung cells in vitro or mice to single-walled carbon nanotubes (SWCNTs) directly to the respiratory tract leads to a reduced host anti-viral immune response to infection with influenza A virus H1N1 (IAV), resulting in significant increases in viral titers. This suggests that unintended exposure to nanotubes via inhalation may increase susceptibility to notorious respiratory viruses that carry a high social and economic burden globally. However, the molecular mechanisms that contribute to viral susceptibility have not been elucidated. In the present study, we identified the retinoic acid-induced gene I (RIG-I) like receptors (RLRs)/mitochondrial antiviral signaling (MAVS) pathway as a target of SWCNT-induced oxidative stress in small airway epithelial cells (SAEC) that contribute to significantly enhanced influenza viral titers. Exposure of SAEC to SWCNTs increases viral titers while repressing several aspects of the RLR pathway, including mRNA expression of key genes (e.g. IFITs, RIG-I, MDA5, IFNß1, CCL5). SWCNTs also reduce mitochondrial membrane potential without altering oxygen consumption rates. Our findings also indicate that SWCNTs can impair formation of MAVS prion-like aggregates, which is known to impede downstream activation of the RLR pathway and hence the transcriptional production of interferon-regulated anti-viral genes and cytokines. Furthermore, application of the antioxidant NAC alleviates inhibition of gene expression levels by SWCNTs, as well as MAVS signalosome formation, and increased viral titers. These data provide evidence of targeted impairment of anti-viral signaling networks that are vital to immune defense mechanisms in lung cells, contributing to increased susceptibility to IAV infections by SWCNTs.


Assuntos
Vírus da Influenza A Subtipo H1N1/patogenicidade , Nanotubos de Carbono , Estresse Oxidativo , Animais , Antioxidantes/metabolismo , Citocinas/metabolismo , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Pulmão/metabolismo , Camundongos , Testes de Função Respiratória , Transdução de Sinais
13.
Toxicol In Vitro ; 42: 319-328, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28506819

RESUMO

To better characterize biological responses to atmospheric organic aerosols, the efficient delivery of aerosol to in vitro lung cells is necessary. In this study, chamber generated secondary organic aerosol (SOA) entered the commercialized exposure chamber (CULTEX® Radial Flow System Compact) where it interfaced with an electrostatic precipitator (ESP) (CULTEX® Electrical Deposition Device) and then deposited on a particle collection plate. This plate contained human lung cells (BEAS-2B) that were cultured on a membrane insert to produce an air-liquid interface (ALI). To augment in vitro assessment using the ESP exposure device, the particle dose was predicted for various sampling parameters such as particle size, ESP deposition voltage, and sampling flowrate. The dose model was evaluated against the experimental measured mass of collected airborne particles. The high flowrate used in this study increased aerosol dose but failed to achieve cell stability. For example, RNA in the ALI BEAS-2B cells in vitro was stable at 0.15L/minute but decayed at high flowrates. The ESP device and the resulting model were applied to in vitro studies (i.e., viability and IL-8 expression) of toluene SOA using ALI BEAS-2B cells with a flowrate of 0.15L/minute, and no cellular RNA decay occurred.


Assuntos
Aerossóis/administração & dosagem , Modelos Biológicos , Eletricidade Estática , Técnicas de Cultura de Células , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Interleucina-8/genética , RNA Mensageiro/metabolismo
14.
Cell Rep ; 17(11): 2882-2890, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27974203

RESUMO

Both medial prefrontal cortex (mPFC) and serotonin play key roles in anxiety; however, specific mechanisms through which serotonin might act on the mPFC to modulate anxiety-related behavior remain unknown. Here, we use a combination of optogenetics and synaptic physiology to show that serotonin acts presynaptically via 5-HT1B receptors to selectively suppress inputs from the contralateral mPFC and ventral hippocampus (vHPC), while sparing those from mediodorsal thalamus. To elucidate how these actions could potentially regulate prefrontal circuit function, we infused a 5-HT1B agonist into the mPFC of freely behaving mice. Consistent with previous studies that have optogenetically inhibited vHPC-mPFC projections, activating prefrontal 5-HT1B receptors suppressed theta-frequency mPFC activity (4-12 Hz), and reduced avoidance of anxiogenic regions in the elevated plus maze. These findings suggest a potential mechanism, linking specific receptors, synapses, patterns of circuit activity, and behavior, through which serotonin may regulate prefrontal circuit function, including anxiety-related behaviors.


Assuntos
Comportamento Animal/fisiologia , Córtex Pré-Frontal/metabolismo , Receptor 5-HT1B de Serotonina/metabolismo , Serotonina/metabolismo , Animais , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiologia , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Córtex Pré-Frontal/fisiologia , Serotonina/genética , Agonistas do Receptor 5-HT1 de Serotonina/administração & dosagem , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/fisiologia , Ritmo Teta/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA