RESUMO
Neuron-restrictive silencer factor/repressor element 1 (RE1)-silencing transcription factor (NRSF/REST) is a transcriptional repressor of a large cluster of neural genes containing RE1 motifs in their promoter region. NRSF/REST is ubiquitously expressed in non-neuronal cells, including astrocytes, while it is down-regulated during neuronal differentiation. While neuronal NRSF/REST homeostatically regulates intrinsic excitability and synaptic transmission, the role of the high NRSF/REST expression levels in the homeostatic functions of astrocytes is poorly understood. Here, we investigated the functional consequences of NRSF/REST deletion in primary cortical astrocytes derived from NRSF/REST conditional knockout mice (KO). We found that NRSF/REST KO astrocyte displayed a markedly reduced activity of inward rectifying K+ channels subtype 4.1 (Kir4.1) underlying spatial K+ buffering that was associated with a decreased expression and activity of the glutamate transporter-1 (GLT-1) responsible for glutamate uptake by astrocytes. The effects of the impaired astrocyte homeostatic functions on neuronal activity were investigated by co-culturing wild-type hippocampal neurons with NRSF/REST KO astrocytes. Interestingly, neurons experienced increased neuronal excitability at high firing rates associated with decrease after hyperpolarization and increased amplitude of excitatory postsynaptic currents. The data indicate that astrocytic NRSF/REST directly participates in neural circuit homeostasis by regulating intrinsic excitability and excitatory transmission and that dysfunctions of NRSF/REST expression in astrocytes may contribute to the pathogenesis of neurological disorders.
Assuntos
Astrócitos , Fatores de Transcrição , Camundongos , Animais , Fatores de Transcrição/genética , Astrócitos/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Regulação da Expressão GênicaRESUMO
A common feature of diverse brain disorders is the alteration of GABA-mediated inhibition because of aberrant, intracellular chloride homeostasis induced by changes in the expression and/or function of chloride transporters. Notably, pharmacological inhibition of the chloride importer NKCC1 is able to rescue brain-related core deficits in animal models of these pathologies and in some human clinical studies. Here, we show that reducing NKCC1 expression by RNA interference in the Ts65Dn mouse model of Down syndrome (DS) restores intracellular chloride concentration, efficacy of gamma-aminobutyric acid (GABA)-mediated inhibition, and neuronal network dynamics in vitro and ex vivo. Importantly, adeno-associated virus (AAV)-mediated, neuron-specific NKCC1 knockdown in vivo rescues cognitive deficits in diverse behavioral tasks in Ts65Dn animals. Our results highlight a mechanistic link between NKCC1 expression and behavioral abnormalities in DS mice and establish a molecular target for new therapeutic approaches, including gene therapy, to treat brain disorders characterized by neuronal chloride imbalance.
Assuntos
Síndrome de Down/terapia , Terapia Genética/métodos , Membro 2 da Família 12 de Carreador de Soluto/genética , Animais , Cloretos/metabolismo , Modelos Animais de Doenças , Síndrome de Down/genética , Síndrome de Down/psicologia , Técnicas de Silenciamento de Genes , Homeostase , Masculino , Camundongos , Neurônios/metabolismo , Interferência de RNARESUMO
The use of graphene nanomaterials (GNMs) for biomedical applications targeted to the central nervous system is exponentially increasing, although precise information on their effects on brain cells is lacking. In this work, the molecular changes induced in cortical astrocytes by few-layer graphene (FLG) and graphene oxide (GO) flakes are addressed. The results show that exposure to FLG/GO does not affect cell viability or proliferation. However, proteomic and lipidomic analyses unveil alterations in several cellular processes, including intracellular Ca2+ ([Ca2+ ]i ) homeostasis and cholesterol metabolism, which are particularly intense in cells exposed to GO. Indeed, GO exposure impairs spontaneous and evoked astrocyte [Ca2+ ]i signals and induces a marked increase in membrane cholesterol levels. Importantly, cholesterol depletion fully rescues [Ca2+ ]i dynamics in GO-treated cells, indicating a causal relationship between these GO-mediated effects. The results indicate that exposure to GNMs alters intracellular signaling in astrocytes and may impact astrocyte-neuron interactions.
Assuntos
Astrócitos/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Grafite/farmacologia , Homeostase , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Homeostase/efeitos dos fármacos , Espaço Intracelular/metabolismo , Lipidômica , Proteoma/metabolismo , Ratos Sprague-DawleyRESUMO
PURPOSE: The endoplasmic reticulum (ER) contains hexose-6P-dehydrogenase (H6PD). This enzyme competes with glucose-6P-phosphatase for processing a variety of phosphorylated hexoses including 2DG-6P. The present study aimed to verify whether this ER glucose-processing machinery contributes to brain FDG uptake. METHODS: Effect of the H6PD inhibitor metformin on brain 18F-FDG accumulation was studied, in vivo, by microPET imaging. These data were complemented with the in vitro estimation of the lumped constant (LC). Finally, reticular accumulation of the fluorescent 2DG analogue 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2NBDG) and its response to metformin was studied by confocal microscopy in cultured neurons and astrocytes. RESULTS: Metformin halved brain 18F-FDG accumulation without altering whole body tracer clearance. Ex vivo, this same response faced the doubling of both glucose consumption and lactate release. The consequent fall in LC was not explained by any change in expression or activity of its theoretical determinants (GLUTs, hexokinases, glucose-6P-phosphatase), while it agreed with the drug-induced inhibition of H6PD function. In vitro, 2NBDG accumulation selectively involved the ER lumen and correlated with H6PD activity being higher in neurons than in astrocytes, despite a lower glucose consumption. CONCLUSIONS: The activity of the reticular enzyme H6PD profoundly contributes to brain 18F-FDG uptake. These data challenge the current dogma linking 2DG/FDG uptake to the glycolytic rate and introduce a new model to explain the link between 18-FDG uptake and neuronal activity.
Assuntos
Encéfalo/citologia , Encéfalo/metabolismo , Retículo Endoplasmático/metabolismo , Fluordesoxiglucose F18/metabolismo , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Transporte Biológico/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Desidrogenases de Carboidrato/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oxirredução/efeitos dos fármacos , Tomografia por Emissão de PósitronsRESUMO
Graphene-based materials are the focus of intense research efforts to devise novel theranostic strategies for targeting the central nervous system. In this work, we have investigated the consequences of long-term exposure of primary rat astrocytes to pristine graphene (GR) and graphene oxide (GO) flakes. We demonstrate that GR/GO interfere with a variety of intracellular processes as a result of their internalization through the endolysosomal pathway. Graphene-exposed astrocytes acquire a more differentiated morphological phenotype associated with extensive cytoskeletal rearrangements. Profound functional alterations are induced by GO internalization, including the upregulation of inward-rectifying K+ channels and of Na+-dependent glutamate uptake, which are linked to the astrocyte capacity to control the extracellular homeostasis. Interestingly, GO-pretreated astrocytes promote the functional maturation of cocultured primary neurons by inducing an increase in intrinsic excitability and in the density of GABAergic synapses. The results indicate that graphene nanomaterials profoundly affect astrocyte physiology in vitro with consequences for neuronal network activity. This work supports the view that GO-based materials could be of great interest to address pathologies of the central nervous system associated with astrocyte dysfunctions.
Assuntos
Astrócitos/citologia , Grafite/metabolismo , Neurônios/citologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Comunicação Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Células Cultivadas , Ácido Glutâmico/metabolismo , Grafite/química , Homeostase/efeitos dos fármacos , Nanoestruturas/química , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Canais de Potássio/metabolismo , Ratos , Sinapses/metabolismoRESUMO
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by the expansion of a polyglutamine tract in the androgen receptor (AR). The mechanism by which expansion of polyglutamine in AR causes muscle atrophy is unknown. Here, we investigated pathological pathways underlying muscle atrophy in SBMA knock-in mice and patients. We show that glycolytic muscles were more severely affected than oxidative muscles in SBMA knock-in mice. Muscle atrophy was associated with early-onset, progressive glycolytic-to-oxidative fiber-type switch. Whole genome microarray and untargeted lipidomic analyses revealed enhanced lipid metabolism and impaired glycolysis selectively in muscle. These metabolic changes occurred before denervation and were associated with a concurrent enhancement of mechanistic target of rapamycin (mTOR) signaling, which induced peroxisome proliferator-activated receptor γ coactivator 1 alpha (PGC1α) expression. At later stages of disease, we detected mitochondrial membrane depolarization, enhanced transcription factor EB (TFEB) expression and autophagy, and mTOR-induced protein synthesis. Several of these abnormalities were detected in the muscle of SBMA patients. Feeding knock-in mice a high-fat diet (HFD) restored mTOR activation, decreased the expression of PGC1α, TFEB, and genes involved in oxidative metabolism, reduced mitochondrial abnormalities, ameliorated muscle pathology, and extended survival. These findings show early-onset and intrinsic metabolic alterations in SBMA muscle and link lipid/glucose metabolism to pathogenesis. Moreover, our results highlight an HFD regime as a promising approach to support SBMA patients.
Assuntos
Dieta Hiperlipídica/efeitos adversos , Glicólise , Músculo Esquelético/metabolismo , Transtornos Musculares Atróficos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Atrofia/metabolismo , Atrofia/patologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Glicólise/fisiologia , Humanos , Metabolismo dos Lipídeos/fisiologia , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Camundongos Transgênicos , Músculo Esquelético/patologia , Transtornos Musculares Atróficos/patologia , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Distribuição Aleatória , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Transdução de SinaisRESUMO
Synapsin I (SynI) is a synaptic vesicle (SV) phosphoprotein playing multiple roles in synaptic transmission and plasticity by differentially affecting crucial steps of SV trafficking in excitatory and inhibitory synapses. SynI knockout (KO) mice are epileptic, and nonsense and missense mutations in the human SYN1 gene have a causal role in idiopathic epilepsy and autism. To get insights into the mechanisms of epileptogenesis linked to SYN1 mutations, we analyzed the effects of the recently identified Q555X mutation on neurotransmitter release dynamics and short-term plasticity (STP) in excitatory and inhibitory synapses. We used patch-clamp electrophysiology coupled to electron microscopy and multi-electrode arrays to dissect synaptic transmission of primary SynI KO hippocampal neurons in which the human wild-type and mutant SynI were expressed by lentiviral transduction. A parallel decrease in the SV readily releasable pool in inhibitory synapses and in the release probability in excitatory synapses caused a marked reduction in the evoked synchronous release. This effect was accompanied by an increase in asynchronous release that was much more intense in excitatory synapses and associated with an increased total charge transfer. Q555X-hSynI induced larger facilitation and post-tetanic potentiation in excitatory synapses and stronger depression after long trains in inhibitory synapses. These changes were associated with higher network excitability and firing/bursting activity. Our data indicate that imbalances in STP and release dynamics of inhibitory and excitatory synapses trigger network hyperexcitability potentially leading to epilepsy/autism manifestations.
Assuntos
Epilepsia/genética , Epilepsia/metabolismo , Plasticidade Neuronal/genética , Sinapses/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo , Animais , Feminino , Expressão Gênica , Hipocampo/metabolismo , Humanos , Espaço Intracelular/metabolismo , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Técnicas de Patch-Clamp , Fenótipo , Multimerização Proteica , Transporte Proteico , Sinapsinas/química , Potenciais Sinápticos , Vesículas Sinápticas/metabolismoAssuntos
Cadáver , Impressões Digitais de DNA , DNA/análise , DNA/isolamento & purificação , Olho , Antropologia Forense/métodos , Exumação , Humanos , Masculino , PaternidadeRESUMO
Involvement of the peripheral nervous system in mitochondrial disorders (MD) has been previously reported. However, the exact prevalence of peripheral neuropathy and/or myopathy in MD is still unclear. In order to evaluate the prevalence of neuropathy and myopathy in MD, we performed sensory and motor nerve conduction studies (NCS) and concentric needle electromyography (EMG) in 44 unselected MD patients. NCS were abnormal in 36.4% of cases, and were consistent with a sensori-motor axonal multineuropathy (multifocal neuropathy), mainly affecting the lower limbs. EMG evidence of myopathy was present in 54.5% of patients, again mainly affecting the lower limbs. Nerve and muscle involvement was frequently subclinical. Peripheral nerve and muscle involvement is common in MD patients. Our study supports the variability of the clinical expression of MD. Further studies are needed to better understand the molecular basis underlying the phenotypic variability among MD patients.
Assuntos
Doenças Mitocondriais/complicações , Doenças Mitocondriais/patologia , Doenças Musculares/etiologia , Doenças do Sistema Nervoso Periférico/etiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Eletromiografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Condução Nervosa/fisiologia , Adulto JovemRESUMO
BACKGROUND: Proximal muscle weakness may be the presenting clinical feature of different types of myopathies, including limb girdle muscular dystrophy and primary mitochondrial myopathy. LGMD1B is caused by LMNA mutation. It is characterized by progressive weakness and wasting leading to proximal weakness, cardiomyopathy, and hearth conduction block. OBJECTIVE: In this article, we describe the case of a patient who presented with limb-girdle weakness and a double trouble scenario -mitochondrial DNA single deletion and a new LMNA mutation. METHODS: Pathophysiological aspects were investigated with muscle biopsy, Western Blot analysis, NGS nuclear and mtDNA analysis and neuromuscular imaging (muscle and cardiac MRI). RESULTS: Although secondary mitochondrial involvement is possible, a "double trouble" syndrome can not be excluded. CONCLUSION: Implication deriving from hypothetical coexistence of two different pathological conditions or the possible secondary mitochondrial involvement are discussed.
Assuntos
Distrofia Muscular do Cíngulo dos Membros , Distrofias Musculares , DNA Mitocondrial/genética , Humanos , Lamina Tipo A/genética , Debilidade Muscular/complicações , Distrofias Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , MutaçãoRESUMO
A possible relationship between human circadian rhythmicity and polymorphisms in clock genes have been documented. However, these data are controversial, and studies both corroborating and denying them have been reported. T3111C Clock polymorphism had been associated with the human evening preference, however, this association has not been confirmed. Moreover, C111G Per2 polymorphism has been associated with the "morning larks" chronotype in one study, not yet replicated. We have, therefore, performed this study to evaluate whether Per2 C111G and Clock T3111C polymorphisms might influence sleep circadian rhythmicity in a sample of 219 Italian volunteers. A possible interaction between these polymorphisms was also investigated. No differences in Per2 C111G and Clock T3111C allele and genotype frequencies were found, and none of the combined Clock T3111C-Per2 C11G genotypes resulted more frequent in one group compared to the others. Present results do not support a role of these polymorphisms in the circadian phenotypes.
Assuntos
Proteínas CLOCK/genética , Ritmo Circadiano/genética , Proteínas Circadianas Period/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , Distribuição de Qui-Quadrado , Feminino , Frequência do Gene , Genótipo , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
MicroRNAs (miRNAs) are a class of non-coding RNAs of about 20 nucleotides in length, involved in the regulation of many biochemical pathways in the human body. The level of miRNAs in tissues and circulation can be deregulated because of altered pathophysiological mechanisms; thus, they can be employed as biomarkers for different pathological conditions, such as cardiac diseases. This review summarizes published findings of these molecular biomarkers in the three most common structural cardiomyopathies: human dilated, arrhythmogenic and hypertrophic cardiomyopathy.
RESUMO
During aging, brain performances decline. Cellular senescence is one of the aging drivers and a key feature of a variety of human age-related disorders. The transcriptional repressor RE1-silencing transcription factor (REST) has been associated with aging and higher risk of neurodegenerative disorders. However, how REST contributes to the senescence program and functional impairment remains largely unknown. Here, we report that REST is essential to prevent the senescence phenotype in primary mouse neurons. REST deficiency causes failure of autophagy and loss of proteostasis, increased oxidative stress, and higher rate of cell death. Re-establishment of autophagy reverses the main hallmarks of senescence. Our data indicate that REST has a protective role in physiological aging by regulating the autophagic flux and the senescence program in neurons, with implications for neurological disorders associated with aging.
Assuntos
Autofagia/genética , Senescência Celular/genética , Neurônios/metabolismo , Proteínas Repressoras/deficiência , Animais , Humanos , Camundongos , Estresse OxidativoRESUMO
Neuroinflammation is associated with synapse dysfunction and cognitive decline in patients and animal models. One candidate for translating the inflammatory stress into structural and functional changes in neural networks is the transcriptional repressor RE1-silencing transcription factor (REST) that regulates the expression of a wide cluster of neuron-specific genes during neurogenesis and in mature neurons. To study the cellular and molecular pathways activated under inflammatory conditions mimicking the experimental autoimmune encephalomyelitis (EAE) environment, we analyzed REST activity in neuroblastoma cells and mouse cortical neurons treated with activated T cell or microglia supernatant and distinct pro-inflammatory cytokines. We found that REST is activated by a variety of neuroinflammatory stimuli in both neuroblastoma cells and primary neurons, indicating that a vast transcriptional change is triggered during neuroinflammation. While a dual activation of REST and its dominant-negative splicing isoform REST4 was observed in N2a neuroblastoma cells, primary neurons responded with a pure full-length REST upregulation in the absence of changes in REST4 expression. In both cases, REST upregulation was associated with activation of Wnt signaling and increased nuclear translocation of ß-catenin, a well-known intracellular transduction pathway in neuroinflammation. Among single cytokines, IL-1ß caused a potent and prompt increase in REST transcription and translation in neurons, which promoted a delayed and strong synaptic downscaling specific for excitatory synapses, with decreased frequency and amplitude of spontaneous synaptic currents, decreased density of excitatory synaptic connections, and decreased frequency of action potential-evoked Ca2+ transients. Most important, the IL-1ß effects on excitatory transmission were strictly REST dependent, as conditional deletion of REST completely occluded the effects of IL-1ß activation on synaptic transmission and network excitability. Our results demonstrate that REST upregulation represents a new pathogenic mechanism for the synaptic dysfunctions observed under neuroinflammatory conditions and identify the REST pathway as therapeutic target for EAE and, potentially, for multiple sclerosis.
Assuntos
Córtex Cerebral/metabolismo , Inflamação/metabolismo , Interleucina-1beta/farmacologia , Proteínas Repressoras/metabolismo , Transmissão Sináptica , Animais , Córtex Cerebral/citologia , Técnicas de Cocultura , Meios de Cultivo Condicionados , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Proteínas Repressoras/biossíntese , Transmissão Sináptica/efeitos dos fármacos , Linfócitos T/metabolismo , Regulação para CimaRESUMO
MicroRNAs (miRNAs) are a class of non-coding RNAs containing 18-24 nucleotides that are involved in the regulation of many biochemical mechanisms in the human body. The level of miRNAs in body fluids and tissues increases because of altered pathophysiological mechanisms, thus they are employed as biomarkers for various diseases and conditions. In recent years, miRNAs obtained a great interest in many fields of forensic medicine given their stability and specificity. Several specific miRNAs have been studied in body fluid identification, in wound vitality in time of death determination, in drowning, in the anti-doping field, and other forensic fields. However, the major problems are (1) lack of universal protocols for diagnostic expression testing and (2) low reproducibility of independent studies. This review is an update on the application of these molecular markers in forensic biology.
RESUMO
Trace amine-associated receptors (TAARs) are a class of G-protein-coupled receptors found in mammals. While TAAR1 is expressed in several brain regions, all the other TAARs have been described mainly in the olfactory epithelium and the glomerular layer of the olfactory bulb and are believed to serve as a new class of olfactory receptors sensing innate odors. However, there is evidence that TAAR5 could play a role also in the central nervous system. In this study, we characterized a mouse line lacking TAAR5 (TAAR5 knockout, TAAR5-KO) expressing beta-galactosidase mapping TAAR5 expression. We found that TAAR5 is expressed not only in the glomerular layer in the olfactory bulb but also in deeper layers projecting to the limbic brain olfactory circuitry with prominent expression in numerous limbic brain regions, such as the anterior olfactory nucleus, the olfactory tubercle, the orbitofrontal cortex (OFC), the amygdala, the hippocampus, the piriform cortex, the entorhinal cortex, the nucleus accumbens, and the thalamic and hypothalamic nuclei. TAAR5-KO mice did not show gross developmental abnormalities but demonstrated less anxiety- and depressive-like behavior in several behavioral tests. TAAR5-KO mice also showed significant decreases in the tissue levels of serotonin and its metabolite in several brain areas and were more sensitive to the hypothermic action of serotonin 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propilamino)tetralin (8-OH-DPAT). These observations indicate that TAAR5 is not just innate odor-sensing olfactory receptor but also serves to provide olfactory input into limbic brain areas to regulate emotional behaviors likely via modulation of the serotonin system. Thus, anxiolytic and/or antidepressant action of future TAAR5 antagonists could be predicted. In general, "olfactory" TAAR-mediated brain circuitry may represent a previously unappreciated neurotransmitter system involved in the transmission of innate odors into emotional behavioral responses.
RESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Inherited retinal dystrophies and late-stage age-related macular degeneration, for which treatments remain limited, are among the most prevalent causes of legal blindness. Retinal prostheses have been developed to stimulate the inner retinal network; however, lack of sensitivity and resolution, and the need for wiring or external cameras, have limited their application. Here we show that conjugated polymer nanoparticles (P3HT NPs) mediate light-evoked stimulation of retinal neurons and persistently rescue visual functions when subretinally injected in a rat model of retinitis pigmentosa. P3HT NPs spread out over the entire subretinal space and promote light-dependent activation of spared inner retinal neurons, recovering subcortical, cortical and behavioural visual responses in the absence of trophic effects or retinal inflammation. By conferring sustained light sensitivity to degenerate retinas after a single injection, and with the potential for high spatial resolution, P3HT NPs provide a new avenue in retinal prosthetics with potential applications not only in retinitis pigmentosa, but also in age-related macular degeneration.
Assuntos
Pontos Quânticos , Retina/efeitos dos fármacos , Retinose Pigmentar/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Injeções Intraoculares , Masculino , Estimulação Luminosa , Polímeros/administração & dosagem , Polímeros/farmacologia , Pontos Quânticos/administração & dosagem , Pontos Quânticos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Córtex Visual/efeitos dos fármacos , Córtex Visual/metabolismo , Próteses VisuaisRESUMO
Lamin A is a nuclear lamina constituent implicated in a number of human disorders including Emery-Dreifuss muscular dystrophy. Since increasing evidence suggests a role of the lamin A precursor in nuclear functions, we investigated the processing of prelamin A during differentiation of C2C12 mouse myoblasts. We show that both protein levels and cellular localization of prelamin A are modulated during myoblast activation. Similar changes of lamin A-binding proteins emerin and LAP2alpha were observed. Furthermore, prelamin A was found in a complex with LAP2alpha in differentiating myoblasts. Prelamin A accumulation in cycling myoblasts by expressing unprocessable mutants affected LAP2alpha and PCNA amount and increased caveolin 3 mRNA and protein levels, while accumulation of prelamin A in differentiated muscle cells following treatment with a farnesyl transferase inhibitor appeared to inhibit caveolin 3 expression. Our data provide evidence for a critical role of the lamin A precursor in the early steps of muscle cell differentiation.
Assuntos
Diferenciação Celular/genética , Desenvolvimento Muscular/genética , Proteínas Nucleares/fisiologia , Precursores de Proteínas/fisiologia , Animais , Caveolina 3/genética , Caveolina 3/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Lamina Tipo A , Proteínas de Membrana/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Mioblastos/metabolismo , Mioblastos/fisiologia , Proteínas Nucleares/metabolismo , Ligação Proteica , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Fatores de TempoRESUMO
In recent years, the scientific community has witnessed an exponential increase in the use of nanomaterials for biomedical applications. In particular, the interest of graphene and graphene-based materials has rapidly risen in the neuroscience field due to the properties of this material, such as high conductivity, transparency and flexibility. As for any new material that aims to play a role in the biomedical area, a fundamental aspect is the evaluation of its toxicity, which strongly depends on material composition, chemical functionalization and dimensions. Furthermore, a wide variety of three-dimensional scaffolds have also started to be exploited as a substrate for tissue engineering. In this application, the topography is probably the most relevant amongst the various properties of the different materials, as it may allow to instruct and interrogate neural networks, as well as to drive neural growth and differentiation.This chapter discusses the in vitro approaches, ranging from microscopy analysis to physiology measurements, to investigate the interaction of graphene with the central nervous system. Moreover, the in vitro use of three-dimensional scaffolds is described and commented.