Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 89(10): 10I132, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399820

RESUMO

We recently developed a one-dimensional imager of neutrons on the Z facility. The instrument is designed for Magnetized Liner Inertial Fusion (MagLIF) experiments, which produce D-D neutrons yields of ∼3 × 1012. X-ray imaging indicates that the MagLIF stagnation region is a 10-mm long, ∼100-µm diameter column. The small radial extents and present yields precluded useful radial resolution, so a one-dimensional imager was developed. The imaging component is a 100-mm thick tungsten slit; a rolled-edge slit limits variations in the acceptance angle along the source. CR39 was chosen as a detector due to its negligible sensitivity to the bright x-ray environment in Z. A layer of high density poly-ethylene is used to enhance the sensitivity of CR39. We present data from fielding the instrument on Z, demonstrating reliable imaging and track densities consistent with diagnosed yields. For yields ∼3 × 1012, we obtain resolutions of ∼500 µm.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(6 Pt 2): 066405, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16486068

RESUMO

High-power Z pinches on Sandia National Laboratories' Z facility can be used in a variety of experiments to radiatively heat samples placed some distance away from the Z-pinch plasma. In such experiments, the heating radiation spectrum is influenced by both the Z-pinch emission and the re-emission of radiation from the high-Z surfaces that make up the Z-pinch diode. To test the understanding of the amplitude and spectral distribution of the heating radiation, thin foils containing both Al and MgF2 were heated by a 100-130 TW Z pinch. The heating of these samples was studied through the ionization distribution in each material as measured by x-ray absorption spectra. The resulting plasma conditions are inferred from a least-squares comparison between the measured spectra and calculations of the Al and Mg 1s-->2p absorption over a large range of temperatures and densities. These plasma conditions are then compared to radiation-hydrodynamics simulations of the sample dynamics and are found to agree within 1sigma to the best-fit conditions. This agreement indicates that both the driving radiation spectrum and the heating of the Al and MgF2 samples is understood within the accuracy of the spectroscopic method.

3.
Rev Sci Instrum ; 79(10): 10E919, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044574

RESUMO

The distance radiation waves that supersonically propagate in optically thick, diffusive media are energy sensitive. A blast wave can form in a material when the initially diffusive, supersonic radiation wave becomes transonic. Under specific conditions, the blast wave is visible with radiography as a density perturbation. [Peterson et al., Phys. Plasmas 13, 056901 (2006)] showed that the time-integrated drive energy can be measured using blast wave positions with uncertainties less than 10% at the Z Facility. In some cases, direct measurements of energy loss through diagnostic holes are not possible with bolometric and x-ray radiometric diagnostics. Thus, radiography of high compression blast waves can serve as a complementary technique that provides time-integrated energy loss through apertures. In this paper, we use blast waves to characterize the energy emerging through a 2.4 mm aperture and show experimental results in comparison to simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA