Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Chem ; 70(1): 339-349, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175591

RESUMO

BACKGROUND: B-cell maturation antigen is a pivotal therapeutic target for multiple myeloma (MM). Membrane-bound BCMA can be cleaved by γ-secretase and shed as soluble BCMA (sBCMA). sBCMA can act as a neutralizing sink to compete with drug, as well as serve as a diagnostic/prognostic biomarker for MM. Antibody-capture based methods, such as enzyme-linked immunosorbent assay (ELISA) and immunoaffinity-liquid chromatography-multiple reaction monitoring (IA-LC-MRM), have been reported and well adopted to measure sBCMA in clinical samples. However, both methods are biased by capturing antibodies. METHODS: We have used various LC-MS workflows to characterize and quantify endogenous sBCMA in MM patient samples, including bottom-up peptide mapping, intact analysis, IA-based, and reagent-free (RF)-LC-MRM quantitation. RESULTS: We have confirmed that sBCMA contains a variable N-terminus and a C-terminus that extends to the transmembrane domain, ending at amino acid 61. Leveraging an in-house synthesized G-1-61 sBCMA recombinant standard, we developed a RF-LC-MRM method for unbiased sBCMA quantitation in MM patient samples. By comparing the results from RF-LC-MRM with ELISA and IA-LC-MRM, we demonstrated that RF-LC-MRM measures a more complete pool of endogenous sBCMA compared to the antibody-based methods. CONCLUSIONS: This work fills the knowledge gap of the exact sequence of endogenous sBCMA for the first time, which differs from the current commercially available standard. Additionally, this work highlights the necessity of identifying the actual sequence of an endogenous soluble target such as sBCMA, both for bioanalytical purposes and to underpin pharmacodynamic measurements.


Assuntos
Antígeno de Maturação de Linfócitos B , Mieloma Múltiplo , Humanos , Cromatografia Líquida , Espectrometria de Massa com Cromatografia Líquida , Mieloma Múltiplo/diagnóstico , Espectrometria de Massas em Tandem , Anticorpos
2.
Drug Metab Dispos ; 52(3): 228-235, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38135505

RESUMO

The development of therapeutic fusion protein drugs is often impeded by the unintended consequences that occur from fusing together domains from independent naturally occurring proteins, consequences such as altered biodistribution, tissue uptake, or rapid clearance and potential immunogenicity. For therapeutic fusion proteins containing globular domains, we hypothesized that aberrant in vivo behavior could be related to low kinetic stability of these domains leading to local unfolding and susceptibility to partial proteolysis and/or salvage and uptake. Herein we describe an assay to measure kinetic stability of therapeutic fusion proteins by way of their sensitivity to the protease thermolysin. The results indicate that in vivo pharmacokinetics of a panel of anti-programmed cell death protein 1 monocolonal antibody:interleukin 21 immunocytokines in both mice and nonhuman primates are highly correlated with their in vitro susceptibility to thermolysin-mediated proteolysis. This assay can be used as a tool to quickly identify in vivo liabilities of globular domains of therapeutic proteins, thus aiding in the optimization and development of new multispecific drug candidates. SIGNIFICANCE STATEMENT: This work describes a novel assay utilizing protein kinetic stability to identify preclinical in vivo pharmacokinetic liabilities of multispecific therapeutic fusion proteins. This provides an efficient, inexpensive method to ascertain inherent protein stability in vitro before conducting in vivo studies, which can rapidly increase the speed of preclinical drug development.


Assuntos
Anticorpos Monoclonais , Interleucinas , Camundongos , Animais , Distribuição Tecidual , Termolisina , Anticorpos Monoclonais/farmacocinética
3.
Anal Chem ; 93(13): 5562-5569, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33764735

RESUMO

As the pharmaceutical industry places greater emphasis on pairing biological pathways with appropriate therapeutic intervention, an increase in the use of biologic drugs has emerged. With increasing complexity of biotherapeutics, absorption, distribution, metabolism, and excretion (ADME) studies have also become increasingly complex. The characterization of ADME properties is critical to tuning the pharmacokinetic profiles of next generation biologics (NGBs). The knowledge of the fate of a drug is essential for the enhancement of the design processes, elongation of exposure at the desired site of action, and achieving efficacy with minimum toxicity. In vivo proteolytic cleavage of biotherapeutics may lead to undesirable in vivo properties, such as rapid clearance, low bioavailability, and loss of pharmacodynamic effect. All of these may affect drug efficacy and/or generate safety concerns through increases in immunogenicity or off-target toxicity. The work herein describes the development of a robust, fully automated immunoaffinity purification (IA)-capillary electrophoresis-mass spectrometry (CE-MS) workflow. The reagents were carefully optimized to maximize isolation yields while minimizing the number of experimental steps to analytical results. The result is the development of a comprehensive integrated platform for the characterization of a wide range of biotherapeutics, including peptibodies, monoclonal antibodies, and bispecific antibodies. Empowered by this automated IA-CE-MS approach, implementing biotransformation studies at an early drug discovery stage can speed up the drug development process.


Assuntos
Produtos Biológicos , Eletroforese Capilar , Anticorpos Monoclonais , Descoberta de Drogas , Espectrometria de Massas
4.
Drug Metab Dispos ; 48(6): 508-514, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32193357

RESUMO

Experiments designed to identify the mechanism of cytochrome P450 inactivation are critical to drug discovery. Small molecules irreversibly inhibit P450 enzymatic activity via two primary mechanisms: apoprotein adduct formation or heme modification. Understanding the interplay between chemical structures of reactive electrophiles and the impact on CYP3A4 structure and function can ultimately provide insights into drug design to minimize P450 inactivation. In a previous study, raloxifene and N-(1-pyrene) iodoacetamide (PIA) alkylated CYP3A4 in vitro; however, only raloxifene influenced enzyme activity. Here, two alkylating agents with cysteine selectivity, PIA and pyrene maleimide (PM), were used to investigate this apparent compound-dependent disconnect between CYP3A4 protein alkylation and activity loss. The compound's effect on 1) enzymatic activity, 2) carbon monoxide (CO) binding capacity, 3) intact heme content, and 4) protein conformation were measured. Results showed that PM had a large time-dependent loss of enzyme activity, whereas PIA did not. The differential effect on enzymatic activity between PM and PIA was mirrored in the CO binding data. Despite disruption of CO binding, neither compound affected the heme concentrations, inferring there was no destruction or alkylation of the heme. Lastly, differential scanning fluorescence showed PM-treated CYP3A4 caused a shift in the onset temperature required to induce protein aggregation, which was not observed for CYP3A4 treated with PIA. In conclusion, alkylation of CYP3A4 apoprotein can have a variable impact on catalytic activity, CO binding, and protein conformation that may be compound-dependent. These results highlight the need for careful interpretation of experimental results aimed at characterizing the nature of P450 enzyme inactivation. SIGNIFICANCE STATEMENT: Understanding the mechanism of CYP3A4 time-dependent inhibition is critical to drug discovery. In this study, we use two cysteine-targeting electrophiles to probe how subtle variation in inhibitor structure may impact the mechanism of CYP3A4 time-dependent inhibition and confound interpretation of traditional diagnostic experiments. Ultimately, this simplified system was used to reveal insights into CYP3A4 biochemical behavior. The insights may have implications that aid in understanding the susceptibility of CYP enzymes to the effects of electrophilic intermediates generated via bioactivation.


Assuntos
Apoproteínas/metabolismo , Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/metabolismo , Alquilação/efeitos dos fármacos , Apoproteínas/antagonistas & inibidores , Apoproteínas/química , Monóxido de Carbono/metabolismo , Cisteína/química , Citocromo P-450 CYP3A/química , Inibidores do Citocromo P-450 CYP3A/química , Ensaios Enzimáticos , Iodoacetamida/análogos & derivados , Iodoacetamida/química , Iodoacetamida/farmacologia , Maleimidas/química , Maleimidas/farmacologia , Oxirredução/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Proteínas Recombinantes/metabolismo
5.
Drug Metab Dispos ; 47(10): 1111-1121, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31387871

RESUMO

The identification of nonopioid alternatives to treat chronic pain has received a great deal of interest in recent years. Recently, the engineering of a series of Nav1.7 inhibitory peptide-antibody conjugates has been reported, and herein, the preclinical efforts to identify novel approaches to characterize the pharmacokinetic properties of the peptide conjugates are described. A cryopreserved plated mouse hepatocyte assay was designed to measure the depletion of the peptide-antibody conjugates from the media, with a correlation being observed between percentage remaining in the media and in vivo clearance (Pearson r = -0.5525). Physicochemical (charge and hydrophobicity), receptor-binding [neonatal Fc receptor (FcRn)], and in vivo pharmacokinetic data were generated and compared with the results from our in vitro hepatocyte assay, which was hypothesized to encompass all of the aforementioned properties. Correlations were observed among hydrophobicity; FcRn binding; depletion rates from the hepatocyte assay; and ultimately, in vivo clearance. Subsequent studies identified potential roles for the low-density lipoprotein and mannose/galactose receptors in the association of the Nav1.7 peptide conjugates with mouse hepatocytes, although in vivo studies suggested that FcRn was still the primary receptor involved in determining the pharmacokinetics of the peptide conjugates. Ultimately, the use of the cryopreserved hepatocyte assay along with FcRn binding and hydrophobic interaction chromatography provided an efficient and integrated approach to rapidly triage molecules for advancement while reducing the number of in vivo pharmacokinetic studies. SIGNIFICANCE STATEMENT: Although multiple in vitro and in silico tools are available in small-molecule drug discovery, pharmacokinetic characterization of protein therapeutics is still highly dependent upon the use of in vivo studies in preclinical species. The current work demonstrates the combined use of cryopreserved hepatocytes, hydrophobic interaction chromatography, and neonatal Fc receptor binding to characterize a series of Nav1.7 peptide-antibody conjugates prior to conducting in vivo studies, thus providing a means to rapidly evaluate novel protein therapeutic platforms while concomitantly reducing the number of in vivo studies conducted in preclinical species.


Assuntos
Dor Crônica/tratamento farmacológico , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoconjugados/farmacocinética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Receptores Fc/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacocinética , Administração Intravenosa , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacocinética , Criopreservação , Avaliação Pré-Clínica de Medicamentos/métodos , Hepatócitos , Antígenos de Histocompatibilidade Classe I/genética , Imunoconjugados/administração & dosagem , Macaca fascicularis , Masculino , Taxa de Depuração Metabólica , Camundongos , Camundongos Knockout , Peptídeos/administração & dosagem , Peptídeos/farmacocinética , Receptores Fc/genética , Distribuição Tecidual , Bloqueadores do Canal de Sódio Disparado por Voltagem/administração & dosagem
6.
J Proteome Res ; 16(2): 911-919, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28152598

RESUMO

Characterization of in vitro and in vivo catabolism of therapeutic proteins has increasingly become an integral part of discovery and development process for novel proteins. Unambiguous and efficient identification of catabolites can not only facilitate accurate understanding of pharmacokinetic profiles of drug candidates, but also enables follow up protein engineering to generate more catabolically stable molecules with improved properties (pharmacokinetics and pharmacodynamics). Immunoaffinity capture (IC) followed by top-down intact protein analysis using either matrix-assisted laser desorption/ionization or electrospray ionization mass spectrometry analysis have been the primary methods of choice for catabolite identification. However, the sensitivity and efficiency of these methods is not always sufficient for characterization of novel proteins from complex biomatrices such as plasma or serum. In this study a novel bottom-up targeted protein workflow was optimized for analysis of proteolytic degradation of therapeutic proteins. Selective and sensitive tagging of the alpha-amine at the N-terminus of proteins of interest was performed by immunoaffinity capture of therapeutic protein and its catabolites followed by on-bead succinimidyloxycarbonylmethyl tri-(2,4,6-trimethoxyphenyl N-terminus (TMPP-NTT) tagging. The positively charged hydrophobic TMPP tag facilitates unambiguous sequence identification of all N-terminus peptides from complex tryptic digestion samples via data dependent liquid chromatgraphy-tandem mass spectroscopy. Utility of the workflow was illustrated by definitive analysis of in vitro catabolic profile of neurotensin human Fc (NTs-huFc) protein in mouse serum. The results from this study demonstrated that the IC-TMPP-NTT workflow is a simple and efficient method for catabolite formation in therapeutic proteins.


Assuntos
Neurotensina/sangue , Oniocompostos/química , Compostos Organofosforados/química , Fragmentos de Peptídeos/sangue , Coloração e Rotulagem/métodos , Sequência de Aminoácidos , Animais , Biotransformação , Cromatografia Líquida , Humanos , Técnicas de Imunoadsorção , Camundongos , Neurotensina/administração & dosagem , Fragmentos de Peptídeos/química , Eletricidade Estática , Espectrometria de Massas em Tandem , Tripsina/química
7.
Drug Metab Dispos ; 45(7): 712-720, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28428366

RESUMO

Oprozomib is an oral proteasome inhibitor currently under investigation in patients with hematologic malignancies or solid tumors. Oprozomib elicits potent pharmacological actions by forming a covalent bond with the active site N-terminal threonine of the 20S proteasome. Oprozomib has a short half-life across preclinical species and in patients due to systemic clearance via metabolism. Potential for drug-drug interactions (DDIs) could alter the exposure of this potent therapeutic; therefore, a thorough investigation of pathways responsible for metabolism is required. In the present study, the major drug-metabolizing enzyme responsible for oprozomib metabolism was identified in vitro. A diol of oprozomib was found to be the predominant metabolite in human hepatocytes, which formed via direct epoxide hydrolysis. Using recombinant epoxide hydrolases (EHs) and selective EH inhibitors in liver microsomes, microsomal EH (mEH) but not soluble EH (sEH) was found to be responsible for oprozomib diol formation. Coincubation with 2-nonylsulfanyl-propionamide, a selective mEH inhibitor, resulted in a significant decrease in oprozomib disappearance (>80%) with concurrent complete blockage of diol formation in human hepatocytes. On the contrary, a selective sEH inhibitor did not affect oprozomib metabolism. Pretreatment of hepatocytes with the pan-cytochrome P450 (P450) inhibitor 1-aminobenzotriazole resulted in a modest reduction (∼20%) of oprozomib metabolism. These findings indicated that mEH plays a predominant role in oprozomib metabolism. Further studies may be warranted to determine whether drugs that are mEH inhibitors cause clinically significant DDIs with oprozomib. On the other hand, pharmacokinetics of oprozomib is unlikely to be affected by coadministered P450 and sEH inhibitors and/or inducers.


Assuntos
Clorpromazina/análogos & derivados , Sistema Enzimático do Citocromo P-450/metabolismo , Epóxido Hidrolases/metabolismo , Inibidores de Proteassoma/metabolismo , Administração Oral , Adulto , Clorpromazina/metabolismo , Interações Medicamentosas/fisiologia , Feminino , Meia-Vida , Hepatócitos/metabolismo , Humanos , Masculino , Microssomos Hepáticos/metabolismo , Pessoa de Meia-Idade , Oxirredução , Proteínas Recombinantes/metabolismo , Triazóis/metabolismo , Adulto Jovem
8.
Anal Biochem ; 539: 118-126, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29029979

RESUMO

Protein engineering is at an all-time high in biopharmaceutics. As a result, absorption, distribution, metabolism and excretion (ADME) of proteins has become more important to understand in the context of engineering strategies to optimize therapeutic properties of potential lead constructs. Immunoaffinity capture coupled with a newly developed capillary electrophoresis - mass spectrometry (CE-MS) system was used to characterize intact protein mass analysis of a wild type Fc-FGF21 construct and a sequence re-engineered Fc-FGF21 construct from an in vivo study. A number of truncated forms were observed and the time courses of the various proteolytic products were identified and compared between the two constructs. The abundances of the intact and truncated forms were used to provide the basis to semi-quantify ADME properties of the two protein forms. The use of this immunoaffinity capture followed by CE-MS based intact mass analysis workflow provided a qualitative and quantitative analysis of the pharmacokinetic profiles of the two proteins. The platform presented here holds great potential in characterization of the ADME properties of proteins.


Assuntos
Eletroforese Capilar/métodos , Espectrometria de Massas , Proteínas Recombinantes de Fusão/química , Animais , Cromatografia de Afinidade , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Meia-Vida , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/metabolismo , Camundongos , Estabilidade Proteica , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/farmacocinética
9.
Drug Metab Dispos ; 44(5): 617-23, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26669328

RESUMO

An antibody-drug conjugate (ADC) is a unique therapeutic modality composed of a highly potent drug molecule conjugated to a monoclonal antibody. As the number of ADCs in various stages of nonclinical and clinical development has been increasing, pharmaceutical companies have been exploring diverse approaches to understanding the disposition of ADCs. To identify the key absorption, distribution, metabolism, and excretion (ADME) issues worth examining when developing an ADC and to find optimal scientifically based approaches to evaluate ADC ADME, the International Consortium for Innovation and Quality in Pharmaceutical Development launched an ADC ADME working group in early 2014. This white paper contains observations from the working group and provides an initial framework on issues and approaches to consider when evaluating the ADME of ADCs.


Assuntos
Anticorpos Monoclonais/metabolismo , Imunoconjugados/metabolismo , Preparações Farmacêuticas/metabolismo , Animais , Indústria Farmacêutica/métodos , Humanos
10.
Mol Pharm ; 13(7): 2387-96, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27248573

RESUMO

Antibody-drug conjugates (ADC) rely on the target-binding specificity of an antibody to selectively deliver potent drugs to cancer cells. IgG antibody half-life is regulated by neonatal Fc receptor (FcRn) binding. Histidine 435 of human IgG was mutated to alanine (H435A) to explore the effect of FcRn binding on the pharmacokinetics, efficacy, and tolerability of two separate maytansine-based ADC pairs with noncleavable linkers, (c-DM1 and c-H435A-DM1) and (7v-Cys-may and 7v-H435A-Cys-may). The in vitro cell-killing potency of each pair of ADCs was similar, demonstrating that H435A showed no measurable impact on ADC bioactivity. The H435A mutant antibodies showed no detectable binding to human or mouse FcRn in vitro, whereas their counterpart wild-type IgG ADCs were found to bind to FcRn at pH = 6.0. In xenograft bearing SCID mice expressing mouse FcRn, the AUC of 7v-Cys-may was 1.6-fold higher than that of 7v-H435A-may, yet the observed efficacy was similar. More severe thrombocytopenia was observed with 7v-H435A-Cys-may as compared to 7v-Cys-may at multiple dose levels. The AUC of c-DM1 was approximately 3-fold higher than that of c-H435A-DM1 in 786-0 xenograft bearing SCID mice, which led to a 3-fold difference in efficacy by dose. Murine FcRn knockout, human FcRn transgenic line 32 SCID animals bearing 786-0 xenografts showed an amplified exposure difference between c-DM1 and c-H435A-DM1 as compared to murine FcRn expressing SCID mice, leading to a 10-fold higher dose required for efficacy despite a 6-fold higher AUC of the c-H435A-DM1. The accelerated clearance observed for the noncleavable maytansine ADCs with the H435A FcRn mutation led to reduced efficacy at equivalent doses and exacerbation of clinical pathology parameters (decreased tolerability) at equivalent doses. The results show that reduced ADC clearance mediated by FcRn modulation can improve therapeutic index.


Assuntos
Anticorpos/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoconjugados/farmacologia , Imunoglobulina G/metabolismo , Receptores Fc/metabolismo , Animais , Anticorpos/genética , Ligante CD27/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Imunoconjugados/química , Maitansina/metabolismo , Camundongos , Camundongos SCID , Receptores Fc/genética
11.
Drug Metab Dispos ; 43(9): 1341-4, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26101225

RESUMO

Antibody drug conjugates are emerging as a powerful class of antitumor agents with efficacy across a range of cancers; therefore, understanding the disposition of this class of therapeutic is crucial. Reported here is a method of enriching a specific organelle (lysosome) to understand the catabolism of an anti-CD70 Ab-MCC-DM1, an antibody drug conjugate with a noncleavable linker. With such techniques a higher degree of concentration-activity relationship can be established for in vitro cell lines; this can aid in understanding the resultant catabolite concentrations necessary to exert activity.


Assuntos
Imunoconjugados/metabolismo , Lisossomos/metabolismo , Preparações Farmacêuticas/metabolismo , Ligante CD27/imunologia , Linhagem Celular Tumoral , Humanos
12.
Drug Metab Dispos ; 43(8): 1156-68, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25986849

RESUMO

The recent symposium on "Target-Site" Drug Metabolism and Transport that was sponsored by the American Society for Pharmacology and Experimental Therapeutics at the 2014 Experimental Biology meeting in San Diego is summarized in this report. Emerging evidence has demonstrated that drug-metabolizing enzyme and transporter activity at the site of therapeutic action can affect the efficacy, safety, and metabolic properties of a given drug, with potential outcomes including altered dosing regimens, stricter exclusion criteria, or even the failure of a new chemical entity in clinical trials. Drug metabolism within the brain, for example, can contribute to metabolic activation of therapeutic drugs such as codeine as well as the elimination of potential neurotoxins in the brain. Similarly, the activity of oxidative and conjugative drug-metabolizing enzymes in the lung can have an effect on the efficacy of compounds such as resveratrol. In addition to metabolism, the active transport of compounds into or away from the site of action can also influence the outcome of a given therapeutic regimen or disease progression. For example, organic anion transporter 3 is involved in the initiation of pancreatic ß-cell dysfunction and may have a role in how uremic toxins enter pancreatic ß-cells and ultimately contribute to the pathogenesis of gestational diabetes. Finally, it is likely that a combination of target-specific metabolism and cellular internalization may have a significant role in determining the pharmacokinetics and efficacy of antibody-drug conjugates, a finding which has resulted in the development of a host of new analytical methods that are now used for characterizing the metabolism and disposition of antibody-drug conjugates. Taken together, the research summarized herein can provide for an increased understanding of potential barriers to drug efficacy and allow for a more rational approach for developing safe and effective therapeutics.


Assuntos
Preparações Farmacêuticas/metabolismo , Animais , Transporte Biológico , Transporte Biológico Ativo , Sistemas de Liberação de Medicamentos , Humanos , Inativação Metabólica
13.
Mol Pharmacol ; 86(6): 665-74, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25274602

RESUMO

Ritonavir is a human immunodeficiency virus (HIV) protease inhibitor and an inhibitor of cytochrome P450 3A4, the major human hepatic drug-metabolizing enzyme. Given the potent inhibition of CYP3A4 by ritonavir, subtherapeutic doses of ritonavir are used to increase plasma concentrations of other HIV drugs oxidized by CYP3A4, thereby extending their clinical efficacy. However, the mechanism of inhibition of CYP3A4 by ritonavir remains unclear. To date, data suggests multiple types of inhibition by ritonavir, including mechanism-based inactivation by metabolic-intermediate complex formation, competitive inhibition, irreversible type II coordination to the heme iron, and more recently heme destruction. The results presented here demonstrate that inhibition of CYP3A4 by ritonavir occurs by CYP3A4-mediated activation and subsequent formation of a covalent bond to the apoprotein. Incubations of [(3)H]ritonavir with reconstituted CYP3A4 and human liver microsomes resulted in a covalent binding stoichiometry equal to 0.93 ± 0.04 moles of ritonavir bound per mole of inactivated CYP3A4. The metabolism of [(3)H]ritonavir by CYP3A4 leads to the formation of a covalent adduct specifically to CYP3A4, confirmed by radiometric liquid chromatography-trace and whole-protein mass spectrometry. Tryptic digestion of the CYP3A4-[(3)H]ritonavir incubations exhibited an adducted peptide (255-RM K: ESRLEDTQKHR-268) associated with a radiochromatic peak and a mass consistent with ritonavir plus 16 Da, in agreement with the whole-protein mass spectrometry. Additionally, nucleophilic trapping agents and scavengers of free oxygen species did not prevent inactivation of CYP3A4 by ritonavir. In conclusion, ritonavir exhibited potent time-dependent inactivation of CYP3A, with the mechanism of inactivation occurring though a covalent bond to Lys257 of the CYP3A4 apoprotein.


Assuntos
Inibidores do Citocromo P-450 CYP3A/farmacologia , Ritonavir/farmacologia , Citocromo P-450 CYP3A/química , Humanos
14.
Drug Metab Dispos ; 42(10): 1698-707, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25074871

RESUMO

Cytochrome P450 4F12 is a drug-metabolizing enzyme that is primarily expressed in the liver, kidney, colon, small intestine, and heart. The properties of CYP4F12 that may impart an increased catalytic selectivity (decreased promiscuity) were explored through in vitro metabolite elucidation, kinetic isotope effect experiments, and computational modeling of the CYP4F12 active site. By using astemizole as a probe substrate for CYP4F12 and CYP3A4, it was observed that although CYP4F12 favored astemizole O-demethylation as the primary route of metabolism, CYP3A4 was capable of metabolizing astemizole at multiple sites on the molecule. Deuteration of astemizole at the site of O-demethylation resulted in an isotope effect of 7.1 as well as an 8.3-fold decrease in the rate of clearance for astemizole by CYP4F12. Conversely, although an isotope effect of 3.8 was observed for the formation of the O-desmethyl metabolite when deuterated astemizole was metabolized by CYP3A4, there was no decrease in the clearance of astemizole. Development of a homology model of CYP4F12 based on the crystal structure of cytochrome P450 BM3 predicted an active site volume for CYP4F12 that was approximately 76% of the active site volume of CYP3A4. As predicted, multiple favorable binding orientations were available for astemizole docked into the active site of CYP3A4, but only a single binding orientation with the site of O-demethylation oriented toward the heme was identified for CYP4F12. Overall, it appears that although CYP4F12 may be capable of binding similar ligands to other cytochrome P450 enzymes such as CYP3A4, the ability to achieve catalytically favorable orientations may be inherently more difficult because of the increased steric constraints of the CYP4F12 active site.


Assuntos
Hidrocarboneto de Aril Hidroxilases/química , Hidrocarboneto de Aril Hidroxilases/metabolismo , Astemizol/metabolismo , Biotransformação , Domínio Catalítico , Citocromo P-450 CYP3A/metabolismo , Humanos , Técnicas In Vitro , Modelos Moleculares , Especificidade por Substrato
15.
Drug Metab Dispos ; 42(11): 1906-13, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25209366

RESUMO

The pharmacokinetic (PK) behavior of monoclonal antibodies (mAbs) is influenced by target-mediated drug disposition, off-target effects, antidrug antibody-mediated clearance, and interaction with fragment-crystallizable domain (Fc) receptors such as neonatal Fc receptor. All of these interactions hold the potential to impact mAb biodistribution. Near infrared (NIR) fluorescent probes offer an approach complementary to radionuclides to characterize drug disposition. Notably, the use of FDA-approved IRDye800 (IR800; LI-COR, Lincoln, NE) as a protein-labeling agent in preclinical work holds the potential for quantitative tissue analysis. Here, we tested the utility of the IR800 dye as a quantitative mAb tracer during pharmacokinetic analysis in both plasma and tissues using a model mouse monoclonal IgG1 (8C2) labeled with ≤1.5 molecules of IR800. The plasma PK parameters derived from a mixture of IR800-8C2 and 8C2 dosed intravenously to C57BL/6 mice at 8 mg/kg exhibited a large discrepancy in exposure depending on the method of quantitation [CLplasma = 8.4 ml/d per kilogram (NIR fluorescence detection) versus 2.5 ml/d per kilogram (enzyme-linked immunosorbent assay)]. The disagreement between measurements suggests that the PK of 8C2 is altered by addition of the IR800 dye. Additionally, direct fluorescence analysis of homogenized tissues revealed several large differences in IR800-8C2 tissue uptake when compared with a previously published study using [(125)I]8C2, most notably an over 4-fold increase in liver concentration. Finally, the utility of IR800 in combination with whole body imaging was examined by comparison of IR800-8C2 levels observed in animal sagittal cross-sections to those measured in homogenized tissues. Our results represent the first PK analysis in both mouse plasma and tissues of an IR800-mAb conjugate and suggest that mAb disposition is significantly altered by IR800 conjugation to 8C2.


Assuntos
Anticorpos Monoclonais/farmacocinética , Corantes Fluorescentes/química , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espectroscopia de Luz Próxima ao Infravermelho , Distribuição Tecidual
16.
Mol Pharm ; 10(10): 3842-9, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24006961

RESUMO

The function of the enzyme human aldehyde oxidase (AOX1) is uncertain; however, recent studies have implicated significant biochemical involvement in humans. AOX1 has also rapidly become an important drug-metabolizing enzyme. Until now, quantitation of AOX1 in complex matrices such as tissue has not been achieved. Herein, we developed and employed a trypsin digest and subsequent liquid chromatography-tandem mass spectrometry analysis to determine absolute amounts of AOX1 in human liver. E. coli expressed human purified AOX1 was used to validate the linearity, sensitivity, and selectivity of the method. Overall, the method is highly efficient and sensitive for determination of AOX1 in cytosolic liver fractions. Using this method, we observed substantial batch-to-batch variation in AOX1 content (21-40 pmol AOX1/mg total protein) between various pooled human liver cytosol preparations. We also observed interbatch variation in Vmax (3.3-4.9 nmol min(-1) mg(-1)) and a modest correlation between enzyme concentration and activity. In addition, we measured a large difference in kcat/Km, between purified (kcat/Km of 1.4) and human liver cytosol (kcat/Km of 15-20) indicating cytosol to be 11-14 times more efficient in the turnover of DACA than the E. coli expressed purified enzyme. Finally, we discussed the future impact of this method for the development of drug metabolism models and understanding the biochemical role of this enzyme.


Assuntos
Aldeído Oxidase/análise , Cromatografia Líquida/métodos , Fígado/enzimologia , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão , Humanos , Cinética , Estrutura Molecular
17.
Mol Pharmacol ; 82(5): 835-42, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22859722

RESUMO

The propensity for cytochrome P450 (P450) enzymes to bioactivate xenobiotics is governed by the inherent chemistry of the xenobiotic itself and the active site architecture of the P450 enzyme(s). Accessible nucleophiles in the active site or egress channels of the P450 enzyme have the potential of sequestering reactive metabolites through covalent modification, thereby limiting their exposure to other proteins. Raloxifene, a drug known to undergo CYP3A-mediated reactive metabolite formation and time-dependent inhibition in vitro, was used to explore the potential for bioactivation and enzyme inactivation of additional P450 enzymes (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A5). Every P450 tested except CYP2E1 was capable of raloxifene bioactivation, based on glutathione adduct formation. However, raloxifene-mediated time-dependent inhibition only occurred in CYP2C8 and CYP3A4. Comparable inactivation kinetics were achieved with K(I) and k(inact) values of 0.26 µM and 0.10 min(-1) and 0.81 µM and 0.20 min(-1) for CYP2C8 and CYP3A4, respectively. Proteolytic digests of CYP2C8 and CYP3A4 Supersomes revealed adducts to Cys225 and Cys239 for CYP2C8 and CYP3A4, respectively. For each P450 enzyme, proposed substrate/metabolite access channels were mapped and active site cysteines were identified, which revealed that only CYP2C8 and CYP3A4 possess accessible cysteine residues near the active site cavities, a result consistent with the observed kinetics. The combined data suggest that the extent of bioactivation across P450 enzymes does not correlate with P450 inactivation. In addition, multiple factors contribute to the ability of reactive metabolites to form apo-adducts with P450 enzymes.


Assuntos
Cisteína/química , Sistema Enzimático do Citocromo P-450/química , Cloridrato de Raloxifeno/química , Domínio Catalítico , Simulação por Computador , Inibidores das Enzimas do Citocromo P-450 , Ativação Enzimática , Cinética , Modelos Moleculares
18.
Drug Metab Dispos ; 40(10): 1927-34, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22752008

RESUMO

The in vitro characterization of the inhibition potential of four representative maytansinoid species observed upon hepatic and/or tumor in vivo processing of antibody-maytansine conjugates (AMCs) with cleavable and noncleavable linkers is reported. We investigated the free maytansinoid species N(2')-deacetyl-N(2')-(3-mercapto-1-oxopropyl)-maytansine (DM1), (S)-methyl-DM1, and N(2')-deacetyl-N(2')-(4-mercapto-4-methyl-1-oxopentyl)-maytansine (DM4) as representative cleavable linker catabolites and Lysine-N(ε)-N-succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate-DM1 (Lys-MCC-DM1) as the representative noncleavable linker catabolite. Studies with recombinant human cytochromes P450 (P450s) indicate CYP2D6, CYP3A4, and CYP3A5 are the primary isoforms responsible for the oxidative metabolism of DM1, (S)-methyl-DM1, and DM4. Lys-MCC-DM1 was not metabolized by any of the P450 isoforms studied. DM1 was shown to be a reversible inhibitor of CYP2C8 (K(i) = 11 ± 3 µM) and CYP2D6 (K(i) = 14 ± 2 µM). Lys-MCC-DM1 and (S)-methyl-DM1 showed no reversible or time-dependent inactivation of any of the P450s studied. DM1 and DM4 inactivated CYP3A from human liver microsomes with K(i)/k(inact) values of 4.8 ± 0.9 µM/0.035 ± 0.002 min(-1) and 3.3 ± 0.2 µM/0.114 ± 0.002 min(-1), respectively. DM1 and DM4 inactivated recombinant CYP3A4 with K(i)/k(inact) values of 3.4 ± 1.0 µM/0.058 ± 0.005 min(-1) and 1.4 ± 0.3 µM/0.117 ± 0.006 min(-1), respectively. Because of instability in plasma, further characterization of the DM1 and DM4 intramolecular and intermolecular disulfide conjugates observed in vivo is required before an accurate drug-drug interaction (DDI) prediction can be made. AMCs with noncleavable thioether-linked DM1 as the cytotoxic agent are predicted to have no potential for a DDI with any of the major human P450s studied.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Inibidores das Enzimas do Citocromo P-450 , Inibidores Enzimáticos/farmacologia , Imunoconjugados/farmacologia , Maitansina/farmacologia , Anticorpos Monoclonais/metabolismo , Antineoplásicos/metabolismo , Biotransformação , Citocromo P-450 CYP2D6/metabolismo , Inibidores do Citocromo P-450 CYP2D6 , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450/metabolismo , Dextrometorfano/metabolismo , Dextrorfano/metabolismo , Interações Medicamentosas , Inibidores Enzimáticos/metabolismo , Humanos , Imunoconjugados/metabolismo , Cinética , Maitansina/análogos & derivados , Maitansina/metabolismo , Microssomos Hepáticos/enzimologia , Paclitaxel/metabolismo , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Medição de Risco
19.
Drug Metab Dispos ; 40(1): 47-53, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21976621

RESUMO

Predicting the magnitude of potential drug-drug interactions is important for underwriting patient safety in the clinical setting. Substrate-dependent inhibition of cytochrome P450 enzymes may confound extrapolation of in vitro results to the in vivo situation. However, the potential for substrate-dependent inhibition with CYP2D6 has not been well characterized. The inhibition profiles of 20 known inhibitors of CYP2D6 were characterized in vitro against four clinically relevant CYP2D6 substrates (desipramine, dextromethorphan, metoprolol, and thioridazine) and bufuralol. Dextromethorphan exhibited the highest sensitivity to in vitro inhibition, whereas metoprolol was the least sensitive. In addition, when metoprolol was the substrate, inhibitors with structurally constrained amino moieties (clozapine, debrisoquine, harmine, quinidine, and yohimbine) exhibited at least a 5-fold decrease in inhibition potency when results were compared with those for dextromethorphan. Atypical inhibition kinetics were observed for these and other inhibitor-substrate pairings. In silico docking studies suggested that interactions with Glu216 and an adjacent hydrophobic binding pocket may influence substrate sensitivity and inhibition potency for CYP2D6. The in vivo sensitivities of the clinically relevant CYP2D6 substrates desipramine, dextromethorphan, and metoprolol were determined on the basis of literature drug-drug interaction (DDI) outcomes. Similar to the in vitro results, dextromethorphan exhibited the highest sensitivity to CYP2D6 inhibition in vivo. Finally, the magnitude of in vivo CYP2D6 DDIs caused by quinidine was predicted using desipramine, dextromethorphan, and metoprolol. Comparisons of the predictions with literature results indicated that the marked decrease in inhibition potency observed for the metoprolol-quinidine interaction in vitro translated to the in vivo situation.


Assuntos
Citocromo P-450 CYP2D6/química , Citocromo P-450 CYP2D6/metabolismo , Interações Medicamentosas/fisiologia , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Sítios de Ligação/fisiologia , Previsões , Humanos , Microssomos Hepáticos/metabolismo , Especificidade por Substrato/fisiologia
20.
Drug Metab Dispos ; 40(12): 2239-49, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22930276

RESUMO

2-(4-(4-(tert-Butylcarbamoyl)-2-(2-chloro-4-cyclopropylphenylsulfonamido)phenoxy)-5-chloro-2-fluorophenyl)acetic acid (AMG 853) is an orally bioavailable and potent dual antagonist of the D-prostanoid and chemoattractant receptor-homologous molecule expressed on T helper 2 cells receptors. The drug interaction potential of AMG 853, both as a victim and a perpetrator, was investigated using in vitro, in silico, and in vivo methodologies. Experiments in human liver microsomes (HLM) and recombinant enzymes identified CYP2C8, CYP2J2, and CYP3A as well as multiple UDP-glucuronosyltransferase isoforms as being responsible for the metabolic clearance of AMG 853. With use of HLM and selective probe substrates, both AMG 853 and its acyl glucuronide metabolite (M1) were shown to be inhibitors of CYP2C8. AMG 853 and M1 did not inhibit any of the other cytochrome P450 isoforms tested, and AMG 853 exhibited minimal enzyme induction properties in human hepatocytes cultures. In light of the in vitro findings, modeling and simulation approaches were used to examine the potential for ketoconazole (a CYP3A inhibitor) to inhibit the metabolism of AMG 853 as well as for AMG 853 to inhibit the metabolism of paclitaxel, rosiglitazone, and montelukast, commonly used substrates of CYP2C8. A weak and clinically insignificant drug interaction (area under the drug concentration-time curve (AUC)(i)/AUC <2) was predicted between ketoconazole and AMG 853. No drug interactions were predicted for AMG 853 and paclitaxel, rosiglitazone, or montelukast. Finally, administration of AMG 853 to healthy human subjects in clinical trials in the presence or absence of ketoconazole confirmed that AMG 853 is unlikely to be involved in clinically significant drug interactions.


Assuntos
Microssomos Hepáticos/metabolismo , Fenilacetatos/farmacologia , Prostaglandinas/metabolismo , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/antagonistas & inibidores , Receptores de Prostaglandina/metabolismo , Sulfonamidas/farmacologia , Adolescente , Adulto , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Feminino , Glucuronosiltransferase/metabolismo , Hepatócitos/metabolismo , Humanos , Cetoconazol/farmacologia , Cinética , Pulmão/metabolismo , Masculino , Microssomos Hepáticos/enzimologia , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA