Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Physiology (Bethesda) ; 39(3): 0, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38411570

RESUMO

Circadian rhythms in physiology and behavior sync organisms to external environmental cycles. Here, circadian oscillation in intracellular chloride in central pacemaker neurons of the fly, Drosophila melanogaster, is reviewed. Intracellular chloride links SLC12 cation-coupled chloride transporter function with kinase signaling and the regulation of inwardly rectifying potassium channels.


Assuntos
Geradores de Padrão Central , Proteínas de Drosophila , Animais , Drosophila melanogaster/fisiologia , Cloretos , Neurônios/fisiologia , Ritmo Circadiano/fisiologia
2.
Sci Adv ; 10(13): eadi4393, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38536919

RESUMO

The Drosophila brain contains tens of thousands of distinct cell types. Thousands of different transgenic lines reproducibly target specific neuron subsets, yet most still express in several cell types. Furthermore, most lines were developed without a priori knowledge of where the transgenes would be expressed. To aid in the development of cell type-specific tools for neuronal identification and manipulation, we developed an iterative assay for transposase-accessible chromatin (ATAC) approach. Open chromatin regions (OCRs) enriched in neurons, compared to whole bodies, drove transgene expression preferentially in subsets of neurons. A second round of ATAC-seq from these specific neuron subsets revealed additional enriched OCR2s that further restricted transgene expression within the chosen neuron subset. This approach allows for continued refinement of transgene expression, and we used it to identify neurons relevant for sleep behavior. Furthermore, this approach is widely applicable to other cell types and to other organisms.


Assuntos
Cromatina , Transposases , Cromatina/genética , Transposases/genética , Transposases/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Sequenciamento de Cromatina por Imunoprecipitação , Neurônios/metabolismo , Análise de Sequência de DNA
3.
Physiol Rep ; 12(9): e16033, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38740564

RESUMO

The pathophysiology behind sodium retention in heart failure with preserved ejection fraction (HFpEF) remains poorly understood. We hypothesized that patients with HFpEF have impaired natriuresis and diuresis in response to volume expansion and diuretic challenge, which is associated with renal hypo-responsiveness to endogenous natriuretic peptides. Nine HFpEF patients and five controls received saline infusion (0.25 mL/kg/min for 60 min) followed by intravenous furosemide (20 mg or home dose) 2 h after the infusion. Blood and urine samples were collected at baseline, 2 h after saline infusion, and 2 h after furosemide administration; urinary volumes were recorded. The urinary cyclic guanosine monophosphate (ucGMP)/plasma B-type NP (BNP) ratio was calculated as a measure of renal response to endogenous BNP. Wilcoxon rank-sum test was used to compare the groups. Compared to controls, HFpEF patients had reduced urine output (2480 vs.3541 mL; p = 0.028), lower urinary sodium excretion over 2 h after saline infusion (the percentage of infused sodium excreted 12% vs. 47%; p = 0.003), and a lower baseline ucGMP/plasma BNP ratio (0.7 vs. 7.3 (pmol/mL)/(mg/dL)/(pg/mL); p = 0.014). Patients with HFpEF had impaired natriuretic response to intravenous saline and furosemide administration and lower baseline ucGMP/plasma BNP ratios indicating renal hypo-responsiveness to NPs.


Assuntos
Furosemida , Insuficiência Cardíaca , Rim , Peptídeo Natriurético Encefálico , Sódio , Volume Sistólico , Humanos , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/metabolismo , Masculino , Feminino , Idoso , Projetos Piloto , Furosemida/farmacologia , Furosemida/administração & dosagem , Sódio/metabolismo , Sódio/urina , Peptídeo Natriurético Encefálico/sangue , Peptídeo Natriurético Encefálico/metabolismo , Rim/metabolismo , Rim/fisiopatologia , Rim/efeitos dos fármacos , Pessoa de Meia-Idade , Natriurese/efeitos dos fármacos , Diuréticos/farmacologia , Diuréticos/administração & dosagem , GMP Cíclico/metabolismo , GMP Cíclico/urina , Idoso de 80 Anos ou mais
4.
Genes Brain Behav ; 23(1): e12884, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38968320

RESUMO

Tolerance occurs when, following an initial experience with a substance, more of the substance is required subsequently to induce identical behavioral effects. Tolerance is not well-understood, and numerous researchers have turned to model organisms, particularly Drosophila melanogaster, to unravel its mechanisms. Flies have high translational relevance for human alcohol responses, and there is substantial overlap in disease-causing genes between flies and humans, including those associated with Alcohol Use Disorder. Numerous Drosophila tolerance mutants have been described; however, approaches used to identify and characterize these mutants have varied across time and labs and have mostly disregarded any impact of initial resistance/sensitivity to ethanol on subsequent tolerance development. Here, we analyzed our own, as well as data published by other labs to uncover an inverse correlation between initial ethanol resistance and tolerance phenotypes. This inverse correlation suggests that initial resistance phenotypes can explain many 'perceived' tolerance phenotypes, thus classifying such mutants as 'secondary' tolerance mutants. Additionally, we show that tolerance should be measured as a relative increase in time to sedation between an initial and second exposure rather than an absolute change in time to sedation. Finally, based on our analysis, we provide a method for using a linear regression equation to assess the residuals of potential tolerance mutants. These residuals provide predictive insight into the likelihood of a mutant being a 'primary' tolerance mutant, where a tolerance phenotype is not solely a consequence of initial resistance, and we offer a framework for understanding the relationship between initial resistance and tolerance.


Assuntos
Drosophila melanogaster , Tolerância a Medicamentos , Etanol , Fenótipo , Animais , Drosophila melanogaster/genética , Etanol/farmacologia , Tolerância a Medicamentos/genética , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA