Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Genomics ; 18(1): 75, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956648

RESUMO

BACKGROUND: Aging represents a significant risk factor for the occurrence of cerebral small vessel disease, associated with white matter (WM) lesions, and to age-related cognitive alterations, though the precise mechanisms remain largely unknown. This study aimed to investigate the impact of polygenic risk scores (PRS) for WM integrity, together with age-related DNA methylation, and gene expression alterations, on cognitive aging in a cross-sectional healthy aging cohort. The PRSs were calculated using genome-wide association study (GWAS) summary statistics for magnetic resonance imaging (MRI) markers of WM integrity, including WM hyperintensities, fractional anisotropy (FA), and mean diffusivity (MD). These scores were utilized to predict age-related cognitive changes and evaluate their correlation with structural brain changes, which distinguish individuals with higher and lower cognitive scores. To reduce the dimensionality of the data and identify age-related DNA methylation and transcriptomic alterations, Sparse Partial Least Squares-Discriminant Analysis (sPLS-DA) was used. Subsequently, a canonical correlation algorithm was used to integrate the three types of omics data (PRS, DNA methylation, and gene expression data) and identify an individual "omics" signature that distinguishes subjects with varying cognitive profiles. RESULTS: We found a positive association between MD-PRS and long-term memory, as well as a correlation between MD-PRS and structural brain changes, effectively discriminating between individuals with lower and higher memory scores. Furthermore, we observed an enrichment of polygenic signals in genes related to both vascular and non-vascular factors. Age-related alterations in DNA methylation and gene expression indicated dysregulation of critical molecular features and signaling pathways involved in aging and lifespan regulation. The integration of multi-omics data underscored the involvement of synaptic dysfunction, axonal degeneration, microtubule organization, and glycosylation in the process of cognitive aging. CONCLUSIONS: These findings provide valuable insights into the biological mechanisms underlying the association between WM coherence and cognitive aging. Additionally, they highlight how age-associated DNA methylation and gene expression changes contribute to cognitive aging.


Assuntos
Envelhecimento Cognitivo , Metilação de DNA , Estudo de Associação Genômica Ampla , Herança Multifatorial , Humanos , Metilação de DNA/genética , Feminino , Masculino , Herança Multifatorial/genética , Idoso , Pessoa de Meia-Idade , Estudos Transversais , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Fatores de Risco , Imageamento por Ressonância Magnética , Envelhecimento/genética , Envelhecimento/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Estratificação de Risco Genético
2.
J Neurochem ; 168(3): 312-327, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38317429

RESUMO

To survive, individuals must learn to associate cues in the environment with emotionally relevant outcomes. This association is partially mediated by the nucleus accumbens (NAc), a key brain region of the reward circuit that is mainly composed by GABAergic medium spiny neurons (MSNs), that express either dopamine receptor D1 or D2. Recent studies showed that both populations can drive reward and aversion, however, the activity of these neurons during appetitive and aversive Pavlovian conditioning remains to be determined. Here, we investigated the relevance of D1- and D2-neurons in associative learning, by measuring calcium transients with fiber photometry during appetitive and aversive Pavlovian tasks in mice. Sucrose was used as a positive valence unconditioned stimulus (US) and foot shock was used as a negative valence US. We show that during appetitive Pavlovian conditioning, D1- and D2-neurons exhibit a general increase in activity in response to the conditioned stimuli (CS). Interestingly, D1- and D2-neurons present distinct changes in activity after sucrose consumption that dynamically evolve throughout learning. During the aversive Pavlovian conditioning, D1- and D2-neurons present an increase in the activity in response to the CS and to the US (shock). Our data support a model in which D1- and D2-neurons are concurrently activated during appetitive and aversive conditioning.


Assuntos
Núcleo Accumbens , Receptores de Dopamina D1 , Animais , Camundongos , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/metabolismo , Condicionamento Clássico , Neurônios/metabolismo , Aprendizagem da Esquiva/fisiologia , Sacarose/farmacologia
3.
Mol Psychiatry ; 27(12): 4939-4947, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36117211

RESUMO

The significant link between stress and psychiatric disorders has prompted research on stress's impact on the brain. Interestingly, previous studies on healthy subjects have demonstrated an association between perceived stress and amygdala volume, although the mechanisms by which perceived stress can affect brain function remain unknown. To better understand what this association entails at a functional level, herein, we explore the association of perceived stress, measured by the PSS10 questionnaire, with disseminated functional connectivity between brain areas. Using resting-state fMRI from 252 healthy subjects spanning a broad age range, we performed both a seed-based amygdala connectivity analysis (static connectivity, with spatial resolution but no temporal definition) and a whole-brain data-driven approach to detect altered patterns of phase interactions between brain areas (dynamic connectivity with spatiotemporal information). Results show that increased perceived stress is directly associated with increased amygdala connectivity with frontal cortical regions, which is driven by a reduced occurrence of an activity pattern where the signals in the amygdala and the hippocampus evolve in opposite directions with respect to the rest of the brain. Overall, these results not only reinforce the pathological effect of in-phase synchronicity between subcortical and cortical brain areas but also demonstrate the protective effect of counterbalanced (i.e., phase-shifted) activity between brain subsystems, which are otherwise missed with correlation-based functional connectivity analysis.


Assuntos
Tonsila do Cerebelo , Encéfalo , Humanos , Encéfalo/patologia , Lobo Frontal , Mapeamento Encefálico , Imageamento por Ressonância Magnética/métodos , Vias Neurais , Estresse Psicológico
4.
J Psychiatry Neurosci ; 48(4): E267-E284, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37437920

RESUMO

BACKGROUND: The nucleus accumbens (NAcc) is a crucial brain region for emotionally relevant behaviours. The NAcc is mainly composed of medium spiny neurons (MSNs) expressing either dopamine receptor D1 (D1-MSNs) or D2 (D2-MSNs). The D1-MSNs project to the ventral tegmental area (VTA) and the ventral pallidum (VP), whereas the D2-MSNs project only to the VP. The D1- and D2-MSNs have been associated with depression-like behaviours, but their contribution to anxiety remains to be determined. METHODS: We used optogenetic tools to selectively manipulate D1-MSN projections from the NAcc core to the VP or VTA and D2-MSN projections to the VP during validated anxiety-producing behavioural procedures in naive mice. In addition, we assessed the effects of optical stimulation on neuronal activity using in vivo electrophysiologic recordings in anesthetized animals. RESULTS: Optogenetic activation of D1-MSN projections to the VTA or VP did not trigger anxiety-like behaviour. However, optical activation of D2-MSN projections to the VP significantly increased anxiety-like behaviour. This phenotype was associated with a decrease in the neuronal activity of putative GABAergic neurons in the VP. Importantly, pretreating D2-MSN-VP animals with the γ-aminobutyric acid modulator diazepam prevented the optically triggered anxiety-like behaviour. LIMITATIONS: The exclusive use of males in the behavioural tests limits broader interpretation of the findings. Although we used optogenetic conditions that trigger quasi-physiologic changes, there are caveats associated with the artificial manipulation of neuronal activity. CONCLUSION: The D2-MSN-VP projections contributed to the development of anxiety-like behaviour, through modulation of GABAergic activity in the VP.


Assuntos
Prosencéfalo Basal , Núcleo Accumbens , Masculino , Animais , Camundongos , Neurônios Espinhosos Médios , Ansiedade , Transtornos de Ansiedade
5.
Eur J Neurosci ; 56(8): 5287-5298, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36017669

RESUMO

Daily routines are getting increasingly stressful. Interestingly, associations between stress perception and amygdala volume, a brain region implicated in emotional behaviour, have been observed in both younger and older adults. Life stress, on the other hand, has become pervasive and is no longer restricted to a specific age group or life stage. As a result, it is vital to consider stress as a continuum across the lifespan. In this study, we investigated the relationship between perceived stress and amygdala size in 272 healthy participants with a broad age range. Participants were submitted to a structural magnetic resonance imaging (MRI) to extract amygdala volume, and the Perceived Stress Scale (PSS) scores were used as the independent variable in volumetric regressions. We found that perceived stress is positively associated with the right amygdala volume throughout life.


Assuntos
Tonsila do Cerebelo , Longevidade , Idoso , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/patologia , Humanos , Imageamento por Ressonância Magnética , Percepção , Estresse Psicológico/diagnóstico por imagem , Estresse Psicológico/psicologia
6.
Mol Psychiatry ; 26(12): 7154-7166, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34521994

RESUMO

Impaired ability to generate new cells in the adult brain has been linked to deficits in multiple emotional and cognitive behavioral domains. However, the mechanisms by which abrogation of adult neural stem cells (NSCs) impacts on brain function remains controversial. We used a transgenic rat line, the GFAP-Tk, to selectively eliminate NSCs and assess repercussions on different behavioral domains. To assess the functional importance of newborn cells in specific developmental stages, two parallel experimental timeframes were adopted: a short- and a long-term timeline, 1 and 4 weeks after the abrogation protocol, respectively. We conducted in vivo electrophysiology to assess the effects of cytogenesis abrogation on the functional properties of the hippocampus and prefrontal cortex, and on their intercommunication. Adult brain cytogenesis abrogation promoted a time-specific installation of behavioral deficits. While the lack of newborn immature hippocampal neuronal and glial cells elicited a behavioral phenotype restricted to hyperanxiety and cognitive rigidity, specific abrogation of mature new neuronal and glial cells promoted the long-term manifestation of a more complex behavioral profile encompassing alterations in anxiety and hedonic behaviors, along with deficits in multiple cognitive modalities. More so, abrogation of 4 to 7-week-old cells resulted in impaired electrophysiological synchrony of neural theta oscillations between the dorsal hippocampus and the medial prefrontal cortex, which are likely to contribute to the described long-term cognitive alterations. Hence, this work provides insight on how newborn neurons and astrocytes display different functional roles throughout different maturation stages, and establishes common ground to reconcile contrasting results that have marked this field.


Assuntos
Disfunção Cognitiva , Hipocampo , Células-Tronco Neurais , Córtex Pré-Frontal , Animais , Cognição/fisiologia , Disfunção Cognitiva/patologia , Emoções , Hipocampo/patologia , Células-Tronco Neurais/patologia , Neurônios/patologia , Córtex Pré-Frontal/patologia , Ratos , Ratos Transgênicos
7.
J Neurosci Res ; 99(11): 3084-3100, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34374447

RESUMO

The laterodorsal tegmentum (LDT) is a brainstem nucleus classically involved in REM sleep and attention, and that has recently been associated with reward-related behaviors, as it controls the activity of ventral tegmental area (VTA) dopaminergic neurons, modulating dopamine release in the nucleus accumbens. To further understand the role of LDT-VTA inputs in reinforcement, we optogenetically manipulated these inputs during different behavioral paradigms in male rats. We found that in a two-choice instrumental task, optical activation of LDT-VTA projections shifts and amplifies preference to the laser-paired reward in comparison to an otherwise equal reward; the opposite was observed with inhibition experiments. In a progressive ratio task, LDT-VTA activation boosts motivation, that is, enhances the willingness to work to get the reward associated with LDT-VTA stimulation; and the reverse occurs when inhibiting these inputs. Animals abolished preference if the reward was omitted, suggesting that LDT-VTA stimulation adds/decreases value to the stimulation-paired reward. In addition, we show that LDT-VTA optical activation induces robust preference in the conditioned and real-time place preference tests, while optical inhibition induces aversion. The behavioral findings are supported by electrophysiological recordings and c-fos immunofluorescence correlates in downstream target regions. In LDT-VTA ChR2 animals, we observed an increase in the recruitment of lateral VTA dopamine neurons and D1 neurons from nucleus accumbens core and shell; whereas in LDT-VTA NpHR animals, D2 neurons appear to be preferentially recruited. Collectively, these data show that the LDT-VTA inputs encode positive reinforcement signals and are important for different dimensions of reward-related behaviors.


Assuntos
Tegmento Mesencefálico , Área Tegmentar Ventral , Animais , Neurônios Dopaminérgicos/fisiologia , Masculino , Núcleo Accumbens , Ratos , Recompensa , Área Tegmentar Ventral/fisiologia
8.
Mol Psychiatry ; 25(12): 3448, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31534159

RESUMO

A correction to this paper has been published and can be accessed via a link at the top of the paper.

9.
Mol Psychiatry ; 25(12): 3241-3255, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31462765

RESUMO

Deficits in decoding rewarding (and aversive) signals are present in several neuropsychiatric conditions such as depression and addiction, emphasising the importance of studying the underlying neural circuits in detail. One of the key regions of the reward circuit is the nucleus accumbens (NAc). The classical view on the field postulates that NAc dopamine receptor D1-expressing medium spiny neurons (D1-MSNs) convey reward signals, while dopamine receptor D2-expressing MSNs (D2-MSNs) encode aversion. Here, we show that both MSN subpopulations can drive reward and aversion, depending on their neuronal stimulation pattern. Brief D1- or D2-MSN optogenetic stimulation elicited positive reinforcement and enhanced cocaine conditioning. Conversely, prolonged activation induced aversion, and in the case of D2-MSNs, decreased cocaine conditioning. Brief stimulation was associated with increased ventral tegmenta area (VTA) dopaminergic tone either directly (for D1-MSNs) or indirectly via ventral pallidum (VP) (for D1- and D2-MSNs). Importantly, prolonged stimulation of either MSN subpopulation induced remarkably distinct electrophysiological effects in these target regions. We further show that blocking κ-opioid receptors in the VTA (but not in VP) abolishes the behavioral effects induced by D1-MSN prolonged stimulation. In turn, blocking δ-opioid receptors in the VP (but not in VTA) blocks the behavioral effects elicited by D2-MSN prolonged stimulation. Our findings demonstrate that D1- and D2-MSNs can bidirectionally control reward and aversion, explaining the existence of controversial studies in the field, and highlights that the proposed striatal functional opposition needs to be reconsidered.


Assuntos
Núcleo Accumbens , Receptores de Dopamina D1 , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Recompensa
10.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34769232

RESUMO

Changes in adult hippocampal cell proliferation and genesis have been largely implicated in depression and antidepressant action, though surprisingly, the underlying cell cycle mechanisms are largely undisclosed. Using both an in vivo unpredictable chronic mild stress (uCMS) rat model of depression and in vitro rat hippocampal-derived neurosphere culture approaches, we aimed to unravel the cell cycle mechanisms regulating hippocampal cell proliferation and genesis in depression and after antidepressant treatment. We show that the hippocampal dentate gyrus (hDG) of uCMS animals have less proliferating cells and a decreased proportion of cells in the G2/M phase, suggesting a G1 phase arrest; this is accompanied by decreased levels of cyclin D1, E, and A expression. Chronic fluoxetine treatment reversed the G1 phase arrest and promoted an up-regulation of cyclin E. In vitro, dexamethasone (DEX) decreased cell proliferation, whereas the administration of serotonin (5-HT) reversed it. DEX also induced a G1-phase arrest and decreased cyclin D1 and D2 expression levels while increasing p27. Additionally, 5-HT treatment could partly reverse the G1-phase arrest and restored cyclin D1 expression. We suggest that the anti-proliferative actions of chronic stress in the hDG result from a glucocorticoid-mediated G1-phase arrest in the progenitor cells that is partly mediated by decreased cyclin D1 expression which may be overcome by antidepressant treatment.


Assuntos
Ciclinas/metabolismo , Depressão , Fluoxetina/farmacologia , Hipocampo/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Depressão/patologia , Dexametasona/farmacologia , Modelos Animais de Doenças , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Hipocampo/patologia , Masculino , Células-Tronco Neurais/patologia , Ratos , Serotonina/farmacologia
11.
Glia ; 67(1): 182-192, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30461068

RESUMO

Epidemiologic studies have provided compelling evidence that prenatal stress, through excessive maternal glucocorticoids exposure, is associated with psychiatric disorders later in life. We have recently reported that anxiety associated with prenatal exposure to dexamethasone (DEX, a synthetic glucocorticoid) correlates with a gender-specific remodeling of microglia in the medial prefrontal cortex (mPFC), a core brain region in anxiety-related disorders. Gender differences in microglia morphology, the higher prevalence of anxiety in women and the negative impact of anxiety in cognition, led us to specifically evaluate cognitive behavior and associated circuits (namely mPFC-dorsal hippocampus, dHIP), as well as microglia morphology in female rats prenatally exposed to dexamethasone (in utero DEX, iuDEX). We report that iuDEX impaired recognition memory and deteriorated neuronal synchronization between mPFC and dHIP. These functional deficits are paralleled by microglia hyper-ramification in the dHIP and decreased ramification in the mPFC, showing a heterogeneous remodeling of microglia morphology, both postnatally and at adulthood in different brain regions, that differently affect mood and cognition. The chronic blockade of adenosine A2A receptors (A2A R), which are core regulators of microglia morphology and physiology, ameliorated the cognitive deficits, but not the anxiety-like behavior. Notably, A2A R blockade rectified both microglia morphology in the dHIP and the lack of mPFC-dHIP synchronization, further heralding their role in cognitive function.


Assuntos
Ansiedade/metabolismo , Disfunção Cognitiva/metabolismo , Microglia/metabolismo , Receptor A2A de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Ansiedade/induzido quimicamente , Ansiedade/psicologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/psicologia , Dexametasona/toxicidade , Feminino , Glucocorticoides/toxicidade , Masculino , Microglia/efeitos dos fármacos , Gravidez , Ratos , Ratos Wistar
12.
Phys Rev Lett ; 122(20): 208101, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31172737

RESUMO

Since the first measurements of neuronal avalanches, the critical brain hypothesis has gained traction. However, if the brain is critical, what is the phase transition? For several decades, it has been known that the cerebral cortex operates in a diversity of regimes, ranging from highly synchronous states (with higher spiking variability) to desynchronized states (with lower spiking variability). Here, using both new and publicly available data, we test independent signatures of criticality and show that a phase transition occurs in an intermediate value of spiking variability, in both anesthetized and freely moving animals. The critical exponents point to a universality class different from mean-field directed percolation. Importantly, as the cortex hovers around this critical point, the avalanche exponents follow a linear relation that encompasses previous experimental results from different setups and is reproduced by a model.

13.
Neural Plast ; 2016: 6391686, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27034847

RESUMO

Stress and stress hormones, glucocorticoids (GCs), exert widespread actions in central nervous system, ranging from the regulation of gene transcription, cellular signaling, modulation of synaptic structure, and transmission and glial function to behavior. Their actions are mediated by glucocorticoid and mineralocorticoid receptors which are nuclear receptors/transcription factors. While GCs primarily act to maintain homeostasis by inducing physiological and behavioral adaptation, prolonged exposure to stress and elevated GC levels may result in neuro- and psychopathology. There is now ample evidence for cause-effect relationships between prolonged stress, elevated GC levels, and cognitive and mood disorders while the evidence for a link between chronic stress/GC and neurodegenerative disorders such as Alzheimer's (AD) and Parkinson's (PD) diseases is growing. This brief review considers some of the cellular mechanisms through which stress and GC may contribute to the pathogenesis of AD and PD.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Glucocorticoides/metabolismo , Plasticidade Neuronal , Doença de Parkinson/metabolismo , Estresse Psicológico/metabolismo , Doença de Alzheimer/etiologia , Animais , Humanos , Inflamação/complicações , Inflamação/metabolismo , Doença de Parkinson/etiologia , Fatores de Risco , Estresse Psicológico/complicações
14.
Mov Disord ; 30(7): 968-75, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25914309

RESUMO

BACKGROUND: Machado-Joseph disease (or spinocerebellar ataxia type 3) is a late-onset polyglutamine neurodegenerative disorder caused by a mutation in the ATXN3 gene, which encodes for the ubiquitously expressed protein ataxin-3. Previous studies on cell and animal models have suggested that mutated ataxin-3 is involved in transcriptional dysregulation. Starting with a whole-transcriptome profiling of peripheral blood samples from patients and controls, we aimed to confirm abnormal expression profiles in Machado-Joseph disease and to identify promising up-regulated genes as potential candidate biomarkers of disease status. METHODS: The Illumina Human V4-HT12 array was used to measure transcriptome-wide gene expression in peripheral blood samples from 12 patients and 12 controls. Technical validation and validation in an independent set of samples were performed by quantitative real-time polymerase chain reaction (PCR). RESULTS: Based on the results from the microarray, twenty six genes, found to be up-regulated in patients, were selected for technical validation by quantitative real-time PCR (validation rate of 81% for the up-regulation trend). Fourteen of these were further tested in an independent set of 42 patients and 35 controls; 10 genes maintained the up-regulation trend (FCGR3B, CSR2RA, CLC, TNFSF14, SLA, P2RY13, FPR2, SELPLG, YIPF6, and GPR96); FCGR3B, P2RY13, and SELPLG were significantly up-regulated in patients when compared with controls. CONCLUSIONS: Our findings support the hypothesis that mutated ataxin-3 is associated with transcription dysregulation, detectable in peripheral blood cells. Furthermore, this is the first report suggesting a pool of up-regulated genes in Machado-Joseph disease that may have the potential to be used for fine phenotyping of this disease. © 2015 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Machado-Joseph/sangue , Doença de Machado-Joseph/genética , Transcriptoma/genética , Regulação para Cima/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Açores , Biomarcadores/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
Neurosci Biobehav Rev ; 162: 105702, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38718986

RESUMO

The mesopontine tegmentum, comprising the pedunculopontine tegmentum (PPN) and the laterodorsal tegmentum (LDT), is intricately connected to various regions of the basal ganglia, motor systems, and limbic systems. The PPN and LDT can regulate the activity of different brain regions of these target systems, and in this way are in a privileged position to modulate motivated behaviours. Despite recent findings, the PPN and LDT have been largely overlooked in discussions about the neural circuits associated with reward and aversion. This review aims to provide a timely and comprehensive resource on past and current research, highlighting the PPN and LDT's connectivity and influence on basal ganglia and limbic, and motor systems. Seminal studies, including lesion, pharmacological, and optogenetic/chemogenetic approaches, demonstrate their critical roles in modulating reward/aversive behaviours. The review emphasizes the need for further investigation into the associated cellular mechanisms, in order to clarify their role in behaviour and contribution for different neuropsychiatric disorders.


Assuntos
Recompensa , Humanos , Animais , Tegmento Mesencefálico/fisiologia , Gânglios da Base/fisiologia , Aprendizagem da Esquiva/fisiologia , Vias Neurais/fisiologia
16.
Neurobiol Stress ; 30: 100619, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38500791

RESUMO

Sorting Nexin 27 (SNX27) is a brain-enriched endosome-associated cargo adaptor that shapes excitatory control, being relevant for cognitive and reward processing, and for several neurological conditions. Despite this, SNX27's role in the nervous system remains poorly explored. To further understand SNX27 function, we performed an extensive behavioral characterization comprising motor, cognitive and emotional dimensions of SNX27+/- mice. Furthermore, attending on the recently described association between SNX27 function and cellular stress signaling mechanisms in vitro, we explored SNX27-stress interplay using a Caenorhabditis elegans Δsnx-27 mutant and wild-type (WT) rodents after stress exposure. SNX27+/- mice, as C. elegans Δsnx-27 mutants, present cognitive impairments, highlighting a conserved role for SNX27 in cognitive modulation across species. Interestingly, SNX27 downmodulation leads to anxiety-like behavior in mice evaluated in the Elevated Plus Maze (EPM). This anxious phenotype is associated with increased dendritic complexity of the bed nucleus of the stria terminalis (BNST) neurons, and increased complexity of the basolateral amygdala (BLA) pyramidal neurons. These findings highlight the still unknown role of SNX27 in anxiety regulation. Moreover, we uncovered a direct link between SNX27 dysfunction and stress susceptibility in C. elegans and found that stress-exposed rodents display decreased SNX27 levels in stress-susceptible brain regions. Altogether, we provided new insights on SNX27's relevance in anxiety-related behaviors and neuronal structure in stress-associated brain regions.

17.
Psychoneuroendocrinology ; 162: 106955, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38232530

RESUMO

Maternal prenatal distress can participate in the programming of offspring development, in which exposure to altered maternal long-term cortisol levels as measured by hair cortisol concentrations (HCC) may contribute. Yet, studies investigating whether and how maternal prenatal HCC associates with problems in child socioemotional development are scarce. Furthermore, questions remain regarding the timing and potential sex-specificity of fetal exposure to altered cortisol levels and whether there are interactions with maternal prenatal distress, such as depressive symptoms. The subjects were drawn from those FinnBrain Birth Cohort families that had maternal reports of child socioemotional problems (the Brief Infant-Toddler Social and Emotional Assessment [BITSEA] at 2 years and/or the Strengths and Difficulties Questionnaire [SDQ] at 5 years) as follows: HCC1 population: maternal mid-pregnancy HCC measured at gestational week 24 with 5 cm segments to depict cortisol levels from the previous five months (n = 321); and HCC2 population: end-of-pregnancy HCC measured 1-3 days after childbirth (5 cm segment; n = 121). Stepwise regression models were utilized in the main analyses and a sensitivity analysis was performed to detect potential biases. Negative associations were observed between maternal HCC2 and child BITSEA Total Problems at 2 years but not with SDQ Total difficulties at 5 years, and neither problem score was associated with HCC1. In descriptive analyses, HCC2 was negatively associated with Internalizing problems at 2 years and SDQ Emotional problems at 5 years. A negative association was observed among 5-year-old girls between maternal HCC1 and SDQ Total Difficulties and the subscales of Conduct and Hyperactivity/inattentive problems. When interactions were also considered, inverse associations between HCC2 and BITSEA Internalizing and Dysregulation Problems were observed in subjects with elevated prenatal depressive symptoms. It was somewhat surprising that only negative associations were observed between maternal HCC and child socioemotional problems. However, there are previous observations of elevated end-of-pregnancy cortisol levels associating with better developmental outcomes. The magnitudes of the observed associations were, as expected, mainly modest. Future studies with a focus on the individual changes of maternal cortisol levels throughout pregnancy as well as studies assessing both maternal and child HPA axis functioning together with child socioemotional development are indicated.


Assuntos
Complicações do Trabalho de Parto , Efeitos Tardios da Exposição Pré-Natal , Feminino , Lactente , Gravidez , Humanos , Pré-Escolar , Hidrocortisona/análise , Sistema Hipotálamo-Hipofisário/química , Sistema Hipófise-Suprarrenal/química , Cabelo/química
18.
FEBS Lett ; 597(21): 2601-2610, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37643893

RESUMO

The nucleus accumbens (NAc) has been considered a key brain region for encoding reward/aversion and cue-outcome associations. These processes are encoded by medium spiny neurons that express either dopamine receptor D1 (D1-MSNs) or D2 (D2-MSNs). Despite the well-established role of NAc neurons in encoding reward/aversion, the underlying processing by D1-/D2-MSNs remains largely unknown. Recent electrophysiological, optogenetic and calcium imaging studies provided insight on the complex role of D1- and D2-MSNs in these behaviours and helped to clarify their involvement in associative learning. Here, we critically discuss findings supporting an intricate and complementary role of NAc D1- and D2-MSNs in associative learning, emphasizing the need for additional studies in order to fully understand the role of these neurons in behaviour.


Assuntos
Núcleo Accumbens , Receptores de Dopamina D2 , Animais , Camundongos , Núcleo Accumbens/metabolismo , Receptores de Dopamina D2/genética , Neurônios/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
19.
Front Behav Neurosci ; 17: 1195011, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37358966

RESUMO

Being social animals, rats exhibit a range of social behaviors that help them build social bonds and maintain group cohesion. Behavior is influenced by multiple factors, including stress exposure, and the expression of the impact of stress on both social and non-social behaviors may also be affected by the living conditions of rats. In this study, we explored the physiological and behavioral effects of chronic unpredictable stress on group-housed rats in the PhenoWorld (PhW), a socially and physically enriched environment closer to real-life conditions. Two independent experiments were performed: one in the control condition (PhW control, n = 8) and one in the stress condition (PhW stress, n = 8). Control animals remained undisturbed except for cage cleaning and daily handling procedures. Stress group animals were all exposed to chronic unpredictable stress. Data confirm that stress exposure triggers anxiety-like behavior in the PhW. In terms of home-cage behaviors, we found that stress affects social behaviors (by decreased playing and increased huddling behaviors) and non-social behaviors (as shown by the decrease in rearing and walking behaviors). These results are of relevance to expand our knowledge on the influence of stress on social and non-social behaviors, which are of importance to understand better species-typical behaviors.

20.
Res Sq ; 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37034743

RESUMO

Adult cytogenesis, the continuous generation of newly-born neurons (neurogenesis) and glial cells (gliogenesis) throughout life, is highly impaired in several neuropsychiatric disorders, such as Major Depressive Disorder (MDD), impacting negatively on cognitive and emotional domains. Despite playing a critical role in brain homeostasis, the importance of gliogenesis has been overlooked, both in healthy and diseased states. To examine the role of newly formed glia, we transplanted Glial Restricted Precursors (GRPs) into the adult hippocampal dentate gyrus (DG), or injected their secreted factors (secretome), into a previously validated transgenic GFAP-tk rat line, in which cytogenesis is transiently compromised. We explored the long-term effects of both treatments on physiological and behavioral outcomes. Grafted GRPs reversed anxiety-like and depressive-like deficits, while the secretome promoted recovery of only anxiety-like behavior. Furthermore, GRPs elicited a recovery of neurogenic and gliogenic levels in the ventral DG, highlighting the unique involvement of these cells in the regulation of brain cytogenesis. Both GRPs and their secretome induced significant alterations in the DG proteome, directly influencing proteins and pathways related to cytogenesis, regulation of neural plasticity and neuronal development. With this work, we demonstrate a valuable and specific contribution of glial progenitors to normalizing gliogenic levels, rescueing neurogenesis and, importantly, promoting recovery of emotional deficits characteristic of disorders such as MDD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA