Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(30): e2122227119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858420

RESUMO

NF-κB-mediated endothelial activation drives leukocyte recruitment and atherosclerosis, in part through adhesion molecules Icam1 and Vcam1. The endothelium is primed for cytokine activation of NF-κB by exposure to low and disturbed blood flow (LDF)but the molecular underpinnings are not fully understood. In an experimental in vivo model of LDF, platelets were required for the increased expression of several RNA-binding splice factors, including polypyrimidine tract binding protein (Ptbp1). This was coordinated with changes in RNA splicing in the NF-κB pathway in primed cells, leading us to examine splice factors as mediators of priming. Using Icam1 and Vcam1 induction by tumor necrosis factor (TNF)-α stimulation as a readout, we performed a CRISPR Cas9 knockout screen and identified a requirement for Ptbp1 in priming. Deletion of Ptbp1 had no effect on cell growth or response to apoptotic stimuli, but reversed LDF splicing patterns and inhibited NF-κB nuclear translocation and transcriptional activation of downstream targets, including Icam1 and Vcam1. In human coronary arteries, elevated PTBP1 correlates with expression of TNF pathway genes and plaque. In vivo, endothelial-specific deletion of Ptbp1 reduced Icam1 expression and myeloid cell infiltration at regions of LDF in atherosclerotic mice, limiting atherosclerosis. This may be mediated, in part, by allowing inclusion of a conserved alternative exon in Ripk1 leading to a reduction in Ripk1 protein. Our data show that Ptbp1, which is induced in a subset of the endothelium by platelet recruitment at regions of LDF, is required for priming of the endothelium for subsequent NF-κB activation, myeloid cell recruitment and atherosclerosis.


Assuntos
Aterosclerose , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Processamento Alternativo , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Endotélio/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Inflamação/genética , Inflamação/metabolismo , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo
2.
Circulation ; 145(3): 206-218, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34913723

RESUMO

BACKGROUND: Whereas several interventions can effectively lower lipid levels in people at risk for atherosclerotic cardiovascular disease (ASCVD), cardiovascular event risks remain, suggesting an unmet medical need to identify factors contributing to cardiovascular event risk. Monocytes and macrophages play central roles in atherosclerosis, but studies have yet to provide a detailed view of macrophage populations involved in increased ASCVD risk. METHODS: A novel macrophage foaming analytics tool, AtheroSpectrum, was developed using 2 quantitative indices depicting lipid metabolism and the inflammatory status of macrophages. A machine learning algorithm was developed to analyze gene expression patterns in the peripheral monocyte transcriptome of MESA participants (Multi-Ethnic Study of Atherosclerosis; set 1; n=911). A list of 30 genes was generated and integrated with traditional risk factors to create an ASCVD risk prediction model (30-gene cardiovascular disease risk score [CR-30]), which was subsequently validated in the remaining MESA participants (set 2; n=228); performance of CR-30 was also tested in 2 independent human atherosclerotic tissue transcriptome data sets (GTEx [Genotype-Tissue Expression] and GSE43292). RESULTS: Using single-cell transcriptomic profiles (GSE97310, GSE116240, GSE97941, and FR-FCM-Z23S), AtheroSpectrum detected 2 distinct programs in plaque macrophages-homeostatic foaming and inflammatory pathogenic foaming-the latter of which was positively associated with severity of atherosclerosis in multiple studies. A pool of 2209 pathogenic foaming genes was extracted and screened to select a subset of 30 genes correlated with cardiovascular event in MESA set 1. A cardiovascular disease risk score model (CR-30) was then developed by incorporating this gene set with traditional variables sensitive to cardiovascular event in MESA set 1 after cross-validation generalizability analysis. The performance of CR-30 was then tested in MESA set 2 (P=2.60×10-4; area under the receiver operating characteristic curve, 0.742) and 2 independent data sets (GTEx: P=7.32×10-17; area under the receiver operating characteristic curve, 0.664; GSE43292: P=7.04×10-2; area under the receiver operating characteristic curve, 0.633). Model sensitivity tests confirmed the contribution of the 30-gene panel to the prediction model (likelihood ratio test; df=31, P=0.03). CONCLUSIONS: Our novel computational program (AtheroSpectrum) identified a specific gene expression profile associated with inflammatory macrophage foam cells. A subset of 30 genes expressed in circulating monocytes jointly contributed to prediction of symptomatic atherosclerotic vascular disease. Incorporating a pathogenic foaming gene set with known risk factors can significantly strengthen the power to predict ASCVD risk. Our programs may facilitate both mechanistic investigations and development of therapeutic and prognostic strategies for ASCVD risk.


Assuntos
Aterosclerose/terapia , Doenças Cardiovasculares/terapia , Células Espumosas/citologia , Macrófagos/citologia , Idoso , Idoso de 80 Anos ou mais , Aterosclerose/etiologia , Aterosclerose/genética , Doenças Cardiovasculares/complicações , Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/terapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Placa Aterosclerótica/complicações , Placa Aterosclerótica/genética , Placa Aterosclerótica/terapia , Curva ROC , Risco , Calcificação Vascular/complicações , Calcificação Vascular/genética , Calcificação Vascular/terapia
3.
bioRxiv ; 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39131295

RESUMO

Atherosclerotic plaques are defined by the accumulation of lipids and immune cells beneath the endothelium of the arterial intima. CD8 T cells are among the most abundant immune cell types in plaque, and conditions linked to their activation correlate with increased levels of cardiovascular disease. As lethal effectors of the immune response, CD8 T cell activation is suppressed at multiple levels. These checkpoints are critical in dampening autoimmune responses, and limiting damage in cardiovascular disease. Endothelial cells are well known for their role in recruiting CD8 T and other hematopoietic cells to low and disturbed flow (LDF) arterial regions that develop plaque, but whether they locally influence CD8 effector functions is unclear. Here, we show that endothelial cells can actively suppress CD8 T cell responses in settings of chronic plaque inflammation, but that this behavior is governed by expression of the RNA-binding protein Embryonic Lethal, Abnormal Vision-Like 1 (Elavl1). In response to immune cell recruitment in plaque, the endothelium dynamically shifts splicing of pre-mRNA and their translation to enhance expression of immune-regulatory proteins including C1q and CD27. This program is immuno-suppressive, and limited by Elavl1. We show this by Cdh5(PAC)-CreERT2-mediated deletion of Elavl1 (ECKO), and analysis of changes in translation by Translating Ribosome Affinity Purification (TRAP). In ECKO mice, the translational shift in chronic inflammation is enhanced, leading to increased ribosomal association of C1q components and other critical regulators of immune response and resulting in a ~70% reduction in plaque CD8 T cells. CITE-seq analysis of the remaining plaque T cells shows that they exhibit lower levels of markers associated with T cell receptor (TCR) signaling, survival, and activation. To understand whether the immunosuppressive mechanism occurred through failed CD8 recruitment or local modulation of T cell responses, we used a novel in vitro co-culture system to show that ECKO endothelial cells suppress CD8 T cell expansion-even in the presence of wild-type myeloid antigen-presenting cells, antigen-specific CD8 T cells, and antigen. Despite the induction of C1q mRNA by T cell co-culture in both wild-type and ECKO endothelial cells, we find C1q protein abundantly expressed only in co-culture with ECKO cells. Together, our data define a novel immune-suppressive transition in the endothelium, reminiscent of the transition of T cells to T-regs, and demonstrate the regulation of this process by Elavl1.

4.
Expert Opin Biol Ther ; 18(10): 1073-1083, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30169979

RESUMO

INTRODUCTION: Due to the ability of pathogen-associated molecular patters and tumor necrosis factor receptor (TNFR) family costimulatory agonists to boost T cell responses, studies have combined Toll-like receptor (TLR) ligands with TNFR family costimulatory receptor agonists to induce impressive and long-lasting T cell responses. Although some studies have determined how these combinatorial vaccines promote enhanced T cell responses, much remains unknown about the mechanism used by these combinations to promote synergistic T cell responses - especially in settings of infectious diseases or cancer. AREAS COVERED: In this review, we look in detail at the signaling pathways induced by combinatorial targeting of TLR and TNFR family costimulatory members that help them promote synergistic T cell responses. Understanding this can greatly aid the development of novel vaccine regimens that promote cellular immune responses, which is essential for treating certain infectious diseases and cancer. EXPERT OPINION: Vaccines against some infectious diseases as well as therapeutic cancer vaccines require cellular immunity. Therefore, we evaluate here how signaling pathways induced by TLR ligand and costimulatory agonist combinations promote enhanced T cell responses during immunization with model antigens, viral pathogens, or tumor antigens. Once pathways that drive these combinatorial vaccines to boost T cell activation are identified, they can be incorporated in vaccines designed to target pathogens or cancer.


Assuntos
Adjuvantes Imunológicos/farmacologia , Vacinas Anticâncer/farmacologia , Imunidade Celular/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Receptores do Fator de Necrose Tumoral/antagonistas & inibidores , Linfócitos T/efeitos dos fármacos , Receptores Toll-Like/antagonistas & inibidores , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Terapia Combinada , Sistemas de Liberação de Medicamentos/métodos , Humanos , Receptores do Fator de Necrose Tumoral/imunologia , Linfócitos T/imunologia , Linfócitos T/fisiologia , Receptores Toll-Like/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA