Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Rheum Dis ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684323

RESUMO

Giant cell arteritis (GCA), the most common systemic vasculitis, is characterised by aberrant interactions between infiltrating and resident cells of the vessel wall. Ageing and breach of tolerance are prerequisites for GCA development, resulting in dendritic and T-cell dysfunction. Inflammatory cytokines polarise T-cells, activate resident macrophages and synergistically enhance vascular inflammation, providing a loop of autoreactivity. These events originate in the adventitia, commonly regarded as the biological epicentre of the vessel wall, with additional recruitment of cells that infiltrate and migrate towards the intima. Thus, GCA-vessels exhibit infiltrates across the vascular layers, with various cytokines and growth factors amplifying the pathogenic process. These events activate ineffective repair mechanisms, where dysfunctional vascular smooth muscle cells and fibroblasts phenotypically shift along their lineage and colonise the intima. While high-dose glucocorticoids broadly suppress these inflammatory events, they cause well known deleterious effects. Despite the emerging targeted therapeutics, disease relapse remains common, affecting >50% of patients. This may reflect a discrepancy between systemic and local mediators of inflammation. Indeed, temporal arteries and aortas of GCA-patients can show immune-mediated abnormalities, despite the treatment induced clinical remission. The mechanisms of persistence of vascular disease in GCA remain elusive. Studies in other chronic inflammatory diseases point to the fibroblasts (and their lineage cells including myofibroblasts) as possible orchestrators or even effectors of disease chronicity through interactions with immune cells. Here, we critically review the contribution of immune and stromal cells to GCA pathogenesis and analyse the molecular mechanisms by which these would underpin the persistence of vascular disease.

2.
Osteoarthritis Cartilage ; 32(2): 148-158, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37944663

RESUMO

Great progress continues to be made in our understanding of the multiple facets of osteoarthritis (OA) biology. Here, we review the major advances in this field and progress towards therapy development over the past year, highlighting a selection of relevant published literature from a PubMed search covering the year from the end of April 2022 to the end of April 2023. The selected articles have been arranged in themes. These include 1) molecular regulation of articular cartilage and implications for OA, 2) mechanisms of subchondral bone remodelling, 3) role of synovium and inflammation, 4) role of age-related changes including cartilage matrix stiffening, cellular senescence, mitochondrial dysfunction, metabolic dysfunction, and impaired autophagy, and 5) peripheral mechanisms of OA pain. Progress in the understanding of the cellular and molecular mechanisms responsible for the multiple aspects of OA biology is unravelling novel therapeutic targets for disease modification.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Osteoartrite/metabolismo , Inflamação/metabolismo , Cartilagem Articular/metabolismo , Osso e Ossos/metabolismo , Biologia
3.
Ann Rheum Dis ; 82(3): 428-437, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36414376

RESUMO

OBJECTIVES: Fibroblasts in synovium include fibroblast-like synoviocytes (FLS) in the lining and Thy1+ connective-tissue fibroblasts in the sublining. We aimed to investigate their developmental origin and relationship with adult progenitors. METHODS: To discriminate between Gdf5-lineage cells deriving from the embryonic joint interzone and other Pdgfrα-expressing fibroblasts and progenitors, adult Gdf5-Cre;Tom;Pdgfrα-H2BGFP mice were used and cartilage injury was induced to activate progenitors. Cells were isolated from knees, fibroblasts and progenitors were sorted by fluorescence-activated cell-sorting based on developmental origin, and analysed by single-cell RNA-sequencing. Flow cytometry and immunohistochemistry were used for validation. Clonal-lineage mapping was performed using Gdf5-Cre;Confetti mice. RESULTS: In steady state, Thy1+ sublining fibroblasts were of mixed ontogeny. In contrast, Thy1-Prg4+ lining fibroblasts predominantly derived from the embryonic joint interzone and included Prg4-expressing progenitors distinct from molecularly defined FLS. Clonal-lineage tracing revealed compartmentalisation of Gdf5-lineage fibroblasts between lining and sublining. Following injury, lining hyperplasia resulted from proliferation and differentiation of Prg4-expressing progenitors, with additional recruitment of non-Gdf5-lineage cells, into FLS. Consistent with this, a second population of proliferating cells, enriched near blood vessels in the sublining, supplied activated multipotent cells predicted to give rise to Thy1+ fibroblasts, and to feed into the FLS differentiation trajectory. Transcriptional programmes regulating fibroblast differentiation trajectories were uncovered, identifying Sox5 and Foxo1 as key FLS transcription factors in mice and humans. CONCLUSIONS: Our findings blueprint a cell atlas of mouse synovial fibroblasts and progenitors in healthy and injured knees, and provide novel insights into the cellular and molecular principles governing the organisation and maintenance of adult synovial joints.


Assuntos
Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Sinoviócitos , Humanos , Adulto , Camundongos , Animais , Articulações , Membrana Sinovial , Fibroblastos
4.
Osteoarthritis Cartilage ; 31(11): 1454-1468, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37392862

RESUMO

OBJECTIVE: To explore the significance of BMP signaling in osteoarthritis (OA) etiology, and thereafter propose a disease-modifying therapy for OA. METHODS: To examine the role of the BMP signaling in pathogenesis of OA, an Anterior Cruciate Ligament Transection (ACLT) surgery was performed to incite OA in C57BL/6J mouse line at postnatal day 120 (P120). Thereafter, to investigate whether activation of BMP signaling is necessary and sufficient to induce OA, we have used conditional gain- and loss-of-function mouse lines in which BMP signaling can be activated or depleted, respectively, upon intraperitoneal injection of tamoxifen. Finally, we locally inhibited BMP signaling through intra-articular injection of LDN-193189 pre- and post-onset surgically induced OA. The majority of the investigation has been conducted using micro-CT, histological staining, and immuno histochemistry to assess the disease etiology. RESULTS: Upon induction of OA, depletion of SMURF1-an intra-cellular BMP signaling inhibitor in articular cartilage coincided with the activation of BMP signaling, as measured by pSMAD1/5/9 expression. In mouse articular cartilage, the BMP gain-of-function mutation is sufficient to induce OA even without surgery. Further, genetic, or pharmacological BMP signaling suppression also prevented pathogenesis of OA. Interestingly, inflammatory indicators were also significantly reduced upon LDN-193189 intra-articular injection which inhibited BMP signaling and slowed OA progression post onset. CONCLUSION: Our findings showed that BMP signaling is crucial to the etiology of OA and inhibiting BMP signaling locally can be a potent strategy for alleviating OA.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Camundongos , Animais , Osteoartrite do Joelho/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Ligamento Cruzado Anterior/cirurgia , Ligamento Cruzado Anterior/metabolismo , Cartilagem Articular/patologia
5.
Ann Rheum Dis ; 81(2): 214-224, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34844926

RESUMO

OBJECTIVE: We aimed to understand the role of the transcriptional co-factor Yes-associated protein (Yap) in the molecular pathway underpinning the pathogenic transformation of synovial fibroblasts (SF) in rheumatoid arthritis (RA) to become invasive and cause joint destruction. METHODS: Synovium from patients with RA and mice with antigen-induced arthritis (AIA) was analysed by immunostaining and qRT-PCR. SF were targeted using Pdgfrα-CreER and Gdf5-Cre mice, crossed with fluorescent reporters for cell tracing and Yap-flox mice for conditional Yap ablation. Fibroblast phenotypes were analysed by flow cytometry, and arthritis severity was assessed by histology. Yap activation was detected using Yap-Tead reporter cells and Yap-Snail interaction by proximity ligation assay. SF invasiveness was analysed using matrigel-coated transwells. RESULTS: Yap, its binding partner Snail and downstream target connective tissue growth factor were upregulated in hyperplastic human RA and in mouse AIA synovium, with Yap detected in SF but not macrophages. Lineage tracing showed polyclonal expansion of Pdgfrα-expressing SF during AIA, with predominant expansion of the Gdf5-lineage SF subpopulation descending from the embryonic joint interzone. Gdf5-lineage SF showed increased expression of Yap and adopted an erosive phenotype (podoplanin+Thy-1 cell surface antigen-), invading cartilage and bone. Conditional ablation of Yap in Gdf5-lineage cells or Pdgfrα-expressing fibroblasts ameliorated AIA. Interleukin (IL)-6, but not tumour necrosis factor alpha (TNF-α) or IL-1ß, Jak-dependently activated Yap and induced Yap-Snail interaction. SF invasiveness induced by IL-6 stimulation or Snail overexpression was prevented by Yap knockdown, showing a critical role for Yap in SF transformation in RA. CONCLUSIONS: Our findings uncover the IL-6-Yap-Snail signalling axis in pathogenic SF in inflammatory arthritis.


Assuntos
Artrite Reumatoide/patologia , Fibroblastos/patologia , Membrana Sinovial/patologia , Proteínas de Sinalização YAP/metabolismo , Animais , Artrite Experimental/patologia , Artrite Reumatoide/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Interleucina-6/metabolismo , Camundongos , Transdução de Sinais/fisiologia , Fatores de Transcrição da Família Snail/metabolismo , Membrana Sinovial/metabolismo
6.
Ann Rheum Dis ; 79(12): 1625-1634, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32963046

RESUMO

OBJECTIVES: Osteophytes are highly prevalent in osteoarthritis (OA) and are associated with pain and functional disability. These pathological outgrowths of cartilage and bone typically form at the junction of articular cartilage, periosteum and synovium. The aim of this study was to identify the cells forming osteophytes in OA. METHODS: Fluorescent genetic cell-labelling and tracing mouse models were induced with tamoxifen to switch on reporter expression, as appropriate, followed by surgery to induce destabilisation of the medial meniscus. Contributions of fluorescently labelled cells to osteophytes after 2 or 8 weeks, and their molecular identity, were analysed by histology, immunofluorescence staining and RNA in situ hybridisation. Pdgfrα-H2BGFP mice and Pdgfrα-CreER mice crossed with multicolour Confetti reporter mice were used for identification and clonal tracing of mesenchymal progenitors. Mice carrying Col2-CreER, Nes-CreER, LepR-Cre, Grem1-CreER, Gdf5-Cre, Sox9-CreER or Prg4-CreER were crossed with tdTomato reporter mice to lineage-trace chondrocytes and stem/progenitor cell subpopulations. RESULTS: Articular chondrocytes, or skeletal stem cells identified by Nes, LepR or Grem1 expression, did not give rise to osteophytes. Instead, osteophytes derived from Pdgfrα-expressing stem/progenitor cells in periosteum and synovium that are descendants from the Gdf5-expressing embryonic joint interzone. Further, we show that Sox9-expressing progenitors in periosteum supplied hybrid skeletal cells to the early osteophyte, while Prg4-expressing progenitors from synovial lining contributed to cartilage capping the osteophyte, but not to bone. CONCLUSION: Our findings reveal distinct periosteal and synovial skeletal progenitors that cooperate to form osteophytes in OA. These cell populations could be targeted in disease modification for treatment of OA.


Assuntos
Osteoartrite/patologia , Osteófito/patologia , Periósteo/patologia , Células-Tronco/patologia , Membrana Sinovial/patologia , Animais , Linhagem da Célula , Camundongos
7.
Curr Opin Rheumatol ; 29(2): 201-207, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27941390

RESUMO

PURPOSE OF REVIEW: Mesenchymal stromal/stem cells (MSCs) have potent anti-inflammatory and immunomodulatory properties, in addition to their ability to form cartilage and bone. The purpose of this review is to highlight recent developments and current knowledge gaps in our understanding of the protective effects of MSCs against inflammatory arthritis, and to discuss their clinical exploitation for the treatment of rheumatoid arthritis (RA). RECENT FINDINGS: The weight of evidence for protective mechanisms of exogenously administered MSCs is on immunomodulatory effects, including inhibition of dendritic cell maturation, polarization of macrophages to an anti-inflammatory phenotype, and activation of regulatory T cells, thereby dampening inflammation and preventing joint damage. Evidence for direct effects on tissue repair is scant. Recent studies have identified MSC subsets in vivo and an important question is whether MSCs in their native tissues have similar immunoregulatory functions. Recent proof-of-concept clinical studies have shown a satisfactory safety profile of allogeneic MSC therapy in RA patients with promising trends for clinical efficacy. SUMMARY: Allogeneic MSCs could be effective in RA. Larger, multicentre clinical studies are needed to provide robust evidence, and MSC treatment at early stages of RA should be explored to 'reset' the immune system.


Assuntos
Artrite Reumatoide/terapia , Transplante de Células-Tronco Mesenquimais , Artrite Reumatoide/imunologia , Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Humanos , Inflamação , Ativação Linfocitária/imunologia , Células-Tronco Mesenquimais/imunologia , Linfócitos T Reguladores/imunologia
8.
Bioconjug Chem ; 27(2): 329-40, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26646666

RESUMO

A bone imaging toolkit of 21 fluorescent probes with variable spectroscopic properties, bone mineral binding affinities, and antiprenylation activities has been created, including a novel linking strategy. The linking chemistry allows attachment of a diverse selection of dyes fluorescent in the visible to near-infrared range to any of the three clinically important heterocyclic bisphosphonate bone drugs (risedronate, zoledronate, and minodronate or their analogues). The resultant suite of conjugates offers multiple options to "mix and match" parent drug structure, fluorescence emission wavelength, relative bone affinity, and presence or absence of antiprenylation activity, for bone-related imaging applications.


Assuntos
Doenças Ósseas/diagnóstico , Osso e Ossos/patologia , Difosfonatos/química , Corantes Fluorescentes/química , Imagem Óptica/métodos , Animais , Linhagem Celular , Humanos , Masculino , Ratos Sprague-Dawley
9.
J Bone Miner Res ; 38(5): 792-807, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36824055

RESUMO

Lipids play a crucial role in signaling and metabolism, regulating the development and maintenance of the skeleton. Membrane lipids have been hypothesized to act as intermediates upstream of orphan phosphatase 1 (PHOSPHO1), a major contributor to phosphate generation required for bone mineralization. Here, we spatially resolve the lipid atlas of the healthy mouse knee and demonstrate the effects of PHOSPHO1 ablation on the growth plate lipidome. Lipids spanning 17 subclasses were mapped across the knee joints of healthy juvenile and adult mice using matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS), with annotation supported by shotgun lipidomics. Multivariate analysis identified 96 and 80 lipid ions with differential abundances across joint tissues in juvenile and adult mice, respectively. In both ages, marrow was enriched in phospholipid platelet activating factors (PAFs) and related metabolites, cortical bone had a low lipid content, whereas lysophospholipids were strikingly enriched in the growth plate, an active site of mineralization and PHOSPHO1 activity. Spatially-resolved profiling of PHOSPHO1-knockout (KO) mice across the resting, proliferating, and hypertrophic growth plate zones revealed 272, 306, and 296 significantly upregulated, and 155, 220, and 190 significantly downregulated features, respectively, relative to wild-type (WT) controls. Of note, phosphatidylcholine, lysophosphatidylcholine, sphingomyelin, lysophosphatidylethanolamine, and phosphatidylethanolamine derived lipid ions were upregulated in PHOSPHO1-KO versus WT. Our imaging pipeline has established a spatially-resolved lipid signature of joint tissues and has demonstrated that PHOSPHO1 ablation significantly alters the growth plate lipidome, highlighting an essential role of the PHOSPHO1-mediated membrane phospholipid metabolism in lipid and bone homeostasis. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Lipidômica , Monoéster Fosfórico Hidrolases , Camundongos , Animais , Monoéster Fosfórico Hidrolases/metabolismo , Lâmina de Crescimento/metabolismo , Camundongos Knockout , Homeostase , Fosfolipídeos
10.
Cancer ; 118(3): 750-60, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21751201

RESUMO

BACKGROUND: Osteosarcoma is the most frequent malignant primary bone tumor that occurs mainly in the young, with an incidence peak observed at age 18 years. Both apomine and lovastatin have antitumor activity in a variety of cancer cell lines. Apomine, a 1,1-bisphosphonate-ester, increases the rate of degradation of 3-hydroxy-3 methylglutaryl-coenzyme A (HMG-CoA) reductase, the rate-limiting enzyme in the mevalonate pathway, whereas lovastatin competitively inhibits HMG-CoA reductase enzyme activity, thereby preventing protein prenylation and cholesterol synthesis. METHODS: The authors of this report investigated the effect of combined treatment with apomine and lovastatin in vitro on human and murine osteosarcoma cell lines and in vivo using a murine syngeneic model of osteosarcoma. Apomine and lovastatin synergistically decreased viability and induced apoptosis in both murine and human osteosarcoma cell lines. RESULTS: Combined apomine and lovastatin strongly decreased HMG-CoA reductase enzyme levels compared with lovastatin treatment alone. Consequently, the accumulation of unprenylated ras-related protein 1A induced by lovastatin was enhanced in the presence of apomine. All synergistic effects on cell viability, apoptosis, and protein prenylation were overcome by the addition of mevalonate or geranylgeraniol, 2 mevalonate pathway intermediates downstream from the target enzyme, HMG-CoA reductase. This confirmed that the mechanism of synergy in osteosarcoma cells is through augmented inhibition of HMG-CoA reductase. Finally, treatment of POS-1 osteosarcoma-bearing mice with a combination of apomine and lovastatin significantly reduced tumor progression in these mice compared with single treatments, which had no effect at the doses used. CONCLUSIONS: The results from this study revealed that combination therapy with apomine and lovastatin may be a novel treatment strategy for osteosarcoma.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Difosfonatos/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Lovastatina/farmacologia , Osteossarcoma/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Ósseas/patologia , Ciclo Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Osteossarcoma/patologia , Prenilação de Proteína/efeitos dos fármacos , Ratos , Células Tumorais Cultivadas
11.
Eur Cell Mater ; 22: 344-58, 2011 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-22125259

RESUMO

At sites of bone fracture, naturally-occurring electric fields (EFs) exist during healing and may guide cell migration. In this study, we investigated whether EFs could direct the migration of bone marrow mesenchymal stem cells (BM-MSCs), which are known to be key players in bone formation. Human BM-MSCs were cultured in direct current EFs of 10 to 600 mV/mm. Using time-lapse microscopy, we demonstrated that an EF directed migration of BM-MSCs mainly to the anode. Directional migration occurred at a low threshold and with a physiological EF of ~25 mV/mm. Increasing the EF enhanced the MSC migratory response. The migration speed peaked at 300 mV/mm, at a rate of 42 ±1 µm/h, around double the control (no EF) migration rate. MSCs showed sustained response to prolonged EF application in vitro up to at least 8 h. The electrotaxis of MSCs with either early (P3-P5) or late (P7-P10) passage was also investigated. Migration was passage-dependent with higher passage number showing reduced directed migration, within the range of passages examined. An EF of 200 mV/mm for 2 h did not affect cell senescence, phenotype, or osteogenic potential of MSCs, regardless of passage number within the range tested (P3-P10). Our findings indicate that EFs are a powerful cue in directing migration of human MSCs in vitro. An applied EF may be useful to control or enhance migration of MSCs during bone healing.


Assuntos
Células da Medula Óssea/fisiologia , Movimento Celular , Estimulação Elétrica , Células-Tronco Mesenquimais/fisiologia , Regeneração Óssea , Sobrevivência Celular , Células Cultivadas , Senescência Celular , Humanos , Microscopia de Vídeo , Pessoa de Meia-Idade , Osteogênese , Fenótipo , Imagem com Lapso de Tempo , Adulto Jovem
12.
Cells ; 10(8)2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34440768

RESUMO

Human umbilical cord (hUC)- or bone marrow (hBM)-derived mesenchymal stromal cells (MSCs) were evaluated as an allogeneic source of cells for cartilage repair. We aimed to determine if they could enhance healing of chondral defects with or without the recruitment of endogenous cells. hMSCs were applied into a focal joint surface injury in knees of adult mice expressing tdTomato fluorescent protein in cells descending from Gdf5-expressing embryonic joint interzone cells. Three experimental groups were used: (i) hUC-MSCs, (ii) hBM-MSCs and (iii) PBS (vehicle) without cells. Cartilage repair was assessed after 8 weeks and tdTomato-expressing cells were detected by immunostaining. Plasma levels of pro-inflammatory mediators and other markers were measured by electrochemiluminescence. Both hUC-MSC (n = 14, p = 0.009) and hBM-MSC (n = 13, p = 0.006) treatment groups had significantly improved cartilage repair compared to controls (n = 18). While hMSCs were not detectable in the repair tissue at 8 weeks post-implantation, increased endogenous Gdf5-lineage cells were detected in repair tissue of hUC-MSC-treated mice. This xenogeneic study indicates that hMSCs enhance intrinsic cartilage repair mechanisms in mice. Hence, hMSCs, particularly the more proliferative hUC-MSCs, could represent an attractive allogeneic cell population for treating patients with chondral defects and perhaps prevent the onset and progression of osteoarthritis.


Assuntos
Transplante de Medula Óssea , Cartilagem Articular/patologia , Condrogênese , Artropatias/cirurgia , Transplante de Células-Tronco Mesenquimais , Cicatrização , Adulto , Animais , Reatores Biológicos , Cartilagem Articular/lesões , Cartilagem Articular/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Mediadores da Inflamação/sangue , Artropatias/metabolismo , Artropatias/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Gravidez , Transplante Heterólogo , Cordão Umbilical/citologia , Adulto Jovem
13.
Int J Cancer ; 126(1): 239-46, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19621390

RESUMO

Nitrogen-containing bisphosphonates (N-BPs) are effective antiosteolytic agents in patients with multiple myeloma. Preclinical studies have also demonstrated that these agents have direct antitumor effects in vitro and can reduce tumor burden in a variety of animal models, although it is not clear whether such effects are caused by direct actions on tumor cells or by inhibition of bone resorption. N-BPs prevent bone destruction in myeloma by inhibiting the enzyme farnesyl pyrophosphate synthase in osteoclasts, thereby preventing the prenylation of small GTPase signaling proteins. In this study, utilizing a plasmacytoma xenograft model without complicating skeletal lesions, treatment with zoledronic acid (ZOL) led to significant prolongation of survival in severe combined immunodeficiency mice inoculated with human INA-6 plasma cells. Following treatment with a clinically relevant dose of ZOL, histological analysis of INA-6 tumors from the peritoneal cavity revealed extensive areas of apoptosis associated with poly (ADP-ribose) polymerase cleavage. Furthermore, Western blot analysis of tumor homogenates demonstrated the accumulation of unprenylated Rap1A, indicative of the uptake of ZOL by nonskeletal tumors and inhibition of farnesyl pyrophosphate synthase. These studies provide, for the first time, clear evidence that N-BPs have direct antitumor effects in plasma cell tumors in vivo and this is executed by a molecular mechanism similar to that observed in osteoclasts.


Assuntos
Conservadores da Densidade Óssea/uso terapêutico , Difosfonatos/uso terapêutico , Imidazóis/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Conservadores da Densidade Óssea/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Difosfonatos/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Imidazóis/farmacologia , Camundongos , Camundongos SCID , Mieloma Múltiplo/metabolismo , Prenilação de Proteína , Transplante Heterólogo , Ácido Zoledrônico
14.
Adv Exp Med Biol ; 658: 11-20, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19950011

RESUMO

After decades of successful clinical use, the exact molecular mechanisms by which the anti-resorptive bisphosphonate drugs (BPs) exert their effects are now being revealed. In addition to their anti-resorptive effects, it is now apparent that nitrogen-containing BPs (N-BPs) have immunomodulatory properties. Specifically, these drugs activate immune cells called gamma, delta T lymphocytes. In this chapter we discuss the mechanism of gamma, delta T cell activation by N-BPs and propose that N-BPs may provide a safe and effective means for manipulating gamma,delta T cell activity in future immunotherapeutic approaches.


Assuntos
Difosfonatos/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Reação de Fase Aguda/imunologia , Animais , Proliferação de Células/efeitos dos fármacos , Difosfonatos/química , Camundongos
15.
Sci Rep ; 10(1): 157, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31932746

RESUMO

Growth and Differentiation Factor 5 (GDF5) is a key risk locus for osteoarthritis (OA). However, little is known regarding regulation of Gdf5 expression following joint tissue damage. Here, we employed Gdf5-LacZ reporter mouse lines to assess the spatiotemporal activity of Gdf5 regulatory sequences in experimental OA following destabilisation of the medial meniscus (DMM) and after acute cartilage injury and repair. Gdf5 expression was upregulated in articular cartilage post-DMM, and was increased in human OA cartilage as determined by immunohistochemistry and microarray analysis. Gdf5 expression was also upregulated during cartilage repair in mice and was switched on in injured synovium in prospective areas of cartilage formation, where it inversely correlated with expression of the transcriptional co-factor Yes-associated protein (Yap). Indeed, overexpression of Yap suppressed Gdf5 expression in chondroprogenitors in vitro. Gdf5 expression in both mouse injury models required regulatory sequence downstream of Gdf5 coding exons. Our findings suggest that Gdf5 upregulation in articular cartilage and synovium is a generic response to knee injury that is dependent on downstream regulatory sequence and in progenitors is associated with chondrogenic specification. We propose a role for Gdf5 in tissue remodelling and repair after injury, which may partly underpin its association with OA risk.


Assuntos
Cartilagem Articular/patologia , Condrogênese , Regulação da Expressão Gênica , Fator 5 de Diferenciação de Crescimento/metabolismo , Articulação do Joelho/patologia , Osteoartrite/patologia , Animais , Cartilagem Articular/lesões , Cartilagem Articular/metabolismo , Feminino , Predisposição Genética para Doença , Fator 5 de Diferenciação de Crescimento/genética , Humanos , Articulação do Joelho/metabolismo , Masculino , Meniscos Tibiais , Camundongos , Osteoartrite/genética , Osteoartrite/metabolismo
16.
Sci Transl Med ; 12(559)2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32878982

RESUMO

Cartilage loss leads to osteoarthritis, the most common cause of disability for which there is no cure. Cartilage regeneration, therefore, is a priority in medicine. We report that agrin is a potent chondrogenic factor and that a single intraarticular administration of agrin induced long-lasting regeneration of critical-size osteochondral defects in mice, with restoration of tissue architecture and bone-cartilage interface. Agrin attracted joint resident progenitor cells to the site of injury and, through simultaneous activation of CREB and suppression of canonical WNT signaling downstream of ß-catenin, induced expression of the chondrogenic stem cell marker GDF5 and differentiation into stable articular chondrocytes, forming stable articular cartilage. In sheep, an agrin-containing collagen gel resulted in long-lasting regeneration of bone and cartilage, which promoted increased ambulatory activity. Our findings support the therapeutic use of agrin for joint surface regeneration.


Assuntos
Agrina , Cartilagem Articular , Animais , Diferenciação Celular , Condrócitos , Condrogênese , Camundongos , Ovinos , Alicerces Teciduais
17.
Br J Haematol ; 144(2): 245-50, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19016713

RESUMO

Nitrogen-containing bisphosphonates indirectly activate Vgamma9Vdelta2 T cells through inhibition of farnesyl pyrophosphate synthase and intracellular accumulation of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), but the cells responsible for Vgamma9Vdelta2 T cell activation through IPP/DMAPP accumulation are unknown. Treatment of human peripheral blood mononuclear cells (PBMCs) with a pharmacologically relevant concentration of zoledronic acid induced accumulation of IPP/DMAPP selectively in monocytes, which correlated with efficient drug uptake by these cells. Furthermore, zoledronic acid-pulsed monocytes triggered activation of gammadelta T cells in a cell contact-dependent manner. These observations identify monocytes as the cell type directly affected by bisphosphonates responsible for Vgamma9Vdelta2 T cell activation.


Assuntos
Difosfonatos/farmacologia , Hemiterpenos/metabolismo , Imidazóis/farmacologia , Monócitos/imunologia , Compostos Organofosforados/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Linfócitos T/metabolismo , Comunicação Celular , Células Cultivadas , Humanos , Ativação Linfocitária , Monócitos/efeitos dos fármacos , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Ácido Zoledrônico
18.
Methods Mol Biol ; 1914: 437-450, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30729481

RESUMO

Immunohistochemistry (IHC) is a routinely used technique in clinical diagnosis of pathological conditions and in basic and translational research. It combines anatomical, immunological, and biochemical methods and relies on the specific binding of an antibody to an antigen. Using the technique with mineralized tissues is more challenging than with soft tissues. Demineralizing the samples allows for embedding in paraffin wax, and also facilitates cryosectioning. This chapter describes methods for IHC on formaldehyde-fixed, demineralized, paraffin-embedded, or frozen sections to detect antigens in skeletal tissues.


Assuntos
Técnica de Desmineralização Óssea/métodos , Imunofluorescência/métodos , Articulação do Joelho/patologia , Animais , Técnica de Desmineralização Óssea/instrumentação , Imunofluorescência/instrumentação , Corantes Fluorescentes/química , Formaldeído/química , Secções Congeladas/instrumentação , Secções Congeladas/métodos , Camundongos , Inclusão em Parafina/instrumentação , Inclusão em Parafina/métodos , Fixação de Tecidos/instrumentação , Fixação de Tecidos/métodos
19.
Arthritis Res Ther ; 21(1): 289, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842972

RESUMO

BACKGROUND: The prevalence of osteoarthritis (OA) increases with obesity, with up to two thirds of the elderly obese population affected by OA of the knee. The metabolic syndrome (MetS), frequently associated with central obesity and characterised by elevated waist circumference, raised fasting plasma glucose concentration, raised triglycerides, reduced high-density lipoproteins, and/or hypertension, is implicated in the pathogenesis of OA. This narrative review discusses the mechanisms involved in the influence of MetS on OA, with a focus on the effects on macrophages and chondrocytes. MAIN TEXT: A skewing of macrophages towards a pro-inflammatory M1 phenotype within synovial and adipose tissues is thought to play a role in OA pathogenesis. The metabolic perturbations typical of MetS are important drivers of pro-inflammatory macrophage polarisation and activity. This is mediated via alterations in the levels and activities of the cellular nutrient sensors 5' adenosine monophosphate-activated protein kinase (AMPK) and mammalian target of rapamycin complex 1 (mTORC1), intracellular accumulation of metabolic intermediates such as succinate and citrate, and increases in free fatty acids (FFAs) and hyperglycaemia-induced advanced glycation end-products (AGEs) that bind to receptors on the macrophage surface. Altered levels of adipokines, including leptin and adiponectin, further influence macrophage polarisation. The metabolic alterations in MetS also affect the cartilage through direct effects on chondrocytes by stimulating the production of pro-inflammatory and catabolic factors and possibly by suppressing autophagy and promoting cellular senescence. CONCLUSIONS: The influence of MetS on OA pathogenesis involves a wide range of metabolic alterations that directly affect macrophages and chondrocytes. The relative burden of intra-articular versus systemic adipose tissue in the MetS-associated OA remains to be clarified. Understanding how altered metabolism interacts with joints affected by OA is crucial for the development of further strategies for treating this debilitating condition, such as supplementing existing therapies with metformin and utilising ω-3 fatty acid derivatives to restore imbalances in ω-3 and ω-6 fatty acids.


Assuntos
Tecido Adiposo/metabolismo , Articulação do Joelho/metabolismo , Síndrome Metabólica/metabolismo , Obesidade/metabolismo , Osteoartrite/metabolismo , Membrana Sinovial/metabolismo , Adipocinas/metabolismo , Condrócitos/metabolismo , Humanos , Macrófagos/metabolismo
20.
Bone ; 42(5): 848-60, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18325866

RESUMO

Bisphosphonates (BPs) target bone due to their high affinity for calcium ions. During osteoclastic resorption, these drugs are released from the acidified bone surface and taken up by osteoclasts, where they act by inhibiting the prenylation of small GTPases essential for osteoclast function. However, it remains unclear exactly how osteoclasts internalise BPs from bone and whether other cells in the bone microenvironment can also take up BPs from the bone surface. We have investigated this using a novel fluorescently-labelled alendronate analogue (FL-ALN), and by examining changes in protein prenylation following treatment of cells with risedronate (RIS). Confocal microscopic analysis showed that FL-ALN was efficiently internalised from solution or from the surface of dentine by resorbing osteoclasts into intracellular vesicles. Accordingly, unprenylated Rap1A accumulated to the same extent whether osteoclasts were cultured on RIS-coated dentine or with RIS in solution. By contrast, J774 macrophages internalised FL-ALN and RIS from solution, but took up comparatively little from dentine, due to their inability to resorb the mineral. Calvarial osteoblasts and MCF-7 tumour cells internalised even less FL-ALN and RIS, both from solution and from the surface of dentine. Accordingly, the viability of J774 and MCF-7 cells was drastically reduced when cultured with RIS in solution, but not when cultured on dentine pre-coated with RIS. However, when J774 macrophages were co-cultured with rabbit osteoclasts, J774 cells that were adjacent to resorbing osteoclasts frequently internalised more FL-ALN than J774 cells more distant from osteoclasts. This was possibly a result of increased availability of BP to these J774 cells due to transcytosis through osteoclasts, since FL-ALN partially co-localised with trancytosed, resorbed matrix protein within osteoclasts. In addition, J774 cells occupying resorption pits internalised more FL-ALN than those on unresorbed surfaces. These data demonstrate that osteoclasts are able to take up large amounts of BP, due to their ability to release the BP from the dentine surface during resorption. By contrast, non-resorbing cells take up only small amounts of BP that becomes available due to natural desorption from the dentine surface. However, BP uptake by non-resorbing cells can be increased when cultured in the presence of resorbing osteoclasts.


Assuntos
Dentina/metabolismo , Difosfonatos/metabolismo , Macrófagos/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Alendronato/metabolismo , Animais , Conservadores da Densidade Óssea/metabolismo , Conservadores da Densidade Óssea/farmacocinética , Conservadores da Densidade Óssea/farmacologia , Reabsorção Óssea/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Difosfonatos/farmacocinética , Difosfonatos/farmacologia , Endocitose/fisiologia , Ácido Etidrônico/análogos & derivados , Ácido Etidrônico/metabolismo , Ácido Etidrônico/farmacocinética , Ácido Etidrônico/farmacologia , Proteínas da Matriz Extracelular/metabolismo , Macrófagos/citologia , Camundongos , Microscopia de Fluorescência , Osteoblastos/citologia , Osteoclastos/citologia , Prenilação de Proteína/efeitos dos fármacos , Coelhos , Ácido Risedrônico , Crânio/citologia , Proteínas rap1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA