Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Opin Cardiol ; 39(1): 1-5, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37751365

RESUMO

PURPOSE OF REVIEW: The field of cardiac pacing has undergone significant evolution with the introduction and adoption of conduction system pacing (CSP) and leadless pacemakers (LLPMs). These innovations provide benefits over conventional pacing methods including avoiding lead related complications and achieving more physiological cardiac activation. This review critically assesses the latest advancements in CSP and LLPMs, including their benefits, challenges, and potential for future growth. RECENT FINDINGS: CSP, especially of the left bundle branch area, enhances ventricular depolarization and cardiac mechanics. Recent studies show CSP to be favorable over traditional pacing in various patient populations, with an increase in its global adoption. Nevertheless, challenges related to lead placement and long-term maintenance persist. Meanwhile, LLPMs have emerged in response to complications from conventional pacemaker leads. Two main types, Aveir and Micra, have demonstrated improved outcomes and adoption over time. The incorporation of new technologies allows LLPMs to cater to broader patient groups, and their integration with CSP techniques offers exciting potential. SUMMARY: The advancements in CSP and LLPMs present a transformative shift in cardiac pacing, with evidence pointing towards enhanced clinical outcomes and reduced complications. Future innovations and research are likely to further elevate the clinical impact of these technologies, ensuring improved patient care for those with conduction system disorders.


Assuntos
Estimulação Cardíaca Artificial , Marca-Passo Artificial , Humanos , Estimulação Cardíaca Artificial/métodos , Desenho de Equipamento , Resultado do Tratamento
2.
Europace ; 26(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38703375

RESUMO

AIMS: Ablation of monomorphic ventricular tachycardia (MMVT) has been shown to reduce shock frequency and improve survival. We aimed to compare cause-specific risk factors for MMVT and polymorphic ventricular tachycardia (PVT)/ventricular fibrillation (VF) and to develop predictive models. METHODS AND RESULTS: The multicentre retrospective cohort study included 2668 patients (age 63.1 ± 13.0 years; 23% female; 78% white; 43% non-ischaemic cardiomyopathy; left ventricular ejection fraction 28.2 ± 11.1%). Cox models were adjusted for demographic characteristics, heart failure severity and treatment, device programming, and electrocardiogram metrics. Global electrical heterogeneity was measured by spatial QRS-T angle (QRSTa), spatial ventricular gradient elevation (SVGel), azimuth, magnitude (SVGmag), and sum absolute QRST integral (SAIQRST). We compared the out-of-sample performance of the lasso and elastic net for Cox proportional hazards and the Fine-Gray competing risk model. During a median follow-up of 4 years, 359 patients experienced their first sustained MMVT with appropriate implantable cardioverter-defibrillator (ICD) therapy, and 129 patients had their first PVT/VF with appropriate ICD shock. The risk of MMVT was associated with wider QRSTa [hazard ratio (HR) 1.16; 95% confidence interval (CI) 1.01-1.34], larger SVGel (HR 1.17; 95% CI 1.05-1.30), and smaller SVGmag (HR 0.74; 95% CI 0.63-0.86) and SAIQRST (HR 0.84; 95% CI 0.71-0.99). The best-performing 3-year competing risk Fine-Gray model for MMVT [time-dependent area under the receiver operating characteristic curve (ROC(t)AUC) 0.728; 95% CI 0.668-0.788] identified high-risk (> 50%) patients with 75% sensitivity and 65% specificity, and PVT/VF prediction model had ROC(t)AUC 0.915 (95% CI 0.868-0.962), both satisfactory calibration. CONCLUSION: We developed and validated models to predict the competing risks of MMVT or PVT/VF that could inform procedural planning and future randomized controlled trials of prophylactic ventricular tachycardia ablation. CLINICAL TRIAL REGISTRATION: URL:www.clinicaltrials.gov Unique identifier:NCT03210883.


Assuntos
Desfibriladores Implantáveis , Prevenção Primária , Taquicardia Ventricular , Fibrilação Ventricular , Humanos , Feminino , Masculino , Taquicardia Ventricular/fisiopatologia , Taquicardia Ventricular/prevenção & controle , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/terapia , Pessoa de Meia-Idade , Estudos Retrospectivos , Prevenção Primária/métodos , Fatores de Risco , Medição de Risco , Idoso , Fibrilação Ventricular/prevenção & controle , Fibrilação Ventricular/diagnóstico , Fibrilação Ventricular/fisiopatologia , Fibrilação Ventricular/terapia , Resultado do Tratamento , Cardioversão Elétrica/instrumentação , Cardioversão Elétrica/efeitos adversos , Eletrocardiografia , Ablação por Cateter , Fatores de Tempo , Morte Súbita Cardíaca/prevenção & controle , Morte Súbita Cardíaca/etiologia
3.
J Cardiovasc Electrophysiol ; 34(5): 1164-1174, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36934383

RESUMO

BACKGROUND: Structural changes in the left atrium (LA) modestly predict outcomes in patients undergoing catheter ablation for atrial fibrillation (AF). Machine learning (ML) is a promising approach to personalize AF management strategies and improve predictive risk models after catheter ablation by integrating atrial geometry from cardiac computed tomography (CT) scans and patient-specific clinical data. We hypothesized that ML approaches based on a patient's specific data can identify responders to AF ablation. METHODS: Consecutive patients undergoing AF ablation, who had preprocedural CT scans, demographics, and 1-year follow-up data, were included in the study for a retrospective analysis. The inputs of models were CT-derived morphological features from left atrial segmentation (including the shape, volume of the LA, LA appendage, and pulmonary vein ostia) along with deep features learned directly from raw CT images, and clinical data. These were merged intelligently in a framework to learn their individual importance and produce the optimal classification. RESULTS: Three hundred twenty-one patients (64.2 ± 10.6 years, 69% male, 40% paroxysmal AF) were analyzed. Post 10-fold nested cross-validation, the model trained to intelligently merge and learn appropriate weights for clinical, morphological, and imaging data (AUC 0.821) outperformed those trained solely on clinical data (AUC 0.626), morphological (AUC 0.659), or imaging data (AUC 0.764). CONCLUSION: Our ML approach provides an end-to-end automated technique to predict AF ablation outcomes using deep learning from CT images, derived structural properties of LA, augmented by incorporation of clinical data in a merged ML framework. This can help develop personalized strategies for patient selection in invasive management of AF.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Veias Pulmonares , Humanos , Masculino , Feminino , Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/cirurgia , Fibrilação Atrial/etiologia , Estudos Retrospectivos , Resultado do Tratamento , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/cirurgia , Tomografia Computadorizada por Raios X/métodos , Ablação por Cateter/efeitos adversos , Ablação por Cateter/métodos , Aprendizado de Máquina , Recidiva , Veias Pulmonares/diagnóstico por imagem , Veias Pulmonares/cirurgia
4.
Circ Res ; 128(2): 172-184, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33167779

RESUMO

RATIONALE: Susceptibility to VT/VF (ventricular tachycardia/fibrillation) is difficult to predict in patients with ischemic cardiomyopathy either by clinical tools or by attempting to translate cellular mechanisms to the bedside. OBJECTIVE: To develop computational phenotypes of patients with ischemic cardiomyopathy, by training then interpreting machine learning of ventricular monophasic action potentials (MAPs) to reveal phenotypes that predict long-term outcomes. METHODS AND RESULTS: We recorded 5706 ventricular MAPs in 42 patients with coronary artery disease and left ventricular ejection fraction ≤40% during steady-state pacing. Patients were randomly allocated to independent training and testing cohorts in a 70:30 ratio, repeated K=10-fold. Support vector machines and convolutional neural networks were trained to 2 end points: (1) sustained VT/VF or (2) mortality at 3 years. Support vector machines provided superior classification. For patient-level predictions, we computed personalized MAP scores as the proportion of MAP beats predicting each end point. Patient-level predictions in independent test cohorts yielded c-statistics of 0.90 for sustained VT/VF (95% CI, 0.76-1.00) and 0.91 for mortality (95% CI, 0.83-1.00) and were the most significant multivariate predictors. Interpreting trained support vector machine revealed MAP morphologies that, using in silico modeling, revealed higher L-type calcium current or sodium-calcium exchanger as predominant phenotypes for VT/VF. CONCLUSIONS: Machine learning of action potential recordings in patients revealed novel phenotypes for long-term outcomes in ischemic cardiomyopathy. Such computational phenotypes provide an approach which may reveal cellular mechanisms for clinical outcomes and could be applied to other conditions.


Assuntos
Cardiomiopatias/diagnóstico , Morte Súbita Cardíaca/etiologia , Diagnóstico por Computador , Técnicas Eletrofisiológicas Cardíacas , Redes Neurais de Computação , Processamento de Sinais Assistido por Computador , Máquina de Vetores de Suporte , Taquicardia Ventricular/diagnóstico , Fibrilação Ventricular/diagnóstico , Potenciais de Ação , Idoso , Idoso de 80 Anos ou mais , Cardiomiopatias/etiologia , Cardiomiopatias/mortalidade , Cardiomiopatias/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/complicações , Infarto do Miocárdio/mortalidade , Infarto do Miocárdio/fisiopatologia , Fenótipo , Valor Preditivo dos Testes , Prognóstico , Estudos Prospectivos , Medição de Risco , Fatores de Risco , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/mortalidade , Taquicardia Ventricular/fisiopatologia , Fatores de Tempo , Fibrilação Ventricular/etiologia , Fibrilação Ventricular/mortalidade , Fibrilação Ventricular/fisiopatologia
5.
Europace ; 25(5)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-36932716

RESUMO

AIMS: There is a clinical spectrum for atrial tachyarrhythmias wherein most patients with atrial tachycardia (AT) and some with atrial fibrillation (AF) respond to ablation, while others do not. It is undefined if this clinical spectrum has pathophysiological signatures. This study aims to test the hypothesis that the size of spatial regions showing repetitive synchronized electrogram (EGM) shapes over time reveals a spectrum from AT, to AF patients who respond acutely to ablation, to AF patients without acute response. METHODS AND RESULTS: We studied n = 160 patients (35% women, 65.0 ± 10.4 years) of whom (i) n = 75 had AF terminated by ablation propensity matched to (ii) n = 75 without AF termination and (iii) n = 10 with AT. All patients had mapping by 64-pole baskets to identify areas of repetitive activity (REACT) to correlate unipolar EGMs in shape over time. Synchronized regions (REACT) were largest in AT, smaller in AF termination, and smallest in non-termination cohorts (0.63 ± 0.15, 0.37 ± 0.22, and 0.22 ± 0.18, P < 0.001). Area under the curve for predicting AF termination in hold-out cohorts was 0.72 ± 0.03. Simulations showed that lower REACT represented greater variability in clinical EGM timing and shape. Unsupervised machine learning of REACT and extensive (50) clinical variables yielded four clusters of increasing risk for AF termination (P < 0.01, χ2), which were more predictive than clinical profiles alone (P < 0.001). CONCLUSION: The area of synchronized EGMs within the atrium reveals a spectrum of clinical response in atrial tachyarrhythmias. These fundamental EGM properties, which do not reflect any predetermined mechanism or mapping technology, predict outcome and offer a platform to compare mapping tools and mechanisms between AF patient groups.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Humanos , Feminino , Masculino , Ablação por Cateter/métodos , Átrios do Coração , Fibrilação Atrial/cirurgia , Taquicardia
6.
Europace ; 25(9)2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37712675

RESUMO

AIMS: Left ventricular ejection fraction (LVEF) is suboptimal as a sole marker for predicting sudden cardiac death (SCD). Machine learning (ML) provides new opportunities for personalized predictions using complex, multimodal data. This study aimed to determine if risk stratification for implantable cardioverter-defibrillator (ICD) implantation can be improved by ML models that combine clinical variables with 12-lead electrocardiograms (ECG) time-series features. METHODS AND RESULTS: A multicentre study of 1010 patients (64.9 ± 10.8 years, 26.8% female) with ischaemic, dilated, or non-ischaemic cardiomyopathy, and LVEF ≤ 35% implanted with an ICD between 2007 and 2021 for primary prevention of SCD in two academic hospitals was performed. For each patient, a raw 12-lead, 10-s ECG was obtained within 90 days before ICD implantation, and clinical details were collected. Supervised ML models were trained and validated on a development cohort (n = 550) from Hospital A to predict ICD non-arrhythmic mortality at three-year follow-up (i.e. mortality without prior appropriate ICD-therapy). Model performance was evaluated on an external patient cohort from Hospital B (n = 460). At three-year follow-up, 16.0% of patients had died, with 72.8% meeting criteria for non-arrhythmic mortality. Extreme gradient boosting models identified patients with non-arrhythmic mortality with an area under the receiver operating characteristic curve (AUROC) of 0.90 [95% confidence intervals (CI) 0.80-1.00] during internal validation. In the external cohort, the AUROC was 0.79 (95% CI 0.75-0.84). CONCLUSIONS: ML models combining ECG time-series features and clinical variables were able to predict non-arrhythmic mortality within three years after device implantation in a primary prevention population, with robust performance in an independent cohort.


Assuntos
Desfibriladores Implantáveis , Humanos , Feminino , Masculino , Seleção de Pacientes , Volume Sistólico , Função Ventricular Esquerda , Aprendizado de Máquina , Morte Súbita Cardíaca/etiologia , Morte Súbita Cardíaca/prevenção & controle , Prevenção Primária
7.
J Cardiovasc Electrophysiol ; 31(7): 1687-1693, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32323395

RESUMO

BACKGROUND: Interrupted ablation is increasingly proposed as part of high-power short-duration radiofrequency ablation (RFA) strategies and may also result from loss of contact from respiratory patterns or cardiac motion. To study the extent that ablation interruption affects lesions. METHODS: In ex vivo and in vivo experiments, lesion characteristics and tissue temperatures were compared between continuous (group 1) and interrupted (groups 2 and 3) RFA with equal total ablation duration and contact force. Extended duration ablation lesions were also characterized from 1 to 5 minutes. RESULTS: In the ex vivo study, continuous RFA (group 1) produced larger total lesion volumes compared with each interrupted ablation lesion group (273.8 ± 36.5 vs 205.1 ± 34.2 vs 174.3 ± 32.3 mm3 , all P < .001). Peak temperatures for group 1 were higher at 3 and 5 mm than groups 2 and 3. In vivo, continuous ablation resulted in larger lesions, greater lesion depths, and higher tissue temperatures. Longer ablation durations created larger lesion volumes and increased lesion depths. However, after 3 minutes of ablation, the rate of lesion volume, and depth formation decreased. CONCLUSIONS: Continuous RFA delivery resulted in larger and deeper lesions with higher tissue temperatures compared with interrupted ablation. This study may have implications for high-power short duration ablation strategies, motivates strategies to reduce variations in ablation delivery, and provides an upper limit for ablation duration beyond which power delivery has diminishing returns.


Assuntos
Ablação por Cateter , Ablação por Radiofrequência , Ablação por Cateter/efeitos adversos , Temperatura Alta , Humanos , Ablação por Radiofrequência/efeitos adversos , Temperatura , Fatores de Tempo
8.
Europace ; 22(6): 897-905, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32243508

RESUMO

AIMS: Persistent atrial fibrillation (AF) has been explained by multiple mechanisms which, while they conflict, all agree that more disorganized AF is more difficult to treat than organized AF. We hypothesized that persistent AF consists of interacting organized areas which may enlarge, shrink or coalesce, and that patients whose AF areas enlarge by ablation are more likely to respond to therapy. METHODS AND RESULTS: We mapped vectorial propagation in persistent AF using wavefront fields (WFF), constructed from raw unipolar electrograms at 64-pole basket catheters, during ablation until termination (Group 1, N = 20 patients) or cardioversion (Group 2, N = 20 patients). Wavefront field mapping of patients (age 61.1 ± 13.2 years, left atrium 47.1 ± 6.9 mm) at baseline showed 4.6 ± 1.0 organized areas, each separated by disorganization. Ablation of sites that led to termination controlled larger organized area than competing sites (44.1 ± 11.1% vs. 22.4 ± 7.0%, P < 0.001). In Group 1, ablation progressively enlarged unablated areas (rising from 32.2 ± 15.7% to 44.1 ± 11.1% of mapped atrium, P < 0.0001). In Group 2, organized areas did not enlarge but contracted during ablation (23.6 ± 6.3% to 15.2 ± 5.6%, P < 0.0001). CONCLUSION: Mapping wavefront vectors in persistent AF revealed competing organized areas. Ablation that progressively enlarged remaining areas was acutely successful, and sites where ablation terminated AF were surrounded by large organized areas. Patients in whom large organized areas did not emerge during ablation did not exhibit AF termination. Further studies should define how fibrillatory activity is organized within such areas and whether this approach can guide ablation.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Idoso , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Cardioversão Elétrica , Átrios do Coração/cirurgia , Humanos , Pessoa de Meia-Idade
10.
J Cardiovasc Electrophysiol ; 29(5): 687-695, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29377478

RESUMO

OBJECTIVE: To investigate mechanisms by which atrial fibrillation (AF) may terminate during ablation near the pulmonary veins before the veins are isolated (PVI). INTRODUCTION: It remains unstudied how AF may terminate during ablation before PVs are isolated, or how patients with PV reconnection can be arrhythmia-free. We studied patients in whom PV antral ablation terminated AF before PVI, using two independent mapping methods. METHODS: We studied patients with AF referred for ablation, in whom biatrial contact basket electrograms were studied by both an activation/phase mapping method and by a second validated mapping method reported not to create false rotational activity. RESULTS: In 22 patients (age 60.1 ± 10.4, 36% persistent AF), ablation at sites near the PVs terminated AF (77% to sinus rhythm) prior to PVI. AF propagation revealed rotational (n  =  20) and focal (n  =  2) patterns at sites of termination by mapping method 1 and method 2. Both methods showed organized sites that were spatially concordant (P < 0.001) with similar stability (P < 0.001). Vagal slowing was not observed at sites of AF termination. DISCUSSION: PV antral regions where ablation terminated AF before PVI exhibited rotational and focal activation by two independent mapping methods. These data provide an alternative mechanism for the success of PVI, and may explain AF termination before PVI or lack of arrhythmias despite PV reconnection. Mapping such sites may enable targeted PV lesion sets and improved freedom from AF.


Assuntos
Potenciais de Ação , Fibrilação Atrial/cirurgia , Ablação por Cateter , Técnicas Eletrofisiológicas Cardíacas , Frequência Cardíaca , Veias Pulmonares/cirurgia , Idoso , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Veias Pulmonares/fisiopatologia , Fatores de Tempo , Resultado do Tratamento
14.
Circ Arrhythm Electrophysiol ; 17(3): e012041, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38348685

RESUMO

BACKGROUND: Atrial fibrillation is the most common cardiac arrhythmia in the world and increases the risk for stroke and morbidity. During atrial fibrillation, the electric activation fronts are no longer coherently propagating through the tissue and, instead, show rotational activity, consistent with spiral wave activation, focal activity, collision, or partial versions of these spatial patterns. An unexplained phenomenon is that although simulations of cardiac models abundantly demonstrate spiral waves, clinical recordings often show only intermittent spiral wave activity. METHODS: In silico data were generated using simulations in which spiral waves were continuously created and annihilated and in simulations in which a spiral wave was intermittently trapped at a heterogeneity. Clinically, spatio-temporal activation maps were constructed using 60 s recordings from a 64 electrode catheter within the atrium of N=34 patients (n=24 persistent atrial fibrillation). The location of clockwise and counterclockwise rotating spiral waves was quantified and all intervals during which these spiral waves were present were determined. For each interval, the angle of rotation as a function of time was computed and used to determine whether the spiral wave returned in step or changed phase at the start of each interval. RESULTS: In both simulations, spiral waves did not come back in phase and were out of step." In contrast, spiral waves returned in step in the majority (68%; P=0.05) of patients. Thus, the intermittently observed rotational activity in these patients is due to a temporally and spatially conserved spiral wave and not due to ones that are newly created at the onset of each interval. CONCLUSIONS: Intermittency of spiral wave activity represents conserved spiral wave activity of long, but interrupted duration or transient spiral activity, in the majority of patients. This finding could have important ramifications for identifying clinically important forms of atrial fibrillation and in guiding treatment.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/diagnóstico , Átrios do Coração , Catéteres , Doença do Sistema de Condução Cardíaco , Simulação por Computador
15.
Circ Heart Fail ; 17(1): e010879, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38126168

RESUMO

BACKGROUND: Deep learning models may combat widening racial disparities in heart failure outcomes through early identification of individuals at high risk. However, demographic biases in the performance of these models have not been well-studied. METHODS: This retrospective analysis used 12-lead ECGs taken between 2008 and 2018 from 326 518 patient encounters referred for standard clinical indications to Stanford Hospital. The primary model was a convolutional neural network model trained to predict incident heart failure within 5 years. Biases were evaluated on the testing set (160 312 ECGs) using the area under the receiver operating characteristic curve, stratified across the protected attributes of race, ethnicity, age, and sex. RESULTS: There were 59 817 cases of incident heart failure observed within 5 years of ECG collection. The performance of the primary model declined with age. There were no significant differences observed between racial groups overall. However, the primary model performed significantly worse in Black patients aged 0 to 40 years compared with all other racial groups in this age group, with differences most pronounced among young Black women. Disparities in model performance did not improve with the integration of race, ethnicity, sex, and age into model architecture, by training separate models for each racial group, or by providing the model with a data set of equal racial representation. Using probability thresholds individualized for race, age, and sex offered substantial improvements in F1 scores. CONCLUSIONS: The biases found in this study warrant caution against perpetuating disparities through the development of machine learning tools for the prognosis and management of heart failure. Customizing the application of these models by using probability thresholds individualized by race, ethnicity, age, and sex may offer an avenue to mitigate existing algorithmic disparities.


Assuntos
Aprendizado Profundo , Insuficiência Cardíaca , Humanos , Feminino , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/terapia , Estudos Retrospectivos , Etnicidade , Eletrocardiografia
16.
J Interv Card Electrophysiol ; 67(1): 111-118, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37256462

RESUMO

BACKGROUND: Tyrosine kinase inhibitors (TKIs) are widely used in the treatment of hematologic malignancies. Limited studies have shown an association between treatment-limiting arrhythmias and TKI, particularly ibrutinib, a Bruton's tyrosine kinase (BTK) inhibitor. We sought to comprehensively assess the arrhythmia burden in patients receiving ibrutinib vs non-BTK TKI vs non-TKI therapies. METHODS: We performed a retrospective analysis of consecutive patients who received long-term cardiac event monitors while on ibrutinib, non-BTK TKIs, or non-TKI therapy for a hematologic malignancy between 2014 and 2022. RESULTS: One hundred ninety-three patients with hematologic malignancies were included (ibrutinib = 72, non-BTK TKI = 46, non-TKI therapy = 75). The average duration of TKI therapy was 32 months in the ibrutinib group vs 64 months in the non-BTK TKI group (p = 0.003). The ibrutinib group had a higher prevalence of atrial fibrillation (n = 32 [44%]) compared to the non-BTK TKI (n = 7 [15%], p = 0.001) and non-TKI (n = 15 [20%], p = 0.002) groups. Similarly, the prevalence of non-sustained ventricular tachycardia was higher in the ibrutinib group (n = 31, 43%) than the non-BTK TKI (n = 8 [17%], p = 0.004) and non-TKI groups (n = 20 [27%], p = 0.04). TKI therapy was held in 25% (n = 18) of patients on ibrutinib vs 4% (n = 2) on non-BTK TKIs (p = 0.005) secondary to arrhythmias. CONCLUSIONS: In this large retrospective analysis of patients with hematologic malignancies, patients receiving ibrutinib had a higher prevalence of atrial and ventricular arrhythmias compared to those receiving other TKI, with a higher rate of treatment interruption due to arrhythmias.


Assuntos
Fibrilação Atrial , Neoplasias Hematológicas , Humanos , Tirosina Quinase da Agamaglobulinemia , Estudos Retrospectivos , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/epidemiologia
17.
Gastroenterology ; 142(2): 266-72.e1, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22062360

RESUMO

BACKGROUND & AIMS: The complications of diverticulosis cause considerable morbidity in the United States; health care expenditures for this disorder are estimated to be $2.5 billion per year. Many physicians and patients believe that a high-fiber diet and frequent bowel movements prevent the development of diverticulosis. Evidence for these associations is poor. We sought to determine whether low-fiber or high-fat diets, diets that include large quantities of red meat, constipation, or physical inactivity increase risk for asymptomatic diverticulosis. METHODS: We performed a cross-sectional study of 2104 participants, 30-80 years old, who underwent outpatient colonoscopy from 1998 to 2010. Diet and physical activity were assessed in interviews using validated instruments. RESULTS: The prevalence of diverticulosis increased with age, as expected. High intake of fiber did not reduce the prevalence of diverticulosis. Instead, the quartile with the highest fiber intake had a greater prevalence of diverticulosis than the lowest (prevalence ratio = 1.30; 95% confidence interval, 1.13-1.50). Risk increased when calculated based on intake of total fiber, fiber from grains, soluble fiber, and insoluble fiber. Constipation was not a risk factor. Compared to individuals with <7 bowel movements per week, individuals with >15 bowel movements per week had a 70% greater risk for diverticulosis (prevalence ratio = 1.70; 95% confidence interval, 1.24-2.34). Neither physical inactivity nor intake of fat or red meat was associated with diverticulosis. CONCLUSIONS: A high-fiber diet and increased frequency of bowel movements are associated with greater, rather than lower, prevalence of diverticulosis. Hypotheses regarding risk factors for asymptomatic diverticulosis should be reconsidered.


Assuntos
Doenças Assintomáticas , Dieta , Fibras na Dieta , Diverticulose Cólica/etiologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Constipação Intestinal/complicações , Estudos Transversais , Inquéritos sobre Dietas , Dieta Hiperlipídica , Diverticulose Cólica/epidemiologia , Diverticulose Cólica/prevenção & controle , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Atividade Motora , Distribuição de Poisson , Prevalência , Fatores de Risco , Comportamento Sedentário , Inquéritos e Questionários
19.
Front Cardiovasc Med ; 10: 1189293, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37849936

RESUMO

Background: Segmentation of computed tomography (CT) is important for many clinical procedures including personalized cardiac ablation for the management of cardiac arrhythmias. While segmentation can be automated by machine learning (ML), it is limited by the need for large, labeled training data that may be difficult to obtain. We set out to combine ML of cardiac CT with domain knowledge, which reduces the need for large training datasets by encoding cardiac geometry, which we then tested in independent datasets and in a prospective study of atrial fibrillation (AF) ablation. Methods: We mathematically represented atrial anatomy with simple geometric shapes and derived a model to parse cardiac structures in a small set of N = 6 digital hearts. The model, termed "virtual dissection," was used to train ML to segment cardiac CT in N = 20 patients, then tested in independent datasets and in a prospective study. Results: In independent test cohorts (N = 160) from 2 Institutions with different CT scanners, atrial structures were accurately segmented with Dice scores of 96.7% in internal (IQR: 95.3%-97.7%) and 93.5% in external (IQR: 91.9%-94.7%) test data, with good agreement with experts (r = 0.99; p < 0.0001). In a prospective study of 42 patients at ablation, this approach reduced segmentation time by 85% (2.3 ± 0.8 vs. 15.0 ± 6.9 min, p < 0.0001), yet provided similar Dice scores to experts (93.9% (IQR: 93.0%-94.6%) vs. 94.4% (IQR: 92.8%-95.7%), p = NS). Conclusions: Encoding cardiac geometry using mathematical models greatly accelerated training of ML to segment CT, reducing the need for large training sets while retaining accuracy in independent test data. Combining ML with domain knowledge may have broad applications.

20.
Comput Biol Med ; 145: 105451, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35429831

RESUMO

BACKGROUND: Automatic detection of atrial fibrillation (AF) by cardiac devices is increasingly common yet suboptimally groups AF, flutter or tachycardia (AT) together as 'high rate events'. This may delay or misdirect therapy. OBJECTIVE: We hypothesized that deep learning (DL) can accurately classify AF from AT by revealing electrogram (EGM) signatures. METHODS: We studied 86 patients in whom the diagnosis of AF or AT was established at electrophysiological study (25 female, 65 ± 11 years). Custom DL architectures were trained to identify AF using N = 29,340 unipolar and N = 23,760 bipolar EGM segments. We compared DL to traditional classifiers based on rate or regularity. We explained DL using computer models to assess the impact of controlled variations in shape, rate and timing on AF/AT classification in 246,067 EGMs reconstructed from clinical data. RESULTS: DL identified AF with AUC of 0.97 ± 0.04 (unipolar) and 0.92 ± 0.09 (bipolar). Rule-based classifiers misclassified ∼10-12% of cases. DL classification was explained by regularity in EGM shape (13%) or timing (26%), and rate (60%; p < 0.001), and also by a set of unipolar EGM shapes that classified as AF independent of rate or regularity. Overall, the optimal AF 'fingerprint' comprised these specific EGM shapes, >15% timing variation, <0.48 correlation in beat-to-beat EGM shapes and CL < 190 ms (p < 0.001). CONCLUSIONS: Deep learning of intracardiac EGMs can identify AF or AT via signatures of rate, regularity in timing or shape, and specific EGM shapes. Future work should examine if these signatures differ between different clinical subpopulations with AF.


Assuntos
Fibrilação Atrial , Aprendizado Profundo , Fibrilação Atrial/diagnóstico , Simulação por Computador , Técnicas Eletrofisiológicas Cardíacas , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA