Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 14(1): e1006794, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29352310

RESUMO

Leishmania parasites are transmitted to vertebrate hosts by female phlebotomine sand flies as they bloodfeed by lacerating the upper capillaries of the dermis with their barbed mouthparts. In the sand fly midgut secreted proteophosphoglycans from Leishmania form a biological plug known as the promastigote secretory gel (PSG), which blocks the gut and facilitates the regurgitation of infective parasites. The interaction between the wound created by the sand fly bite and PSG is not known. Here we nanoinjected a sand fly egested dose of PSG into BALB/c mouse skin that lead to the differential expression of 7,907 transcripts. These transcripts were transiently up-regulated during the first 6 hours post-wound and enriched for pathways involved in inflammation, cell proliferation, fibrosis, epithelial cell differentiation and wound remodelling. We found that PSG significantly accelerated wound healing in vitro and in mice; which was associated with an early up-regulation of transcripts involved in inflammation (IL-1ß, IL-6, IL-10, TNFα) and inflammatory cell recruitment (CCL2, CCL3, CCL4, CXCL2), followed 6 days later by enhanced expression of transcripts associated with epithelial cell proliferation, fibroplasia and fibrosis (FGFR2, EGF, EGFR, IGF1). Dermal expression of IGF1 was enhanced following an infected sand fly bite and was acutely responsive to the deposition of PSG but not the inoculation of parasites or sand fly saliva. Antibody blockade of IGF1 ablated the gel's ability to promote wound closure in mouse ears and significantly reduced the virulence of Leishmania mexicana infection delivered by an individual sand fly bite. Dermal macrophages recruited to air-pouches on the backs of mice revealed that IGF1 was pivotal to the PSG's ability to promote macrophage alternative activation and Leishmania infection. Our data demonstrate that through the regurgitation of PSG Leishmania exploit the wound healing response of the host to the vector bite by promoting the action of IGF1 to drive the alternative activation of macrophages.


Assuntos
Fator de Crescimento Insulin-Like I/fisiologia , Leishmaniose Cutânea/patologia , Proteínas de Membrana/farmacologia , Proteoglicanas/farmacologia , Proteínas de Protozoários/farmacologia , Psychodidae/metabolismo , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Células Cultivadas , Progressão da Doença , Feminino , Interações Hospedeiro-Parasita/fisiologia , Leishmania mexicana/metabolismo , Leishmaniose Cutânea/parasitologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/parasitologia , Macrófagos/patologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteoglicanas/metabolismo , Proteínas de Protozoários/metabolismo , Transdução de Sinais/efeitos dos fármacos , Pele/parasitologia , Pele/patologia
2.
PLoS Pathog ; 13(10): e1006571, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29049371

RESUMO

Quantitation of the nonlinear heterogeneities in Leishmania parasites, sand fly vectors, and mammalian host relationships provides insights to better understand leishmanial transmission epidemiology towards improving its control. The parasite manipulates the sand fly via production of promastigote secretory gel (PSG), leading to the "blocked sand fly" phenotype, persistent feeding attempts, and feeding on multiple hosts. PSG is injected into the mammalian host with the parasite and promotes the establishment of infection. Animal models demonstrate that sand flies with the highest parasite loads and percent metacyclic promastigotes transmit more parasites with greater frequency, resulting in higher load infections that are more likely to be both symptomatic and efficient reservoirs. The existence of mammalian and sand fly "super-spreaders" provides a biological basis for the spatial and temporal clustering of clinical leishmanial disease. Sand fly blood-feeding behavior will determine the efficacies of indoor residual spraying, topical insecticides, and bed nets. Interventions need to have sufficient coverage to include transmission hot spots, especially in the absence of field tools to assess infectiousness. Interventions that reduce sand fly densities in the absence of elimination could have negative consequences, for example, by interfering with partial immunity conferred by exposure to sand fly saliva. A deeper understanding of both sand fly and host biology and behavior is essential to ensuring effectiveness of vector interventions.


Assuntos
Leishmania/parasitologia , Leishmaniose/epidemiologia , Leishmaniose/transmissão , Parasitos/parasitologia , Psychodidae/parasitologia , Animais , Interações Hospedeiro-Patógeno/imunologia , Humanos , Insetos Vetores/parasitologia , Leishmaniose/parasitologia , Parasitos/patogenicidade
3.
J Proteome Res ; 14(1): 318-29, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25369177

RESUMO

Parasitic infections such as leishmaniasis induce a cascade of host physiological responses, including metabolic and immunological changes. Infection with Leishmania major parasites causes cutaneous leishmaniasis in humans, a neglected tropical disease that is difficult to manage. To understand the determinants of pathology, we studied L. major infection in two mouse models: the self-healing C57BL/6 strain and the nonhealing BALB/c strain. Metabolic profiling of urine, plasma, and feces via proton NMR spectroscopy was performed to discover parasite-specific imprints on global host metabolism. Plasma cytokine status and fecal microbiome were also characterized as additional metrics of the host response to infection. Results demonstrated differences in glucose and lipid metabolism, distinctive immunological phenotypes, and shifts in microbial composition between the two models. We present a novel approach to integrate such metrics using correlation network analyses, whereby self-healing mice demonstrated an orchestrated interaction between the biological measures shortly after infection. In contrast, the response observed in nonhealing mice was delayed and fragmented. Our study suggests that trans-system communication across host metabolism, the innate immune system, and gut microbiome is key for a successful host response to L. major and provides a new concept, potentially translatable to other diseases.


Assuntos
Biomarcadores/metabolismo , Microbioma Gastrointestinal/imunologia , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/fisiopatologia , Modelos Biológicos , Animais , Biomarcadores/sangue , Biomarcadores/urina , Interações Hospedeiro-Patógeno , Leishmaniose Cutânea/metabolismo , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Especificidade da Espécie
4.
Front Immunol ; 14: 1256205, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720216

RESUMO

Human C-reactive protein (CRP) binds to lipophosphoglycan (LPG), a virulence factor of Leishmania spp., through the repeating phosphodisaccharide region. We report here that both major components of promastigote secretory gel (PSG), the filamentous proteophosphoglycan (fPPG) and the secreted acid phosphatase (ScAP), are also ligands. CRP binding was mainly associated with the flagellar pocket when LPG deficient Leishmania mexicana parasites were examined by fluorescent microscopy, consistent with binding to secreted material. ScAP is a major ligand in purified fPPG from parasite culture as demonstrated by much reduced binding to a ScAP deficient mutant fPPG in plate binding assays and ligand blotting. Nevertheless, in sandfly derived PSG fPPG is a major component and the major CRP binding component. Previously we showed high avidity of CRP for LPG ligand required multiple disaccharide repeats. ScAP and fPPG only have short repeats but they retain high avidity for CRP revealed by surface plasmon resonance because they are found in multiple copies on the phosphoglycan. The fPPG from many species such as L. donovani and L. mexicana bound CRP strongly but L. tropica and L. amazonensis had low amounts of binding. The extent of side chain substitution of [-PO4-6Galß1-4Manα1-] disaccharides correlates inversely with binding of CRP. The ligand for the CRP on different species all had similar binding avidity as the half maximal binding concentration was similar. Since the PSG is injected with the parasites into host blood pools and phosphoglycans (PG) are known to deplete complement, we showed that CRP makes a significant contribution to the activation of complement by PSG using serum from naive donors.


Assuntos
Proteína C-Reativa , Leishmania , Humanos , Ligantes , Proteínas do Sistema Complemento , Transporte Biológico , Dissacarídeos
5.
PLoS Negl Trop Dis ; 17(9): e0011200, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37656745

RESUMO

BACKGROUND: The kala-azar elimination programme has resulted in a significant reduction in visceral leishmaniasis (VL) cases across the Indian Subcontinent. To detect any resurgence of transmission, a sensitive cost-effective surveillance system is required. Molecular xenomonitoring (MX), detection of pathogen DNA/RNA in vectors, provides a proxy of human infection in the lymphatic filariasis elimination programme. To determine whether MX can be used for VL surveillance in a low transmission setting, large numbers of the sand fly vector Phlebotomus argentipes are required. This study will determine the best method for capturing P. argentipes females for MX. METHODOLOGY/PRINCIPAL FINDINGS: The field study was performed in two programmatic and two non-programmatic villages in Bihar, India. A total of 48 households (12/village) were recruited. Centers for Disease Control and Prevention light traps (CDC-LTs) were compared with Improved Prokopack (PKP) and mechanical vacuum aspirators (MVA) using standardised methods. Four 12x12 Latin squares, 576 collections, were attempted (12/house, 144/village,192/method). Molecular analyses of collections were conducted to confirm identification of P. argentipes and to detect human and Leishmania DNA. Operational factors, such as time burden, acceptance to householders and RNA preservation, were also considered. A total of 562 collections (97.7%) were completed with 6,809 sand flies captured. Females comprised 49.0% of captures, of which 1,934 (57.9%) were identified as P. argentipes. CDC-LTs collected 4.04 times more P. argentipes females than MVA and 3.62 times more than PKP (p<0.0001 for each). Of 21,735 mosquitoes in the same collections, no significant differences between collection methods were observed. CDC-LTs took less time to install and collect than to perform aspirations and their greater yield compensated for increased sorting time. No significant differences in Leishmania RNA detection and quantitation between methods were observed in experimentally infected sand flies maintained in conditions simulating field conditions. CDC-LTs were favoured by householders. CONCLUSIONS/SIGNIFICANCE: CDC-LTs are the most useful collection tool of those tested for MX surveillance since they collected higher numbers of P. argentipes females without compromising mosquito captures or the preservation of RNA. However, capture rates are still low.


Assuntos
Culicidae , Leishmaniose Visceral , Phlebotomus , Psychodidae , Estados Unidos , Feminino , Humanos , Animais , Masculino , Leishmaniose Visceral/epidemiologia , Mosquitos Vetores , RNA
6.
Curr Biol ; 33(8): 1523-1534.e4, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36977419

RESUMO

Odor perception is first determined by how the myriad of environmental volatiles are detected at the periphery of the olfactory system. The combinatorial activation of dedicated odorant receptors generates enough encoding power for the discrimination of tens of thousands of odorants. Recent studies have revealed that odorant receptors undergo widespread inhibitory modulation of their activity when presented with mixtures of odorants, a property likely required to maintain discrimination and ensure sparsity of the code for complex mixtures. Here, we establish the role of human OR5AN1 in the detection of musks and identify distinct odorants capable of enhancing its activity in binary mixtures. Chemical and pharmacological characterization indicate that specific α-ß unsaturated aliphatic aldehydes act as positive allosteric modulators. Sensory experiments show decreased odor detection threshold in humans, suggesting that allosteric modulation of odorant receptors is perceptually relevant and likely adds another layer of complexity to how odors are encoded in the peripheral olfactory system.


Assuntos
Percepção Olfatória , Neurônios Receptores Olfatórios , Receptores Odorantes , Humanos , Olfato/fisiologia , Odorantes , Neurônios Receptores Olfatórios/fisiologia , Percepção Olfatória/fisiologia
7.
PLoS Negl Trop Dis ; 15(8): e0009682, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34449767

RESUMO

Leishmaniasis is a debilitating disease of the tropics, subtropics and southern Europe caused by Leishmania parasites that are transmitted during blood feeding by phlebotomine sand flies (Diptera: Psychodidae). Using non-invasive micro-computed tomography, we were able to visualize the impact of the laboratory model infection of Lutzomyia longipalpis with Leishmania mexicana and its response to a second blood meal. For the first time we were able to show in 3D the plug of promastigote secretory gel (PSG) and parasites in the distended midgut of whole infected sand flies and measure its volume in relation to that of the midgut. We were also able to measure the degree of opening of the stomodeal valve and demonstrate the extension of the PSG and parasites into the pharynx. Although our pilot study could only examine a few flies, it supports the hypothesis that a second, non-infected, blood meal enhances parasite transmission as we showed that the thoracic PSG-parasite plug in infected flies after a second blood meal was, on average, more than twice the volume of the plug in infected flies that did not have a second blood meal.


Assuntos
Insetos Vetores/anatomia & histologia , Insetos Vetores/parasitologia , Leishmania mexicana/fisiologia , Proteínas de Protozoários/metabolismo , Psychodidae/anatomia & histologia , Psychodidae/parasitologia , Animais , Feminino , Trato Gastrointestinal/anatomia & histologia , Trato Gastrointestinal/parasitologia , Leishmania mexicana/genética , Projetos Piloto , Proteínas de Protozoários/genética , Microtomografia por Raio-X
8.
Nature ; 430(6998): 463-7, 2004 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-15269771

RESUMO

Sand flies are the exclusive vectors of the protozoan parasite Leishmania, but the mechanism of transmission by fly bite has not been determined nor incorporated into experimental models of infection. In sand flies with mature Leishmania infections the anterior midgut is blocked by a gel of parasite origin, the promastigote secretory gel. Here we analyse the inocula from Leishmania mexicana-infected Lutzomyia longipalpis sand flies. Analysis revealed the size of the infectious dose, the underlying mechanism of parasite delivery by regurgitation, and the novel contribution made to infection by filamentous proteophosphoglycan (fPPG), a component of promastigote secretory gel found to accompany the parasites during transmission. Collectively these results have important implications for understanding the relationship between the parasite and its vector, the pathology of cutaneous leishmaniasis in humans and also the development of effective vaccines and drugs. These findings emphasize that to fully understand transmission of vector-borne diseases the interaction between the parasite, its vector and the mammalian host must be considered together.


Assuntos
Dípteros/fisiologia , Dípteros/parasitologia , Leishmania mexicana/fisiologia , Leishmaniose Cutânea/transmissão , Proteínas de Membrana/metabolismo , Proteoglicanas/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Progressão da Doença , Vetores de Doenças , Feminino , Refluxo Gastroesofágico , Leishmaniose Cutânea/parasitologia , Proteínas de Membrana/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos CBA , Proteoglicanas/química , Proteínas de Protozoários/química , Coelhos , Saliva/fisiologia , Glândulas Salivares/metabolismo
9.
Sci Rep ; 10(1): 12903, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737362

RESUMO

During Leishmania transmission sand flies inoculate parasites and saliva into the skin of vertebrates. Saliva has anti-haemostatic and anti-inflammatory activities that evolved to facilitate bloodfeeding, but also modulate the host's immune responses. Sand fly salivary proteins have been extensively studied, but the nature and biological roles of protein-linked glycans remain overlooked. Here, we characterised the profile of N-glycans from the salivary glycoproteins of Lutzomyia longipalpis, vector of visceral leishmaniasis in the Americas. In silico predictions suggest half of Lu. longipalpis salivary proteins may be N-glycosylated. SDS-PAGE coupled to LC-MS analysis of sand fly saliva, before and after enzymatic deglycosylation, revealed several candidate glycoproteins. To determine the diversity of N-glycan structures in sand fly saliva, enzymatically released sugars were fluorescently tagged and analysed by HPLC, combined with highly sensitive LC-MS/MS, MALDI-TOF-MS, and exoglycosidase treatments. We found that the N-glycan composition of Lu. longipalpis saliva mostly consists of oligomannose sugars, with Man5GlcNAc2 being the most abundant, and a few hybrid-type species. Interestingly, some glycans appear modified with a group of 144 Da, whose identity has yet to be confirmed. Our work presents the first detailed structural analysis of sand fly salivary glycans.


Assuntos
Glicoproteínas/metabolismo , Proteínas de Insetos/metabolismo , Insetos Vetores/metabolismo , Leishmaniose Visceral , Psychodidae/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Animais
10.
Curr Biol ; 30(13): 2574-2587.e6, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32470365

RESUMO

Most natural odors are complex mixtures of volatile components, competing to bind odorant receptors (ORs) expressed in olfactory sensory neurons (OSNs) of the nose. To date, surprisingly little is known about how OR antagonism shapes neuronal representations in the detection layer of the olfactory system. Here, we investigated its prevalence, the degree to which it disrupts OR ensemble activity, and its conservation across phylogenetically related ORs. Calcium imaging microscopy of dissociated OSNs revealed significant inhibition, often complete attenuation, of responses to indole-a commonly occurring volatile associated with both floral and fecal odors-by a set of 36 tested odorants. To confirm an OR mechanism for the observed inhibition, we performed single-cell transcriptomics on OSNs exhibiting specific response profiles to a diagnostic panel of odorants and identified three paralogous receptors-Olfr740, Olfr741, and Olfr743-which, when tested in vitro, recapitulated OSN responses. We screened ten ORs from the Olfr740 gene family with ∼800 perfumery-related odorants spanning a range of chemical scaffolds and functional groups. Over half of these compounds (430) antagonized at least one of the ten ORs. OR activity fitted a mathematical model of competitive receptor binding and suggests normalization of OSN ensemble responses to odorant mixtures is the rule rather than the exception. In summary, we observed OR antagonism occurred frequently and in a combinatorial manner. Thus, extensive receptor-mediated computation of mixture information appears to occur in the olfactory epithelium prior to transmission of odor information to the olfactory bulb.


Assuntos
Odorantes/análise , Percepção Olfatória/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Receptores Odorantes/antagonistas & inibidores , Transcriptoma , Animais , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Receptores Olfatórios/efeitos dos fármacos , Análise de Célula Única
11.
PLoS Pathog ; 3(6): e91, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17604451

RESUMO

In nature the prevalence of Leishmania infection in whole sand fly populations can be very low (<0.1%), even in areas of endemicity and high transmission. It has long since been assumed that the protozoan parasite Leishmania can manipulate the feeding behavior of its sand fly vector, thus enhancing transmission efficiency, but neither the way in which it does so nor the mechanisms behind such manipulation have been described. A key feature of parasite development in the sand fly gut is the secretion of a gel-like plug composed of filamentous proteophosphoglycan. Using both experimental and natural parasite-sand fly combinations we show that secretion of this gel is accompanied by differentiation of mammal-infective transmission stages. Further, Leishmania infection specifically causes an increase in vector biting persistence on mice (re-feeding after interruption) and also promotes feeding on multiple hosts. Both of these aspects of vector behavior were found to be finely tuned to the differentiation of parasite transmission stages in the sand fly gut. By experimentally accelerating the development rate of the parasites, we showed that Leishmania can optimize its transmission by inducing increased biting persistence only when infective stages are present. This crucial adaptive manipulation resulted in enhanced infection of experimental hosts. Thus, we demonstrate that behavioral manipulation of the infected vector provides a selective advantage to the parasite by significantly increasing transmission.


Assuntos
Adaptação Fisiológica , Leishmania/patogenicidade , Leishmaniose/transmissão , Psychodidae/parasitologia , Animais , Modelos Animais de Doenças , Comportamento Alimentar/fisiologia , Feminino , Interações Hospedeiro-Parasita/fisiologia , Insetos Vetores/parasitologia , Leishmania/metabolismo , Leishmaniose/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Doenças Parasitárias em Animais/parasitologia , Proteoglicanas/metabolismo , Proteínas de Protozoários/metabolismo , Psychodidae/fisiologia , Doenças dos Roedores/parasitologia
12.
Cell Microbiol ; 10(6): 1363-72, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18284631

RESUMO

Chitinases of trypanosomatid parasites have been proposed to fulfil various roles in their blood-feeding arthropod vectors but so far none have been directly tested using a molecular approach. We characterized the ability of Leishmania mexicana episomally transfected with LmexCht1 (the L. mexicana chitinase gene) to survive and grow within the permissive sand fly vector, Lutzomyia longipalpis. Compared with control plasmid transfectants, the overexpression of chitinase was found to increase the average number of parasites per sand fly and accelerate the escape of parasites from the peritrophic matrix-enclosed blood meal as revealed by earlier arrival at the stomodeal valve. Such flies also exhibited increased damage to the structure of the stomodeal valve, which may facilitate transmission by regurgitation. When exposed individually to BALB/c mice, those flies with chitinase-overexpressing parasites spent on average 2.4-2.5 times longer in contact with their host during feeding, compared with flies with control infections. Furthermore, the lesions that resulted from these single fly bite infections were both significantly larger and with higher final parasite burdens than controls. These data show that chitinase is a multifunctional virulence factor for L. mexicana which assists its survival in Lu. longipalpis. Specifically, this enzyme enables the parasites to colonize the anterior midgut of the sand fly more quickly, modify the sand fly stomodeal valve and affect its blood feeding, all of which combine to enhance transmission.


Assuntos
Quitinases/fisiologia , Insetos Vetores/parasitologia , Leishmania mexicana/fisiologia , Leishmaniose Cutânea/parasitologia , Psychodidae/parasitologia , Animais , Interações Hospedeiro-Parasita , Insetos Vetores/patogenicidade , Leishmania mexicana/patogenicidade , Camundongos , Camundongos Endogâmicos BALB C , Virulência , Fatores de Virulência/fisiologia
13.
Trans R Soc Trop Med Hyg ; 102(9): 875-82, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18501935

RESUMO

Leishmania chagasi, transmitted mainly by Lutzomyia longipalpis sand flies, causes visceral leishmaniasis and atypical cutaneous leishmaniasis in Latin America. Successful vector control depends upon determining vectorial capacity and understanding Leishmania transmission by sand flies. As microscopic detection of Leishmania in dissected sand fly guts is laborious and time-consuming, highly specific, sensitive, rapid and robust Leishmania PCR assays have attracted epidemiologists' attention. Real-time PCR is faster than qualitative PCR and yields quantitative data amenable to statistical analyses. A highly reproducible Leishmania DNA polymerase gene-based TaqMan real-time PCR assay was adapted to quantify Leishmania in sand flies, showing intra-assay and inter-assay coefficient variations lower than 1 and 1.7%, respectively, and sensitivity to 10 pg Leishmania DNA ( approximately 120 parasites) in as much as 100 ng sand fly DNA. Data obtained for experimentally infected sand flies yielded parasite loads within the range of counts obtained by microscopy for the same sand fly cohort or that were around five times higher than microscopy counts, depending on the method used for data analysis. These results highlight the potential of quantitative PCR for Leishmania transmission studies, and the need to understand factors affecting its sensitivity and specificity.


Assuntos
Insetos Vetores , Leishmania/isolamento & purificação , Psychodidae/parasitologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , DNA de Protozoário/análise , Feminino , Leishmaniose/transmissão , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
Wellcome Open Res ; 3: 55, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30175240

RESUMO

Leishmaniasis is a vector-borne parasitic disease transmitted by sand flies that affects 1.3 million people across 98 countries, with limited control strategies due to the lack of an available vaccine and the emergence of insecticide resistance.  Novel control strategies that are being explored for mosquito-borne diseases, such as Wolbachia bacterial inhibition of pathogens and genetically modified insects (e.g. using CRISPR-Cas9 editing), rely on the ability to consistently inject embryos of the target species.  Here we present a novel method to obtain and inject preblastoderm sand fly embryos of the genus Lutzomyia (Lu.)longipalpis, the principle vector of zoonotic visceral leishmaniasis in South America. The procedures required to obtain sufficiently young Lu. longipalpis colony embryos are described alongside a microinjection technique that permits rapid injection and minimal handling of small sand fly embryos post-injection. Using a strain of Wolbachia as a 'marker' for successful injection, our protocol produced early generation Wolbachia transinfected Lu. longipalpis lines, demonstrating its potential as the first step for use in novel applied strategies for sand fly control.

15.
Parasit Vectors ; 11(1): 7, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29301571

RESUMO

BACKGROUND: Antibody responses to sand fly saliva have been suggested to be a useful marker of exposure to sand fly bites and Leishmania infection and a potential tool to monitor the effectiveness of entomological interventions. Exposure to sand fly bites before infection has also been suggested to modulate the severity of the infection. Here, we test these hypotheses by quantifying the anti-saliva IgG response in a cohort study of dogs exposed to natural infection with Leishmania infantum in Brazil. METHODS: IgG responses to crude salivary antigens of the sand fly Lutzomyia longipalpis were measured by ELISA in longitudinal serum samples from 47 previously unexposed sentinel dogs and 11 initially uninfected resident dogs for up to 2 years. Antibody responses were compared to the intensity of transmission, assessed by variation in the incidence of infection between seasons and between dogs. Antibody responses before patent infection were then compared with the severity of infection, assessed using tissue parasite loads and clinical symptoms. RESULTS: Previously unexposed dogs acquired anti-saliva antibody responses within 2 months, and the rate of acquisition increased with the intensity of seasonal transmission. Over the following 2 years, antibody responses varied with seasonal transmission and sand fly numbers, declining rapidly in periods of low transmission. Antibody responses varied greatly between dogs and correlated with the intensity of transmission experienced by individual dogs, measured by the number of days in the field before patent infection. After infection, anti-saliva antibody responses were positively correlated with anti-parasite antibody responses. However, there was no evidence that the degree of exposure to sand fly bites before infection affected the severity of the infection. CONCLUSIONS: Anti-saliva antibody responses are a marker of current transmission intensity in dogs exposed to natural infection with Leishmania infantum, but are not associated with the outcome of infection.


Assuntos
Formação de Anticorpos , Doenças do Cão/patologia , Doenças do Cão/transmissão , Leishmaniose/veterinária , Psychodidae/imunologia , Saliva/imunologia , Animais , Biomarcadores/sangue , Brasil , Progressão da Doença , Doenças do Cão/epidemiologia , Cães , Ensaio de Imunoadsorção Enzimática , Imunoglobulina G/sangue , Incidência , Leishmaniose/epidemiologia , Leishmaniose/patologia , Leishmaniose/transmissão , Estudos Longitudinais , Índice de Gravidade de Doença
16.
Cell Rep ; 16(4): 1115-1125, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27396335

RESUMO

Typically, ∼0.1% of the total number of olfactory sensory neurons (OSNs) in the main olfactory epithelium express the same odorant receptor (OR) in a singular fashion and their axons coalesce into homotypic glomeruli in the olfactory bulb. Here, we have dramatically increased the total number of OSNs expressing specific cloned OR coding sequences by multimerizing a 21-bp sequence encompassing the predicted homeodomain binding site sequence, TAATGA, known to be essential in OR gene choice. Singular gene choice is maintained in these "MouSensors." In vivo synaptopHluorin imaging of odor-induced responses by known M71 ligands shows functional glomerular activation in an M71 MouSensor. Moreover, a behavioral avoidance task demonstrates that specific odor detection thresholds are significantly decreased in multiple transgenic lines, expressing mouse or human ORs. We have developed a versatile platform to study gene choice and axon identity, to create biosensors with great translational potential, and to finally decode human olfaction.


Assuntos
Bulbo Olfatório/fisiologia , Mucosa Olfatória/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Receptores Odorantes/genética , Animais , Animais Geneticamente Modificados/genética , Axônios/fisiologia , Sítios de Ligação/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Odorantes
17.
Vet Parasitol ; 130(1-2): 41-53, 2005 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-15893068

RESUMO

In this study, disease progression after intravenous or subdermal infection of dogs with Leishmania infantum JPC strain was monitored. A challenge performed on 14 dogs via the intravenous route with 5 x 10(7) stationary phase promastigotes of the L. infantum JPC strain was 100% successful. During a follow up period of 1.5 years, several parameters were evaluated in order to find the most reliable disease markers. Parasite detection by culture and histology were found to be very sensitive (100%). Additionally, regular physical examination, serology and serum gamma-globulin levels were found to be useful parameters in the evaluation of disease severity and are recommended for inclusion in vaccination-challenge experiments. Although this intravenous challenge model has practical limitations, the data set confirms it is the best experimental model currently available for vaccine development. Two intravenously infected dogs were treated with corticosteroids for 5 months. This treatment was shown to enhance all aspects of a Leishmania infection. Five more dogs were infected by sub-dermal injection of promastigotes mixed with a proteophosphoglycan-matrix (PSG) secreted by Leishmania that assists in transmission and infection by sand fly bite. The resulting parasite burdens were low and the animals remained asymptomatic during a 2-year follow up period. However, this procedure did result in infection in 80% of the dogs and is appealing for future development as a natural challenge model in vaccine development.


Assuntos
Doenças do Cão/parasitologia , Leishmania infantum/imunologia , Leishmaniose Visceral/veterinária , Corticosteroides/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Proliferação de Células , Dexametasona/imunologia , Modelos Animais de Doenças , Doenças do Cão/imunologia , Doenças do Cão/patologia , Cães , Ensaio de Imunoadsorção Enzimática/veterinária , Hipersensibilidade Tardia/imunologia , Interferon gama/genética , Interferon gama/imunologia , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/patologia , Linfonodos/imunologia , Linfonodos/parasitologia , Linfonodos/patologia , Masculino , RNA/química , RNA/genética , Distribuição Aleatória , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/parasitologia , gama-Globulinas/imunologia
18.
PLoS One ; 10(10): e0141696, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26513247

RESUMO

Many G-protein coupled receptors (GPCRs), such as odorant receptors (ORs), cannot be characterized in heterologous cells because of their difficulty in trafficking to the plasma membrane. In contrast, a surrogate OR, the GPCR mouse ß2-adrenergic-receptor (mß2AR), robustly traffics to the plasma membrane. We set out to characterize mß2AR mutants in vitro for their eventual use in olfactory axon guidance studies. We performed an extensive mutational analysis of mß2AR using a Green Fluorescent Protein-tagged mß2AR (mß2AR::GFP) to easily assess the extent of its plasma membrane localization. In order to characterize mutants for their ability to successfully transduce ligand-initiated signal cascades, we determined the half maximal effective concentrations (EC50) and maximal response to isoprenaline, a known mß2AR agonist. Our analysis reveals that removal of amino terminal (Nt) N-glycosylation sites and the carboxy terminal (Ct) palmitoylation site of mß2AR do not affect its plasma membrane localization. By contrast, when both the Nt and Ct of mß2AR are replaced with those of M71 OR, plasma membrane trafficking is impaired. We further analyze three mß2AR mutants (RDY, E268A, and C327R) used in olfactory axon guidance studies and are able to decorrelate their plasma membrane trafficking with their capacity to respond to isoprenaline. A deletion of the Ct prevents proper trafficking and abolishes activity, but plasma membrane trafficking can be selectively rescued by a Tyrosine to Alanine mutation in the highly conserved GPCR motif NPxxY. This new loss-of-function mutant argues for a model in which residues located at the end of transmembrane domain 7 can act as a retention signal when unmasked. Additionally, to our surprise, amongst our set of mutations only Ct mutations appear to lower mß2AR EC50s revealing their critical role in G-protein coupling. We propose that an interaction between the Nt and Ct is necessary for proper folding and/or transport of GPCRs.


Assuntos
Mutação , Receptores Adrenérgicos beta 2/genética , Receptores Odorantes/genética , Agonistas Adrenérgicos beta/farmacologia , Animais , Linhagem Celular , Membrana Celular/metabolismo , Análise Mutacional de DNA , Expressão Gênica , Genes Reporter , Glicosilação , Humanos , Isoproterenol/farmacologia , Camundongos , Fenótipo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , Transporte Proteico , Pseudópodes/genética , Pseudópodes/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Receptores Odorantes/química , Receptores Odorantes/metabolismo
19.
J R Soc Interface ; 12(108): 20150140, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26063818

RESUMO

Cells constantly sense their chemical and mechanical environments. We study the effect of mechanics on the ATP-induced collective calcium response of fibroblast cells in experiments that mimic various tissue environments. We find that closely packed two-dimensional cell cultures on a soft polyacrylamide gel (Young's modulus E = 690 Pa) contain more cells exhibiting calcium oscillations than cultures on a rigid substrate (E = 36 000 Pa). Calcium responses of cells on soft substrates show a slower decay of calcium level relative to those on rigid substrates. Actin enhancement and disruption experiments for the cell cultures allow us to conclude that actin filaments determine the collective Ca(2+) oscillatory behaviour in the culture. Inhibition of gap junctions results in a decrease of the oscillation period and reduced correlation of calcium responses, which suggests additional complexity of signalling upon cell-cell contact. Moreover, the frequency of calcium oscillations is independent of the rigidity of the substrate but depends on ATP concentration. We compare our results with those from similar experiments on individual cells. Overall, our observations show that collective chemical signalling in cell cultures via calcium depends critically on the mechanical environment.


Assuntos
Trifosfato de Adenosina/metabolismo , Sinalização do Cálcio/fisiologia , Comunicação Celular/fisiologia , Fibroblastos/metabolismo , Mecanotransdução Celular/fisiologia , Modelos Biológicos , Células 3T3 , Animais , Fibroblastos/citologia , Camundongos , Estresse Mecânico
20.
Int J Parasitol ; 33(10): 1027-34, 2003 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-13129524

RESUMO

The life cycle of Leishmania alternates between two main morphological forms: intracellular amastigotes in the mammalian host and motile promastigotes in the sand fly vector. Several different forms of promastigote have been described in sandfly infections, the best known of these being metacyclic promastigotes, the mammal-infective stages. Here we provide evidence that for Leishmania (Leishmania) mexicana and Leishmania (Leishmania) infantum (syn. chagasi) there are two separate, consecutive growth cycles during development in Lutzomyia longipalpis sand flies involving four distinct life cycle stages. The first growth cycle is initiated by procyclic promastigotes, which divide in the bloodmeal in the abdominal midgut and subsequently give rise to non-dividing nectomonad promastigotes. Nectomonad forms are responsible for anterior migration of the infection and in turn transform into leptomonad promastigotes that initiate a second growth cycle in the anterior midgut. Subsequently, leptomonad promastigotes differentiate into non-dividing metacyclic promastigotes in preparation for transmission to a mammalian host. Differences in timing, prevalence and persistence of the four promastigote stages were observed between L. mexicana and L. infantum in vivo, which were reproduced in cultures initiated with lesion amastigotes, indicating that development is to some extent governed by a programmed series of events. A new scheme for the life cycle in the subgenus Leishmania (Leishmania) is proposed that incorporates these findings.


Assuntos
Insetos Vetores/parasitologia , Leishmania infantum/crescimento & desenvolvimento , Leishmania mexicana/crescimento & desenvolvimento , Psychodidae/parasitologia , Animais , Feminino , Interações Hospedeiro-Parasita , Estágios do Ciclo de Vida , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA