Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 28(3): 1049-1063, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28168274

RESUMO

The transition from adolescent to adult cognition and emotional control requires neurodevelopmental maturation likely involving intrinsic functional networks (IFNs). Normal neurodevelopment may be vulnerable to disruption from environmental insult such as alcohol consumption commonly initiated during adolescence. To test potential disruption to IFN maturation, we used resting-state functional magnetic resonance imaging (rs-fMRI) in 581 no-to-low alcohol-consuming and 117 moderate-to-high-drinking youth. Functional seed-to-voxel connectivity analysis assessed age, sex, and moderate alcohol drinking on default-mode, executive-control, salience, reward, and emotion networks and tested cognitive and motor coordination correlates of network connectivity. Among no-to-low alcohol-consuming adolescents, executive-control frontolimbicstriatal connectivity was stronger in older than younger adolescents, particularly boys, and predicted better ability in balance, memory, and impulse control. Connectivity patterns in moderate-to-high-drinking youth were tested mainly in late adolescence when drinking was initiated. Implicated was the emotion network with attenuated connectivity to default-mode network regions. Our cross-sectional rs-fMRI findings from this large cohort of adolescents show sexual dimorphism in connectivity and suggest neurodevelopmental rewiring toward stronger and spatially more distributed executive-control networking in older than younger adolescents. Functional network rewiring in moderate-to-high-drinking adolescents may impede maturation of affective and self-reflection systems and obscure maturation of complex social and emotional behaviors.


Assuntos
Envelhecimento/fisiologia , Consumo de Bebidas Alcoólicas/fisiopatologia , Encéfalo/fisiopatologia , Função Executiva/fisiologia , Caracteres Sexuais , Adolescente , Encéfalo/diagnóstico por imagem , Criança , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Modelos Neurológicos , Testes Neuropsicológicos , Oxigênio/sangue , Adulto Jovem
2.
Cereb Cortex ; 26(10): 4101-21, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26408800

RESUMO

Brain structural development continues throughout adolescence, when experimentation with alcohol is often initiated. To parse contributions from biological and environmental factors on neurodevelopment, this study used baseline National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA) magnetic resonance imaging (MRI) data, acquired in 674 adolescents meeting no/low alcohol or drug use criteria and 134 adolescents exceeding criteria. Spatial integrity of images across the 5 recruitment sites was assured by morphological scaling using Alzheimer's disease neuroimaging initiative phantom-derived volume scalar metrics. Clinical MRI readings identified structural anomalies in 11.4%. Cortical volume and thickness were smaller and white matter volumes were larger in older than in younger adolescents. Effects of sex (male > female) and ethnicity (majority > minority) were significant for volume and surface but minimal for cortical thickness. Adjusting volume and area for supratentorial volume attenuated or removed sex and ethnicity effects. That cortical thickness showed age-related decline and was unrelated to supratentorial volume is consistent with the radial unit hypothesis, suggesting a universal neural development characteristic robust to sex and ethnicity. Comparison of NCANDA with PING data revealed similar but flatter, age-related declines in cortical volumes and thickness. Smaller, thinner frontal, and temporal cortices in the exceeds-criteria than no/low-drinking group suggested untoward effects of excessive alcohol consumption on brain structural development.


Assuntos
Consumo de Bebidas Alcoólicas/patologia , Córtex Cerebral/crescimento & desenvolvimento , Etnicidade , Puberdade , Caracteres Sexuais , Substância Branca/crescimento & desenvolvimento , Adolescente , Desenvolvimento do Adolescente/efeitos dos fármacos , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/efeitos dos fármacos , Criança , Estudos de Coortes , Estudos Transversais , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/efeitos dos fármacos , Substância Cinzenta/crescimento & desenvolvimento , Humanos , Processamento de Imagem Assistida por Computador , Achados Incidentais , Imageamento por Ressonância Magnética , Masculino , Tamanho do Órgão , Substância Branca/diagnóstico por imagem , Substância Branca/efeitos dos fármacos , Adulto Jovem
3.
Neuroimage ; 130: 194-213, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26872408

RESUMO

Neurodevelopment continues through adolescence, with notable maturation of white matter tracts comprising regional fiber systems progressing at different rates. To identify factors that could contribute to regional differences in white matter microstructure development, large samples of youth spanning adolescence to young adulthood are essential to parse these factors. Recruitment of adequate samples generally relies on multi-site consortia but comes with the challenge of merging data acquired on different platforms. In the current study, diffusion tensor imaging (DTI) data were acquired on GE and Siemens systems through the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA), a multi-site study designed to track the trajectories of regional brain development during a time of high risk for initiating alcohol consumption. This cross-sectional analysis reports baseline Tract-Based Spatial Statistic (TBSS) of regional fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (L1), and radial diffusivity (LT) from the five consortium sites on 671 adolescents who met no/low alcohol or drug consumption criteria and 132 adolescents with a history of exceeding consumption criteria. Harmonization of DTI metrics across manufacturers entailed the use of human-phantom data, acquired multiple times on each of three non-NCANDA participants at each site's MR system, to determine a manufacturer-specific correction factor. Application of the correction factor derived from human phantom data measured on MR systems from different manufacturers reduced the standard deviation of the DTI metrics for FA by almost a half, enabling harmonization of data that would have otherwise carried systematic error. Permutation testing supported the hypothesis of higher FA and lower diffusivity measures in older adolescents and indicated that, overall, the FA, MD, and L1 of the boys were higher than those of the girls, suggesting continued microstructural development notable in the boys. The contribution of demographic and clinical differences to DTI metrics was assessed with General Additive Models (GAM) testing for age, sex, and ethnicity differences in regional skeleton mean values. The results supported the primary study hypothesis that FA skeleton mean values in the no/low-drinking group were highest at different ages. When differences in intracranial volume were covaried, FA skeleton mean reached a maximum at younger ages in girls than boys and varied in magnitude with ethnicity. Our results, however, did not support the hypothesis that youth who exceeded exposure criteria would have lower FA or higher diffusivity measures than the no/low-drinking group; detecting the effects of excessive alcohol consumption during adolescence on DTI metrics may require longitudinal study.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Mapeamento Encefálico/normas , Encéfalo/crescimento & desenvolvimento , Substância Branca/crescimento & desenvolvimento , Adolescente , Anisotropia , Encéfalo/efeitos dos fármacos , Encéfalo/ultraestrutura , Mapeamento Encefálico/métodos , Estudos Transversais , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Caracteres Sexuais , Substância Branca/efeitos dos fármacos , Substância Branca/ultraestrutura , Adulto Jovem
4.
Addict Biol ; 21(6): 1199-1216, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26283309

RESUMO

The effects of ethanol (EtOH) on in vivo magnetic resonance (MR)-detectable brain measures across repeated exposures have not previously been reported. Of 28 rats weighing 340.66 ± 21.93 g at baseline, 15 were assigned to an EtOH group and 13 to a control group. Animals were exposed to five cycles of 4 days of intragastric (EtOH or dextrose) treatment and 10 days of recovery. Rats in both groups had structural MR imaging and whole-brain MR spectroscopy (MRS) scans at baseline, immediately following each binge period and after each recovery period (total = 11 scans per rat). Blood alcohol level at each of the five binge periods was ~300 mg/dl. Blood drawn at the end of the experiment did not show group differences for thiamine or its phosphate derivatives. Postmortem liver histopathology provided no evidence for hepatic steatosis, alcoholic hepatitis or alcoholic cirrhosis. Cerebrospinal fluid volumes of the lateral ventricles and cisterns showed enlargement with each binge EtOH exposure but recovery with each abstinence period. Similarly, changes in MRS metabolite levels were transient: levels of N-acetylaspartate and total creatine decreased, while those of choline-containing compounds and the combined resonance from glutamate and glutamine increased with each binge EtOH exposure cycle and then recovered during each abstinence period. Changes in response to EtOH were in expected directions based on previous single-binge EtOH exposure experiments, but the current MR findings do not provide support for accruing changes with repeated binge EtOH exposure.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Encéfalo/metabolismo , Etanol/metabolismo , Etanol/farmacologia , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/efeitos dos fármacos , Ácido Aspártico/metabolismo , Colina/metabolismo , Creatina/efeitos dos fármacos , Creatina/metabolismo , Etanol/administração & dosagem , Ácido Glutâmico/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Ratos , Ratos Wistar
5.
Hum Brain Mapp ; 35(9): 4635-53, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24639416

RESUMO

Alcohol use disorders present a significant public health problem in France and the United States (U.S.), but whether the untoward effect of alcohol on the brain results in similar damage in both countries remains unknown. Accordingly, we conducted a retrospective collaborative investigation between two French sites (Caen and Orsay) and a U.S. laboratory (SRI/Stanford University) with T1-weighted, structural MRI data collected on a common imaging platform (1.5T, General Electric) on 288 normal controls (NC), 165 uncomplicated alcoholics (ALC), and 26 patients with alcoholic Korsakoff's syndrome (KS) diagnosed at all sites with a common interview instrument. Data from the two countries were pooled, then preprocessed and analyzed together at the U.S. site using atlas-based parcellation. National differences indicated that thalamic volumes were smaller in ALC in France than the U.S. despite similar alcohol consumption levels in both countries. By contrast, volumes of the hippocampus, amygdala, and cerebellar vermis were smaller in KS in the U.S. than France. Estimated amount of alcohol consumed over a lifetime, duration of alcoholism, and length of sobriety were significant predictors of selective regional brain volumes in France and in the U.S. The common analysis of MRI data enabled identification of discrepancies in brain volume deficits in France and the U.S. that may reflect fundamental differences in the consequences of alcoholism on brain structure between the two countries, possibly related to genetic or environmental differences.


Assuntos
Transtorno Amnésico Alcoólico/patologia , Alcoolismo/patologia , Encéfalo/patologia , Adulto , Transtorno Amnésico Alcoólico/diagnóstico , Transtorno Amnésico Alcoólico/etnologia , Alcoolismo/diagnóstico , Alcoolismo/etnologia , Atlas como Assunto , Encéfalo/efeitos dos fármacos , Depressores do Sistema Nervoso Central/efeitos adversos , Etanol/efeitos adversos , Feminino , França , Humanos , Processamento de Imagem Assistida por Computador , Entrevista Psicológica , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Estados Unidos
6.
Neuroimage ; 65: 176-93, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23063452

RESUMO

Numerous cross-sectional MRI studies have characterized age-related differences in regional brain volumes that differ with structure and tissue type. The extent to which cross-sectional assumptions about change are accurate depictions of actual longitudinal measurement remains controversial. Even longitudinal studies can be limited by the age range of participants, sex distribution of the samples, and scan intervals. To address these issues, we calculated trajectories of regional brain volume changes from T1-weighted (SPGR) MRI data, quantified with our automated, unsupervised SRI24 atlas-based registration and parcellation method. Longitudinal MRIs were acquired at 3T in 17 boys and 12 girls, age 10 to 14 years, and 41 men and 41 women, age 20 to 85 years at first scan. Application of a regression-based correction function permitted merging of data acquired at 3T field strength with data acquired at 1.5T from additional subjects, thereby expanding the sample to a total of 55 men and 67 women, age 20 to 85 years at first scan. Adjustment for individual supratentorial volume removed regional volume differences between men and women due to sex-related differences in head size. Individual trajectories were computed from data collected on 2 to 6 MRIs at a single field strength over a ~1 to 8 year interval. Using linear mixed-effects models, the pattern of trajectories over age indicated: rises in ventricular and Sylvian fissure volumes, with older individuals showing faster increases than younger ones; declines in selective cortical volumes with faster tissue shrinkage in older than younger individuals; little effect of aging on volume of the corpus callosum; more rapid expansion of CSF-filled spaces in men than women after age 60 years; and evidence for continued growth in central white matter through early adulthood with accelerated decline in senescence greater in men than women.


Assuntos
Encéfalo/crescimento & desenvolvimento , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anatomia Artística , Atlas como Assunto , Criança , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
Neuroimage ; 77: 195-206, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23567886

RESUMO

We present a novel approach - DTI-based fiber tract-driven topographical mapping (FTTM) - to map and measure the influence of age on the integrity of interhemispheric fibers and challenge their selective functions with measures of interhemispheric integration of lateralized information. This approach enabled identification of spatially specific topographical maps of scalar diffusion measures and their relation to measures of visuomotor performance. Relative to younger adults, older adults showed lower fiber integrity indices in anterior than posterior callosal fibers. FTTM analysis identified a dissociation in the microstructural-function associates between age groups: in younger adults, genu fiber integrity correlated with interhemispheric transfer time, whereas in older adults, body fiber integrity was correlated with interhemispheric transfer time with topographical specificity along left-lateralized callosal fiber trajectories. Neural co-activation from redundant targets was evidenced by fMRI-derived bilateral extrastriate cortex activation in both groups, and a group difference emerged for a pontine activation cluster that was differently modulated by response hand in older than younger adults. Bilateral processing advantages in older but not younger adults further correlated with fiber integrity in transverse pontine fibers that branch into the right cerebellar cortex, thereby supporting a role for the pons in interhemispheric facilitation. In conclusion, in the face of compromised anterior callosal fibers, older adults appear to use alternative pathways to accomplish visuomotor interhemispheric information transfer and integration for lateralized processing. This shift from youthful associations may indicate recruitment of compensatory mechanisms involving medial corpus callosum fibers and subcortical pathways.


Assuntos
Envelhecimento/patologia , Mapeamento Encefálico/métodos , Encéfalo/patologia , Lateralidade Funcional/fisiologia , Vias Neurais/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Encéfalo/fisiologia , Imagem de Tensor de Difusão , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiologia , Adulto Jovem
8.
Neuroimage ; 60(2): 940-51, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22297204

RESUMO

Longitudinal brain morphometric studies designed for data acquisition at a single MRI field strength can be seriously limited by system replacements from lower to higher field strength. Merging data across field strengths has not been endorsed for a variety of reasons, yet the ability to combine such data would broaden longitudinal investigations. To determine whether structural T1-weighted MRI data acquired across MR field strengths could be merged, parcellations of archival SPGR data acquired in 114 individuals at 1.5 T and at 3.0 T within 3 weeks of each other were compared. The first set of analyses examined 1) the correspondence between regional tissue volumes derived from data collected at 1.5 T and 3.0 T and 2) whether there were systematic differences for which a correction factor could be determined and applied to improve measurement agreement. Comparability of regional volume determination at 1.5 T and 3.0 T was assessed with intraclass correlation (ICC) computed on volumes derived from the automated and unsupervised SRI24 atlas registration and parcellation method. A second set of analyses measured the reliability of the registration and quantification using the same approach on longitudinal data acquired in 69 healthy adults at a single field strength, 1.5 T, at an interval < 2 years. The mainstay of the analyses was based on the SRI24 method; to examine the potential of merging data across field strengths and across image analysis packages, a secondary set of analyses used FreeSurfer instead of the SRI24 method. For both methods, a regression-based linear correction function significantly improved correspondence. The results indicated high correspondence between most selected cortical, subcortical, and CSF-filled spaces; correspondence was lowest in the globus pallidus, a region rich in iron, which in turn has a considerable field-dependent effect on signal intensity. Thus, the application of a regression-based correction function that improved the correspondence in regional volume estimations argues well for the proposition that selected T1-weighted regional anatomical brain data can be reliably combined across 1.5 T and 3.0 T field strengths with the application of an appropriate correction procedure.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Adulto , Feminino , Humanos , Masculino
9.
Neuroimage ; 59(3): 2625-35, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21925274

RESUMO

Quantifying tissue iron concentration in vivo is instrumental for understanding the role of iron in physiology and in neurological diseases associated with abnormal iron distribution. Herein, we use recently-developed Quantitative Susceptibility Mapping (QSM) methodology to estimate the tissue magnetic susceptibility based on MRI signal phase. To investigate the effect of different regularization choices, we implement and compare ℓ1 and ℓ2 norm regularized QSM algorithms. These regularized approaches solve for the underlying magnetic susceptibility distribution, a sensitive measure of the tissue iron concentration, that gives rise to the observed signal phase. Regularized QSM methodology also involves a pre-processing step that removes, by dipole fitting, unwanted background phase effects due to bulk susceptibility variations between air and tissue and requires data acquisition only at a single field strength. For validation, performances of the two QSM methods were measured against published estimates of regional brain iron from postmortem and in vivo data. The in vivo comparison was based on data previously acquired using Field-Dependent Relaxation Rate Increase (FDRI), an estimate of MRI relaxivity enhancement due to increased main magnetic field strength, requiring data acquired at two different field strengths. The QSM analysis was based on susceptibility-weighted images acquired at 1.5 T, whereas FDRI analysis used Multi-Shot Echo-Planar Spin Echo images collected at 1.5 T and 3.0 T. Both datasets were collected in the same healthy young and elderly adults. The in vivo estimates of regional iron concentration comported well with published postmortem measurements; both QSM approaches yielded the same rank ordering of iron concentration by brain structure, with the lowest in white matter and the highest in globus pallidus. Further validation was provided by comparison of the in vivo measurements, ℓ1-regularized QSM versus FDRI and ℓ2-regularized QSM versus FDRI, which again yielded perfect rank ordering of iron by brain structure. The final means of validation was to assess how well each in vivo method detected known age-related differences in regional iron concentrations measured in the same young and elderly healthy adults. Both QSM methods and FDRI were consistent in identifying higher iron concentrations in striatal and brain stem ROIs (i.e., caudate nucleus, putamen, globus pallidus, red nucleus, and substantia nigra) in the older than in the young group. The two QSM methods appeared more sensitive in detecting age differences in brain stem structures as they revealed differences of much higher statistical significance between the young and elderly groups than did FDRI. However, QSM values are influenced by factors such as the myelin content, whereas FDRI is a more specific indicator of iron content. Hence, FDRI demonstrated higher specificity to iron yet yielded noisier data despite longer scan times and lower spatial resolution than QSM. The robustness, practicality, and demonstrated ability of predicting the change in iron deposition in adult aging suggest that regularized QSM algorithms using single-field-strength data are possible alternatives to tissue iron estimation requiring two field strengths.


Assuntos
Envelhecimento/fisiologia , Química Encefálica/fisiologia , Mapeamento Encefálico/métodos , Ferro/análise , Ferro/metabolismo , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Encéfalo/fisiologia , Tronco Encefálico/metabolismo , Tronco Encefálico/fisiologia , Cadáver , Corpo Estriado/metabolismo , Corpo Estriado/fisiologia , Feminino , Análise de Fourier , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Tálamo/metabolismo , Tálamo/fisiologia , Adulto Jovem
10.
Alcohol Clin Exp Res ; 36(7): 1171-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22509954

RESUMO

BACKGROUND: Associative learning is required for face-name association and is impaired in alcoholism, but the cognitive processes and brain structural components underlying this deficit remain unclear. It is also unknown whether prompting alcoholics to implement a deep level of processing during face-name encoding would enhance performance. METHODS: Abstinent alcoholics and controls performed a levels-of-processing face-name learning task. Participants indicated whether the face was that of an honest person (deep encoding) or that of a man (shallow encoding). Retrieval was examined using an associative (face-name) recognition task and a single-item (face or name only) recognition task. Participants also underwent 3T structural MRI. RESULTS: Compared with controls, alcoholics had poorer associative and single-item learning and performed at similar levels. Level of processing at encoding had little effect on recognition performance but affected reaction time (RT). Correlations with brain volumes were generally modest and based primarily on RT in alcoholics, where the deeper the processing at encoding, the more restricted the correlations with brain volumes. In alcoholics, longer control task RTs correlated modestly with smaller tissue volumes across several anterior to posterior brain regions; shallow encoding correlated with calcarine and striatal volumes; deep encoding correlated with precuneus and parietal volumes; and associative recognition RT correlated with cerebellar volumes. In controls, poorer associative recognition with deep encoding correlated significantly with smaller volumes of frontal and striatal structures. CONCLUSIONS: Despite prompting, alcoholics did not take advantage of encoding memoranda at a deep level to enhance face-name recognition accuracy. Nonetheless, conditions of deeper encoding resulted in faster RTs and more specific relations with regional brain volumes than did shallow encoding. The normal relation between associative recognition and corticostriatal volumes was not present in alcoholics. Rather, their speeded RTs occurred at the expense of accuracy and were related most robustly to cerebellar volumes.


Assuntos
Alcoolismo/patologia , Aprendizagem por Associação/fisiologia , Encéfalo/fisiologia , Face , Reconhecimento Psicológico/fisiologia , Adulto , Alcoolismo/psicologia , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Desempenho Psicomotor , Tempo de Reação/fisiologia
11.
Cereb Cortex ; 21(1): 233-44, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20484322

RESUMO

Functional neuroimaging studies provide converging evidence for existence of intrinsic brain networks activated during resting states and deactivated with selective cognitive demands. Whether task-related deactivation of the default mode network signifies depressed activity relative to the remaining brain or simply lower activity relative to its resting state remains controversial. We employed 3D arterial spin labeling imaging to examine regional cerebral blood flow (CBF) during rest, a spatial working memory task, and a second rest. Change in regional CBF from rest to task showed significant normalized and absolute CBF reductions in posterior cingulate, posterior-inferior precuneus, and medial frontal lobes . A Statistical Parametric Mapping connectivity analysis, with an a priori seed in the posterior cingulate cortex, produced deactivation connectivity patterns consistent with the classic "default mode network" and activation connectivity anatomically consistent with engagement in visuospatial tasks. The large task-related CBF decrease in posterior-inferior precuneus relative to its anterior and middle portions adds evidence for the precuneus' heterogeneity. The posterior cingulate and posterior-inferior precuneus were also regions of the highest CBF at rest and during task performance. The difference in regional CBF between intrinsic (resting) and evoked (task) activity levels may represent functional readiness or reserve vulnerable to diminution by conditions affecting perfusion.


Assuntos
Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/fisiologia , Circulação Cerebrovascular/fisiologia , Função Executiva/fisiologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Feminino , Humanos , Masculino , Rede Nervosa/irrigação sanguínea , Vias Neurais/irrigação sanguínea
12.
J Neurosci ; 30(36): 12168-78, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20826679

RESUMO

Degradation of white matter fibers can affect the transmission of signals in brain circuits that normally enable integration of highly lateralized visual and motor processes. Here, we used diffusion tensor imaging tractography in combination with functional magnetic resonance imaging to examine the specific contributions of interhemispheric and intrahemispheric white matter fibers to functional measures of hemispheric transfer and parallel information processing using bilateral and unilateral left and right visual field stimulation in normal and compromised systems. In healthy adults, a greater degree of bilateral processing advantage with the left (nondominant) hand correlated with higher integrity of callosal fibers connecting occipital cortices, whereas less unilateral processing advantage with the right hand correlated with higher integrity of left-hemispheric posterior cingulate fibers. In contrast, alcoholics who have compromised callosal integrity showed less bilateral processing advantage than controls when responding with the left hand and greater unilateral processing advantage when responding with the right hand. We also found degraded left posterior cingulate and posterior callosal fibers in chronic alcoholics, which is consistent with functional imaging results of less left posterior cingulate and extrastriate cortex activation in alcoholics than controls when processing bilateral compared with unilateral visual field stimulation. Together, our results demonstrated that interhemispheric and intrahemispheric white matter fiber pathways mediate visuomotor integration asymmetrically and that subtle white matter fiber degradation in alcoholism attenuated the normal pattern of hemispheric asymmetry, which may have ramifications for the efficiency of visual information processing and fast response execution.


Assuntos
Alcoolismo/patologia , Encéfalo/patologia , Lateralidade Funcional/fisiologia , Fibras Nervosas Mielinizadas/patologia , Desempenho Psicomotor/fisiologia , Adulto , Consumo de Bebidas Alcoólicas , Alcoolismo/fisiopatologia , Análise de Variância , Encéfalo/irrigação sanguínea , Mapeamento Encefálico , Estudos de Casos e Controles , Imagem de Tensor de Difusão/métodos , Mãos/inervação , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Rede Nervosa/irrigação sanguínea , Rede Nervosa/patologia , Rede Nervosa/fisiopatologia , Vias Neurais/patologia , Oxigênio/sangue , Estimulação Luminosa/métodos , Tempo de Reação/fisiologia , Estatística como Assunto , Fatores de Tempo , Campos Visuais/fisiologia
13.
Neuroimage ; 57(1): 214-224, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21511039

RESUMO

Early adolescence is a time of rapid change in neuroanatomy and sexual development. Precision in tracking changes in brain morphology with structural MRI requires image segmentation with minimal error. Here, we compared two approaches to achieve segmentation by image registration with an atlas to quantify regional brain structural development over a 7-month interval in normal, early adolescent boys and girls. Adolescents were scanned twice (average interval=7.3 months), yielding adequate data for analysis in 16 boys (baseline age 10.9 to 13.9 years; Tanner Stage=1 to 4) and 12 girls (baseline age=11.2 to 13.7 years; Tanner Stage=3 to 4). Brain volumes were derived from T1-weighted (SPGR) images and dual-echo Fast Spin-Echo (FSE) images collected on a GE 3T scanner with an 8-channel phased-array head coil and analyzed by registration-based parcellation using the SRI24 atlas. The "independent" method required two inter-subject registrations: both baseline (MRI 1) to atlas and follow-up (MRI 2) to the atlas. The "sequential" method required one inter-subject registration, which was MRI 1 to the atlas, and one intra-subject registration, which was MRI 2 to MRI 1. Gray matter/white matter/CSF were segmented in both MRI-1 and MRI-2 using FSL FAST with tissue priors also based on the SRI24 atlas. Gray matter volumes were derived for 10 cortical regions, gray+white matter volumes for 5 subcortical structures, and CSF volumes for 4 ventricular regions and the cortical sulci. Across the 15 tissue regions, the coefficient of variation (CV) of change scores across individuals was significantly lower for the sequential method (CV=3.02), requiring only one inter-subject registration, than for the independent method (CV=9.43), requiring two inter-subject registrations. Volume change based on the sequential method revealed that total supratentorial and CSF volumes increased, while cortical gray matter volumes declined significantly (p<0.01) in anterior (lateral and medial frontal, anterior cingulate, precuneus, and parietal) but not posterior (occipital, calcarine) cortical regions. These volume changes occurred in all boys and girls who advanced a step in Tanner staging. Subcortical structures did not show consistent changes. Thus, longitudinal MRI assessment using robust registration methods is sufficiently sensitive to identify significant regional brain changes over a 7-month interval in boys and girls in early adolescence. Increasing the temporal resolution of the retest interval in longitudinal developmental studies could increase accuracy in timing of peak growth of regional brain tissue and refine our understanding of the neural mechanisms underlying the dynamic changes in brain structure throughout adolescence.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/crescimento & desenvolvimento , Interpretação de Imagem Assistida por Computador/métodos , Adolescente , Feminino , Humanos , Estudos Longitudinais/métodos , Imageamento por Ressonância Magnética , Masculino
14.
Hum Brain Mapp ; 31(5): 798-819, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20017133

RESUMO

This article describes the SRI24 atlas, a new standard reference system of normal human brain anatomy, that was created using template-free population registration of high-resolution magnetic resonance images acquired at 3T in a group of 24 normal control subjects. The atlas comprises anatomical channels (T1, T2, and proton density weighted), diffusion-related channels (fractional anisotropy, mean diffusivity, longitudinal diffusivity, mean diffusion-weighted image), tissue channels (CSF probability, gray matter probability, white matter probability, tissue labels), and two cortical parcellation maps. The SRI24 atlas enables multichannel atlas-to-subject image registration. It is uniquely versatile in that it is equally suited for the two fundamentally different atlas applications: label propagation and spatial normalization. Label propagation, herein demonstrated using diffusion tensor image fiber tracking, is enabled by the increased sharpness of the SRI24 atlas compared with other available atlases. Spatial normalization, herein demonstrated using data from a young-old group comparison study, is enabled by its unbiased average population shape property. For both propagation and normalization, we also report the results of quantitative comparisons with seven other published atlases: Colin27, MNI152, ICBM452 (warp5 and air12), and LPBA40 (SPM5, FLIRT, AIR). Our results suggest that the SRI24 atlas, although based on 3T MR data, allows equally accurate spatial normalization of data acquired at 1.5T as the comparison atlases, all of which are based on 1.5T data. Furthermore, the SRI24 atlas is as suitable for label propagation as the comparison atlases and detailed enough to allow delineation of anatomical structures for this purpose directly in the atlas.


Assuntos
Atlas como Assunto , Encéfalo/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Acesso à Informação , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Algoritmos , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Internet , Masculino , Vias Neurais/anatomia & histologia , Vias Neurais/patologia , Probabilidade , Adulto Jovem
15.
Psychiatry Res ; 182(3): 266-73, 2010 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-20488671

RESUMO

The regional distribution, laterality, and reliability of volumetric pulsed continuous arterial spin labeling (PCASL) measurements of cerebral blood flow (CBF) in cortical, subcortical, and cerebellar regions were determined in 10 normal volunteers studied on two occasions separated by 3 to 7 days. Regional CBF, normalized for global perfusion, was highly reliable when measured on separate days. Several regions showed significant lateral asymmetry; notably, in frontal regions CBF was greater in the right than left hemisphere, whereas left was greater than right in posterior regions. There was considerable regional variability across the brain, whereby the posterior cingulate and central and posterior precuneus cortices had the highest perfusion and the globus pallidus the lowest gray matter perfusion. The latter may be due to iron-induced T1 shortening affecting labeled spins and computed CBF signal. High CBF in the posterior cingulate and posterior and central precuneus cortices in this task-free acquisition suggests high activity in these principal nodes of the "default mode network."


Assuntos
Artérias/metabolismo , Cerebelo/irrigação sanguínea , Córtex Cerebral/irrigação sanguínea , Circulação Cerebrovascular/fisiologia , Lateralidade Funcional/fisiologia , Adulto , Idoso , Mapeamento Encefálico , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Imagem de Perfusão , Reprodutibilidade dos Testes , Adulto Jovem
16.
Elife ; 92020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286229

RESUMO

To analyse neuron data at scale, neuroscientists expend substantial effort reading documentation, installing dependencies and moving between analysis and visualisation environments. To facilitate this, we have developed a suite of interoperable open-source R packages called the natverse. The natverse allows users to read local and remote data, perform popular analyses including visualisation and clustering and graph-theoretic analysis of neuronal branching. Unlike most tools, the natverse enables comparison across many neurons of morphology and connectivity after imaging or co-registration within a common template space. The natverse also enables transformations between different template spaces and imaging modalities. We demonstrate tools that integrate the vast majority of Drosophila neuroanatomical light microscopy and electron microscopy connectomic datasets. The natverse is an easy-to-use environment for neuroscientists to solve complex, large-scale analysis challenges as well as an open platform to create new code and packages to share with the community.


Assuntos
Conectoma/métodos , Interpretação de Imagem Assistida por Computador/métodos , Neuroanatomia/métodos , Software , Animais , Drosophila , Humanos , Neurônios/fisiologia
17.
Neuroimage ; 47(2): 493-500, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19442747

RESUMO

Different brain structures accumulate iron at different rates throughout the adult life span. Typically, striatal and brain stem structures are higher in iron concentrations in older than younger adults, whereas cortical white matter and thalamus have lower concentrations in the elderly than young adults. Brain iron can be measured in vivo with MRI by estimating the relaxivity increase across magnetic field strengths, which yields the Field-Dependent Relaxation Rate Increase (FDRI) metric. The influence of local iron deposition on susceptibility, manifests as MR phase effects, forms the basis for another approach for iron measurement, Susceptibility-Weighted Imaging (SWI), for which imaging at only one field strength is sufficient. Here, we compared the ability of these two methods to detect and quantify brain iron in 11 young (5 men, 6 women; 21 to 29 years) and 12 elderly (6 men, 6 women; 64 to 86 years) healthy adults. FDRI was acquired at 1.5 T and 3.0 T, and SWI was acquired at 1.5 T. The results showed that both methods detected high globus pallidus iron concentration regardless of age and significantly greater iron in putamen with advancing age. The SWI measures were more sensitive when the phase signal intensities themselves were used to define regions of interest, whereas FDRI measures were robust to the method of region of interest selection. Further, FDRI measures were more highly correlated than SWI iron estimates with published postmortem values and were more sensitive than SWI to iron concentration differences across basal ganglia structures. Whereas FDRI requires more imaging time than SWI, two field strengths, and across-study image registration for iron concentration calculation, FDRI appears more specific to age-dependent accumulation of non-heme brain iron than SWI, which is affected by heme iron and non-iron source effects on phase.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Ferro/análise , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valores de Referência , Distribuição Tecidual , Adulto Jovem
18.
Neuroimage ; 44(3): 1050-62, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18977450

RESUMO

Normal aging is accompanied by decline in selective cognitive and motor functions. A concurrent decline in regional white matter integrity, detectable with diffusion tensor imaging (DTI), potentially contributes to waning function. DTI analysis of white matter loci indicates an anterior-to-posterior gradient distribution of declining fractional anisotropy (FA) and increasing diffusivity with age. Quantitative fiber tracking can be used to determine regional patterns of normal aging of fiber systems and test the functional ramifications of the DTI metrics. Here, we used quantitative fiber tracking to examine age effects on commissural (genu and splenium), bilateral association (cingulate, inferior longitudinal fasciculus and uncinate), and fornix fibers in 12 young and 12 elderly healthy men and women and tested functional correlates with concurrent assessment of a wide range of neuropsychological abilities. Principal component analysis of cognitive and motor tests on which the elderly achieved significantly lower scores than the young group was used for data reduction and yielded three factors: Problem Solving, Working Memory, and Motor. Age effects--lower FA or higher diffusivity--in the elderly were prominent in anterior tracts, specifically, genu, fornix, and uncinate fibers. Differential correlations between FA or diffusivity in fiber tracts and scores on Problem Solving, Working Memory, or Motor factors provide convergent validity to the biological meaningfulness of the integrity of the fibers tracked. The observed pattern of relations supports the possibility that regional degradation of white matter fiber integrity is a biological source of age-related functional compromise and may have the potential to limit accessibility to alternative neural systems to compensate for compromised function.


Assuntos
Envelhecimento/patologia , Envelhecimento/fisiologia , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Memória/fisiologia , Destreza Motora/fisiologia , Fibras Nervosas Mielinizadas/fisiologia , Fibras Nervosas Mielinizadas/ultraestrutura , Resolução de Problemas/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino
19.
Alcohol Clin Exp Res ; 32(8): 1459-67, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18798357

RESUMO

BACKGROUND: Structural magnetic resonance imaging (MRI) reveals widespread brain damage manifest as tissue shrinkage and complementary ventriculomegaly in human alcoholism. For an animal model to parallel the human condition, high alcohol exposure should produce similar radiologically detectable neuropathology. Our previous structural MRI study demonstrated only modest brain dysmorphology of the alcohol-preferring (P) rat with average blood alcohol levels(BALs) of 125 mg/dl achieved with voluntary consumption. Here, we tested the hypothesis that wild-type Wistar rats, exposed to vaporized alcohol ensuring higher BALs than typically achieved with voluntary consumption in rodents, would model MRI findings in the brains of humans with chronic alcoholism. METHODS: The longitudinal effects of vaporized alcohol exposure on the brains of 10 wild-type Wistar rats compared with 10 sibling controls were investigated with structural MRI, conducted before (MRI 1) and after (MRI 2) 16 of alcohol exposure and after an additional 8 weeks at a higher concentration of alcohol (MRI 3). RESULTS: Two rats in the alcohol group died prior to MRI 2. The remaining vapor-exposed rats(n = 8) achieved BALs of 293 mg/dl by MRI 2 and 445 mg/dl by MRI 3. Whereas the controls gained 17% of their body weight from MRI 1 to MRI 3, the alcohol-exposed group lost 6%.MRI, quantified with atlas-based parcellation, revealed a profile of significant ventricular expansion,after alcohol vapor exposure, in 9 contiguous slices, extending from the dorsolateral to ventrolateral ventricles. In particular, from MRI 1 to MRI 2, this ventricular volume expanded by an average of 6.5% in the controls and by 27.1% in the alcohol-exposed rats but only an additional 1.5% in controls and 2.4% in alcohol-exposed rats from MRI 2 to MRI 3. The midsagittal volume of the full anterior-to-posterior extent of the corpus callosum grew between the first 2 MRIs in both groups followed by regression in the alcohol group by MRI 3. Although group differences were statistically significant, among animals there was substantial variability of the effects of alcohol exposure on brain morphology; some animals showed profound effects, whereas others were essentially unaffected. CONCLUSIONS: The ventricular dilatation and callosal shrinkage produced in wild-type rats following involuntary alcohol exposure yielded a modestly successful model of neurodysmorphology phenotypes of human alcoholism. As is the case for the human condition, however, in which some individuals express greater alcoholism-related neuropathology than others, some rats maybe more susceptible than others to extreme alcohol exposure.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Ventrículos Cerebrais/efeitos dos fármacos , Ventrículos Cerebrais/patologia , Etanol/farmacologia , Administração por Inalação , Alcoolismo/patologia , Animais , Peso Corporal , Depressores do Sistema Nervoso Central/administração & dosagem , Depressores do Sistema Nervoso Central/sangue , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Etanol/administração & dosagem , Etanol/sangue , Feminino , Imageamento por Ressonância Magnética , Masculino , Nebulizadores e Vaporizadores , Ratos , Ratos Wistar
20.
IEEE Trans Med Imaging ; 26(9): 1201-12, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17896593

RESUMO

We introduce an algorithm for segmenting brain magnetic resonance (MR) images into anatomical compartments such as the major tissue classes and neuro-anatomical structures of the gray matter. The algorithm is guided by prior information represented within a tree structure. The tree mirrors the hierarchy of anatomical structures and the subtrees correspond to limited segmentation problems. The solution to each problem is estimated via a conventional classifier. Our algorithm can be adapted to a wide range of segmentation problems by modifying the tree structure or replacing the classifier. We evaluate the performance of our new segmentation approach by revisiting a previously published statistical group comparison between first-episode schizophrenia patients, first-episode affective psychosis patients, and comparison subjects. The original study is based on 50 MR volumes in which an expert identified the brain tissue classes as well as the superior temporal gyrus, amygdala, and hippocampus. We generate analogous segmentations using our new method and repeat the statistical group comparison. The results of our analysis are similar to the original findings, except for one structure (the left superior temporal gyrus) in which a trend-level statistical significance (p = 0.07) was observed instead of statistical significance.


Assuntos
Transtornos Psicóticos Afetivos/diagnóstico , Algoritmos , Encéfalo/patologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Esquizofrenia/diagnóstico , Inteligência Artificial , Simulação por Computador , Humanos , Aumento da Imagem/métodos , Modelos Neurológicos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA